

# TEST REPORT

## Part 15 Subpart C 15.231

**Equipment under test** Remote control

**Model name** FSB-REM22

**FCC ID** 2A66F-FSB-REM22

**Applicant** FESBO

**Manufacturer** FESBO

**Date of test(s)** 2022.05.31 ~ 2022.06.02

**Date of issue** 2022.06.27

**Issued to**  
**FESBO**

FESBO, 279, Chungnyeol-daero, Dongnae-gu, Busan, Republic of Korea  
 Tel: +82-51-555-5669 / Fax: +82-51-556-9738

**Issued by**  
**KES Co., Ltd.**

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,  
 Gyeonggi-do, Korea  
 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea  
 Tel: +82-31-425-6200 / Fax: +82-31-424-0450

| Test and report completed by :                                                      | Report approval by :                                                                 |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|  |  |
| Bong-Seok, Kim<br>Test engineer                                                     | Yeong-Jun, Cho<br>Technical manager                                                  |

This test report is not related to KS Q ISO/IEC 17025 and KOLAS.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
 The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
 The authenticity of the report, contact [shchoi@kes.co.kr](mailto:shchoi@kes.co.kr)



## KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Test report No.:  
KES-RF1-22T0073  
Page (2 ) of (20)

### Revision history

| Revision | Date of issue | Test report No. | Description |
|----------|---------------|-----------------|-------------|
| -        | 2022.06.27    | KES-RF1-22T0073 | Initial     |
|          |               |                 |             |

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
The authenticity of the report, contact shchoi@kes.co.kr



## TABLE OF CONTENTS

|             |                                                                                 |    |
|-------------|---------------------------------------------------------------------------------|----|
| 1.          | General information .....                                                       | 4  |
| 1.1.        | EUT description .....                                                           | 4  |
| 1.2.        | Test configuration .....                                                        | 4  |
| 1.3.        | Device modifications .....                                                      | 4  |
| 1.4.        | Derivation model information .....                                              | 4  |
| 1.5.        | Frequency/channel operations .....                                              | 5  |
| 2.          | Summary of tests .....                                                          | 6  |
| 3.          | Test results .....                                                              | 7  |
| 3.1.        | Field strength of fundamental and the field strength of spurious emission ..... | 7  |
| 3.2.        | Bandwidth of operation frequency .....                                          | 16 |
| 3.3.        | Transmission time .....                                                         | 17 |
| 3.4.        | Duty cycle correction factor .....                                              | 18 |
| Appendix A. | Measurement equipment .....                                                     | 19 |
| Appendix B. | Test setup photos .....                                                         | 20 |

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
The authenticity of the report, contact shchoi@kes.co.kr



## KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Test report No.:  
KES-RF1-22T0073  
Page (4 ) of (20)

### 1. General information

Applicant: FESBO  
Applicant address: 47812 FESBO, 279, Chungnyeol-daero, Dongnae-gu, Busan, Republic of Korea  
Test site: KES Co., Ltd.  
Test site address:  3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea  
 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea  
FCC rule part(s): 15.231  
FCC ID: 2A66F-FSB-REM22  
Test device serial No.:  Production  Pre-production  Engineering

#### 1.1. EUT description

Equipment under test Remote control  
Frequency range 447.697 MHz  
Model FSB-REM22  
Modulation technique FSK  
Number of channels 447.697 MHz : 1ch  
Antenna specification Antenna type: Helical antenna, Peak gain: -2.3 dBi  
Power source DC 3.0 V (Battery)  
H/W Version 0.1  
S/W Version 0.1

#### 1.2. Test configuration

The **FESBO // Remote control // FSB-REM22 // FCC ID: 2A66F-FSB-REM22** was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Subpart C 15.231  
KDB 558074 D01 V05r02  
ANSI C63.10-2013

#### 1.3. Device modifications

N/A

#### 1.4. Derivation model information

N/A

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
The authenticity of the report, contact shchoi@kes.co.kr



### KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Test report No.:  
KES-RF1-22T0073  
Page (5 ) of (20)

#### 1.5. Frequency/channel operations

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 01  | 447.697         |

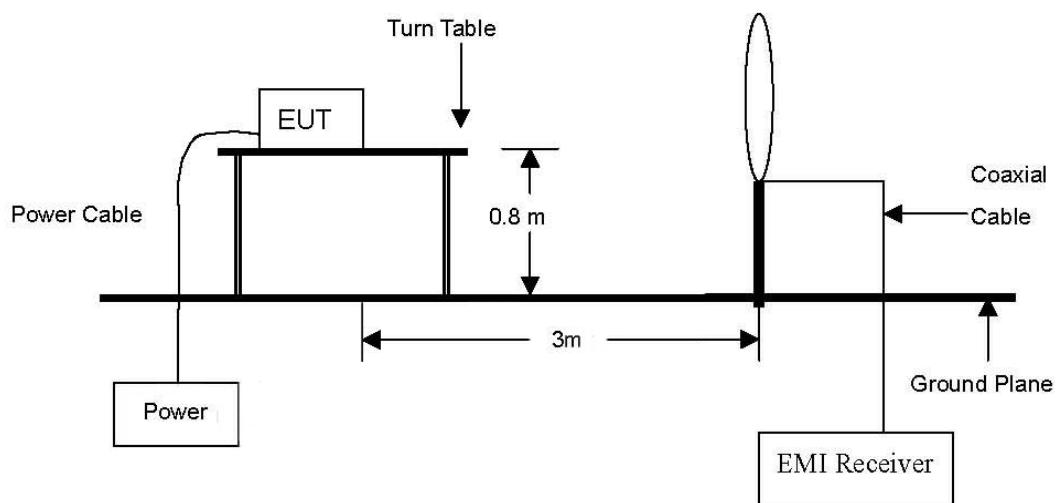
---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
The authenticity of the report, contact shchoi@kes.co.kr

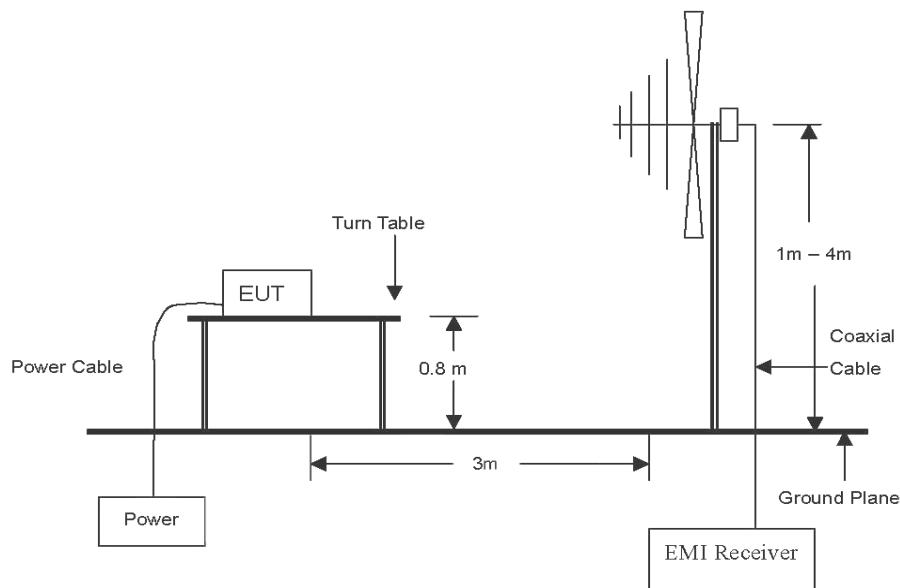
## 2. Summary of tests

| Reference              | Parameter                                                                    | Test results      |
|------------------------|------------------------------------------------------------------------------|-------------------|
| 15.209(a)<br>15.231(b) | Radiated emission,<br>Spurious emission and<br>Field Strength of Fundamental | Pass              |
| 15.231(c)              | Bandwidth of operation frequency                                             | Pass              |
| 15.231(a)              | Transmission time                                                            | Pass              |
| 15.207(a)              | AC conducted emissions                                                       | N/A <sup>1)</sup> |

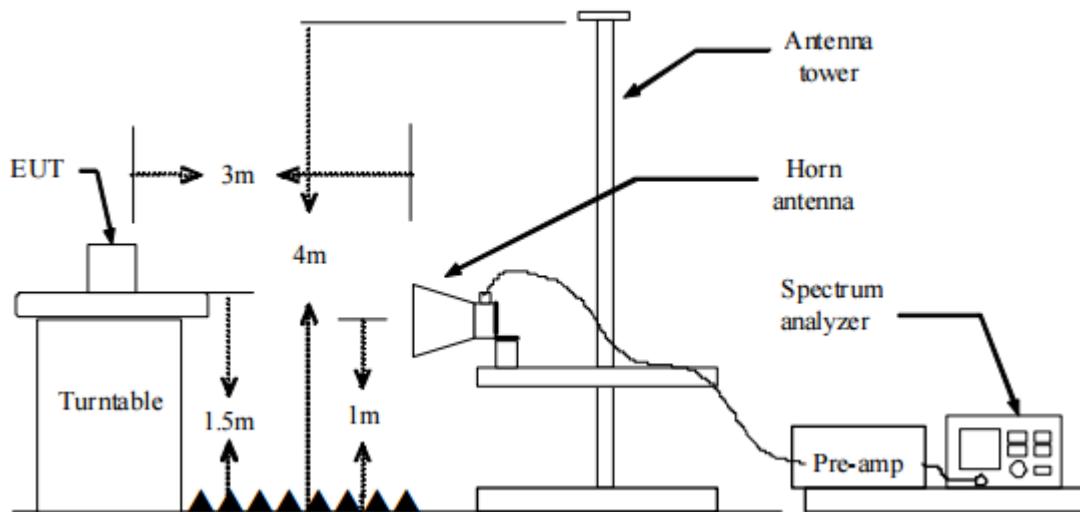
**Note.**


1. This product is powered by battery.

### 3. Test results


#### 3.1. Field strength of fundamental and the field strength of spurious emission

##### Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.



#### Test procedure below 30 MHz

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

#### Test procedure above 30 MHz

1. Spectrum analyzer settings for  $f < 1$  GHz:
  - ① Span = wide enough to fully capture the emission being measured
  - ② RBW = 100 kHz
  - ③ VBW  $\geq$  RBW
  - ④ Detector = Peak detection (PK) or Quasi-peak detection (QP)
  - ⑤ Sweep time = auto
  - ⑥ Trace = max hold
2. Spectrum analyzer settings for  $f \geq 1$  GHz: Peak
  - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
  - ② RBW = 1 MHz
  - ③ VBW  $\geq$  3 MHz
  - ④ Detector = peak
  - ⑤ Sweep time = auto
  - ⑥ Trace = max hold
  - ⑦ Trace was allowed to stabilize

**Note.**

1.  $f < 30 \text{ MHz}$ , extrapolation factor of 40 dB/decade of distance.  $F_d = 40 \log(D_m/D_s)$   
 $f \geq 30 \text{ MHz}$ , extrapolation factor of 20 dB/decade of distance.  $F_d = 20 \log(D_m/D_s)$   
Where:  
 $F_d$  = Distance factor in dB  
 $D_m$  = Measurement distance in meters  
 $D_s$  = Specification distance in meters
2. CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or  $F_d$ (dB)
3. Field strength(dB $\mu$ V/m) = Level(dB $\mu$ V) + CF (dB) + or DCF(dB)
4. Margin(dB) = Limit(dB $\mu$ V/m) - Field strength(dB $\mu$ V/m)
5. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.
6. The emissions are reported however whose levels were not within 20 dB of respective limits were not reported.

## Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

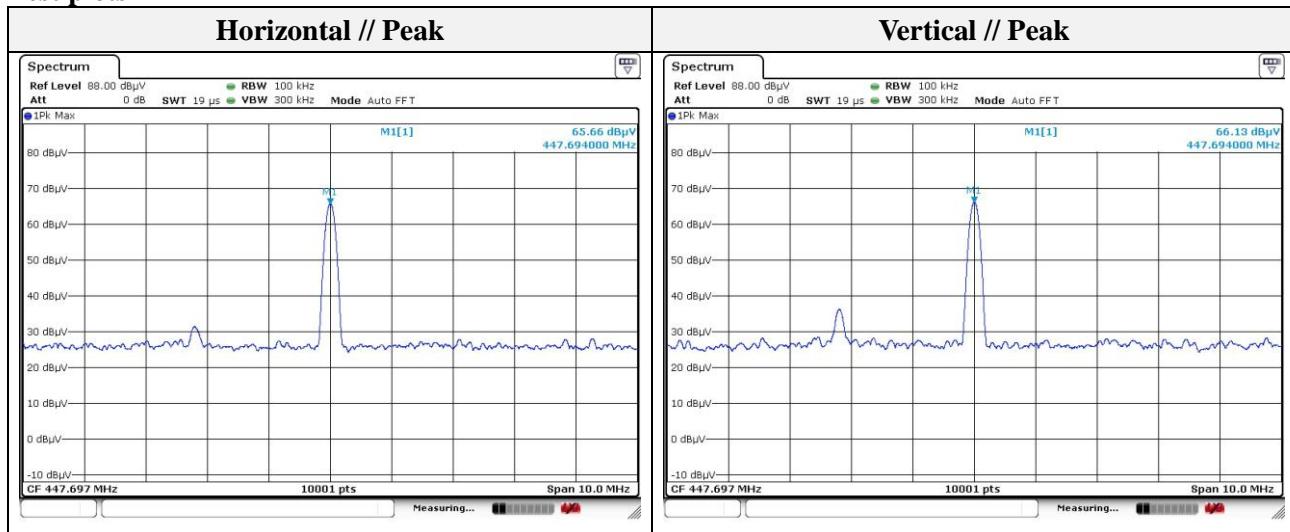
| Frequency (MHz) | Distance (Meters) | Radiated ( $\mu$ V/m) |
|-----------------|-------------------|-----------------------|
| 0.009 ~ 0.490   | 300               | 2400/F(kHz)           |
| 0.490 ~ 1.705   | 30                | 24000/F(kHz)          |
| 1.705 ~ 30.0    | 30                | 30                    |
| 30 ~ 88         | 3                 | 100**                 |
| 88 ~ 216        | 3                 | 150**                 |
| 216 ~ 960       | 3                 | 200**                 |
| Above 960       | 3                 | 500                   |

\*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to 15.231(b), in addition to the provisions of section 15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts / meter) | Field strength of spurious emission (microvolts / meter) |
|-----------------------------|----------------------------------------------------|----------------------------------------------------------|
| 40.66 ~ 40.70               | 2,250                                              | 225                                                      |
| 70 ~ 130                    | 1,250                                              | 125                                                      |
| 130 ~ 174                   | 1,250 to 3,750**                                   | 125 to 375**                                             |
| 174 ~ 260                   | 3,750                                              | 375                                                      |
| 260 ~ 470                   | 3,750 to 12,500**                                  | 375 to 1,250**                                           |
| Above 470                   | 12,500                                             | 1,250                                                    |

\*\*Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130 ~ 174 MHz,  $\mu$ V/m at 3 meters =  $56.81818(F) - 6136.3636$ ; for the band 260 ~ 470 MHz,  $\mu$ V/m at 3 meters =  $41.6667(F) - 7083.333$ . The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.


## Field strength

### Test results

Mode: FSK  
 Distance of measurement: 3 meter  
 Channel: 1

| Frequency (MHz) | Level (dB $\mu$ V) | Detect mode | Ant. Pol. (H/V) | CF (dB) | DCF (dB) | Field strength (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|--------------------|-------------|-----------------|---------|----------|-------------------------------|----------------------|-------------|
| 447.697         | 65.66              | Peak        | H               | -15.01  | -        | 50.65                         | 101.27               | 50.62       |
|                 |                    | Average     | H               | -15.01  | -9.65    | 50.65                         | 81.27                | 40.26       |
| 447.697         | 66.13              | Peak        | V               | -15.01  | -        | 41.12                         | 101.27               | 50.15       |
|                 |                    | Average     | V               | -15.01  | -9.65    | 41.12                         | 81.27                | 39.79       |

### Test plots

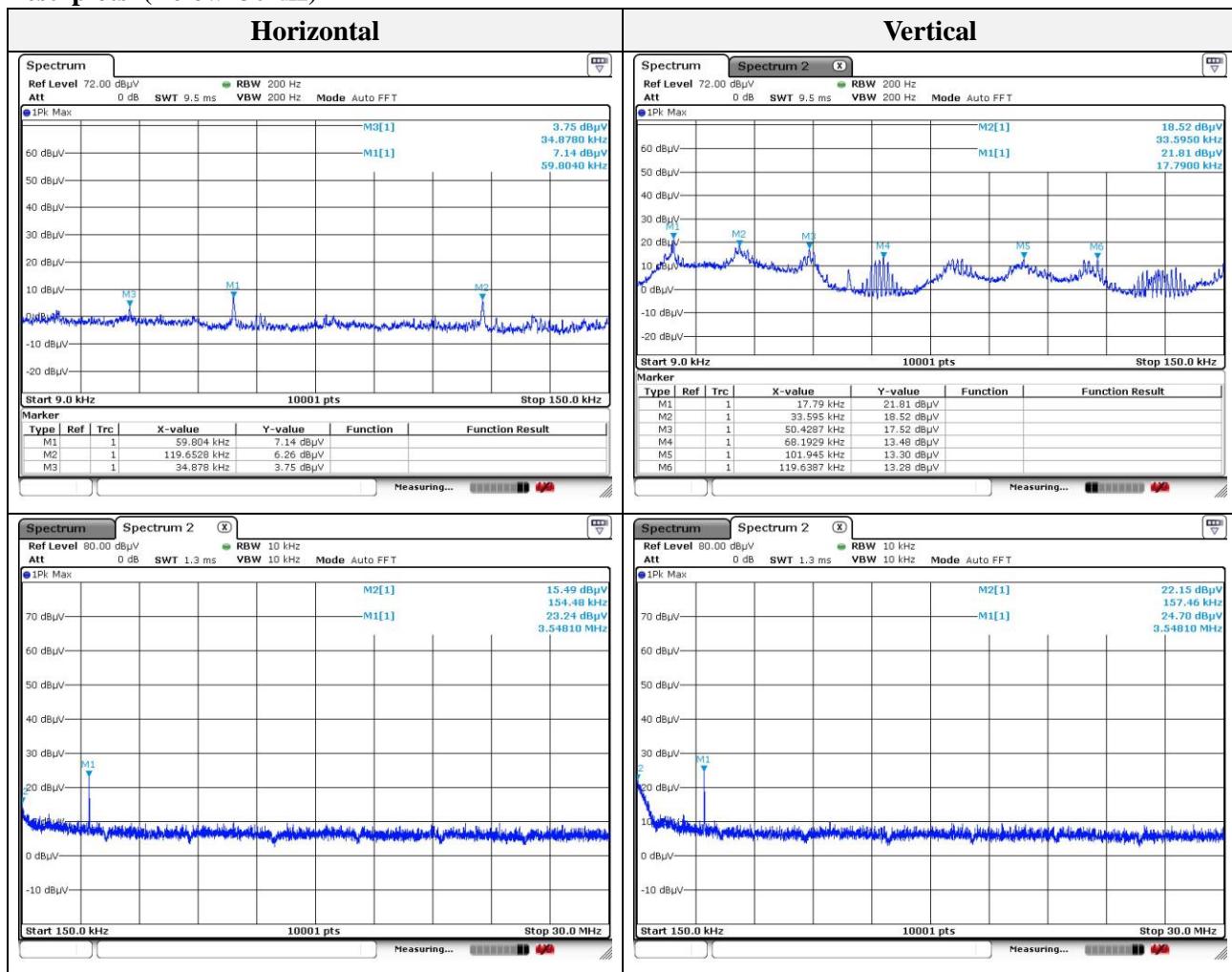


### Note.

- 1m Average Limit(dB $\mu$ V/m) =  $20\log[41.6667(F_{MHz}) - 7083.3333] = 81.27$   
 3m Peak Limit(dB $\mu$ V/m) = Average limit + 20 = 101.27  
 Average Field strength = Peak Field strength + Duty Cycle Correction Factor
2. Duty Cycle Correction Factor :  $20\log(Ton / 100 \text{ ms}) = 20\log(32.94 / 100) = -9.65$   
 $Tx_{on} = 32.94 \text{ ms}$   
 $Tx_{on+off} \geq 100 \text{ ms}$  (pulse train is 100 ms)

### Spurious emission

#### Test results (Below 30 MHz)


Mode: FSK

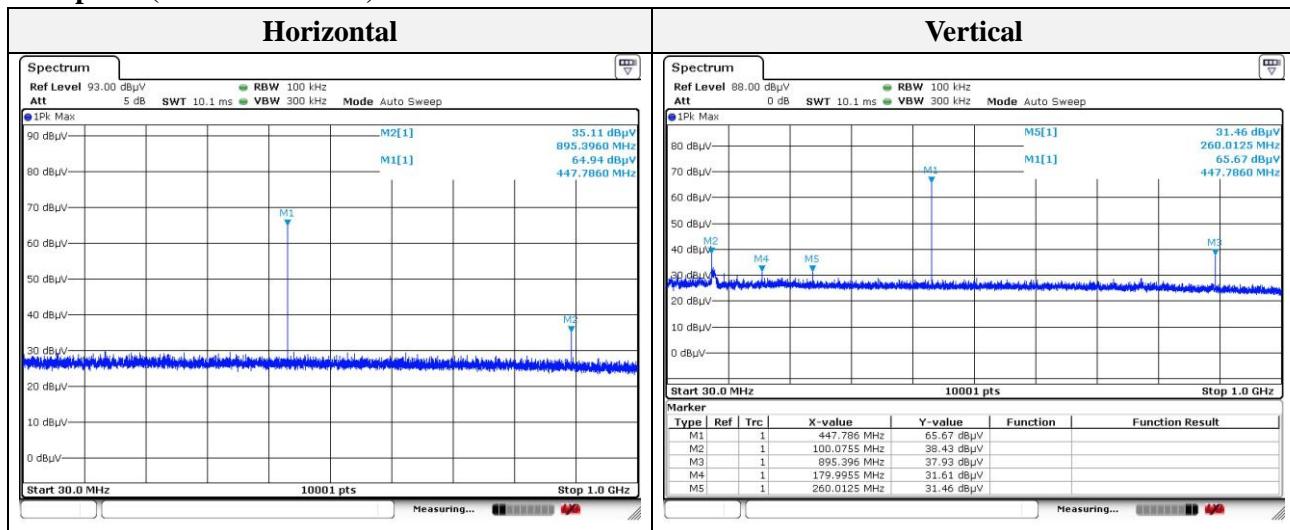
Distance of measurement: 3 meter

Channel: 1

| Frequency (MHz)                                               | Level (dB $\mu$ V) | Ant. Pol. (H/V) | CF (dB) | F <sub>d</sub> (dB) | Field strength (dB $\mu$ V/m) | Limit (dB $\mu$ N/m) | Margin (dB) |
|---------------------------------------------------------------|--------------------|-----------------|---------|---------------------|-------------------------------|----------------------|-------------|
| No spurious emissions were detected within 20 dB of the limit |                    |                 |         |                     |                               |                      |             |

#### Test plots (Below 30 MHz)




**Test results (Below 1 000 MHz)**

 Mode: FSK

 Distance of measurement: 3 meter

 Channel: 1

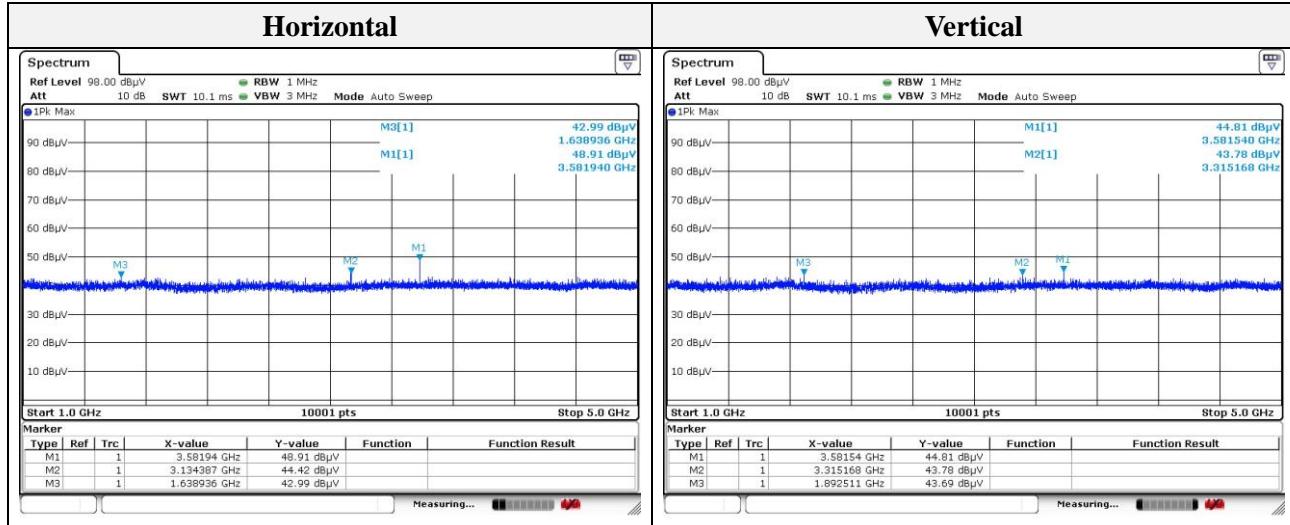
| Frequency (MHz) | Level (dB $\mu$ V) | Detect mode | Ant. Pol. (H/V) | CF (dB) | DCF (dB) | Field strength (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|--------------------|-------------|-----------------|---------|----------|-------------------------------|----------------------|-------------|
| 100.076         | 38.43              | Peak        | V               | -20.44  | -        | 17.99                         | 43.52                | 25.53       |
| 179.996         | 31.61              | Peak        | V               | -22.42  | -        | 9.19                          | 43.52                | 34.33       |
| 260.013         | 31.46              | Peak        | V               | -18.77  | -        | 12.69                         | 46.02                | 33.33       |
| 895.396         | 37.93              | Peak        | V               | -7.32   | -        | 30.61                         | 46.02                | 15.41       |
| 895.396         | 35.11              | Peak        | H               | -7.32   | -        | 27.79                         | 46.02                | 18.23       |

**Test plots (Below 1 000 MHz)**


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
 The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
 The authenticity of the report, contact shchoi@kes.co.kr

**Test results (Above 1 000 MHz)**

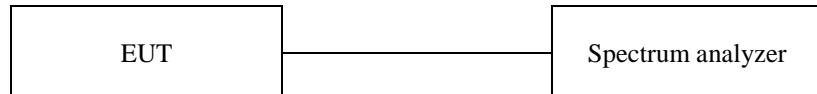
 Mode: FSK


 Distance of measurement: 3 meter

 Channel: 1

| Frequency (MHz) | Level (dB $\mu$ V) | Detect mode | Ant. Pol. (H/V) | CF (dB) | DCF (dB) | Field strength (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|--------------------|-------------|-----------------|---------|----------|-------------------------------|----------------------|-------------|
| 1 638.94        | 42.99              | Peak        | H               | -4.28   | -        | 38.71                         | 81.27                | 42.56       |
| 1 892.51        | 43.69              | Peak        | V               | 0.15    | -        | 43.84                         | 81.27                | 35.43       |
| 3 134.39        | 44.42              | Peak        | H               | 1.42    | -        | 45.84                         | 81.27                | 31.26       |
| 3 315.17        | 43.78              | Peak        | V               | 1.77    | -        | 45.55                         | 81.27                | 37.43       |
| 3 581.54        | 44.81              | Peak        | V               | 1.10    | -        | 45.91                         | 81.27                | 35.72       |
| 3 581.94        | 48.91              | Peak        | H               | 1.10    | -        | 50.01                         | 81.27                | 35.36       |

**Note.**


1.  $3m \text{ PeakLimit(dB}\mu\text{V/m)} = 20\log[41.6667(F_{\text{MHz}} - 7083.3333) = 81.27$   
 $3m \text{ Average Limit(dB}\mu\text{V/m)} = \text{Peak limit} - 20 = 61.27$   
 $\text{Average Field strength} = \text{Peak Field strength} + \text{Duty Cycle Correction Factor}$
2. Correction Factors = Antenna Factor + Cable Loss + Amp.Gain
3. “\*”means the restricted band.
4. Average test would not be applied if the peak results were lower than the average limit.
5. Duty Cycle Correction Factor :  $20\log(T_{on} / 100 \text{ ms}) = 20\log(32.94 / 100) = -9.65$   
 $T_{x \text{ on time}} = 32.94 \text{ ms}$   
 $T_{x \text{ on+off}} \geq 100 \text{ ms (pulse train is 100 ms)}$

**Test plots (Above 1 000 MHz)**

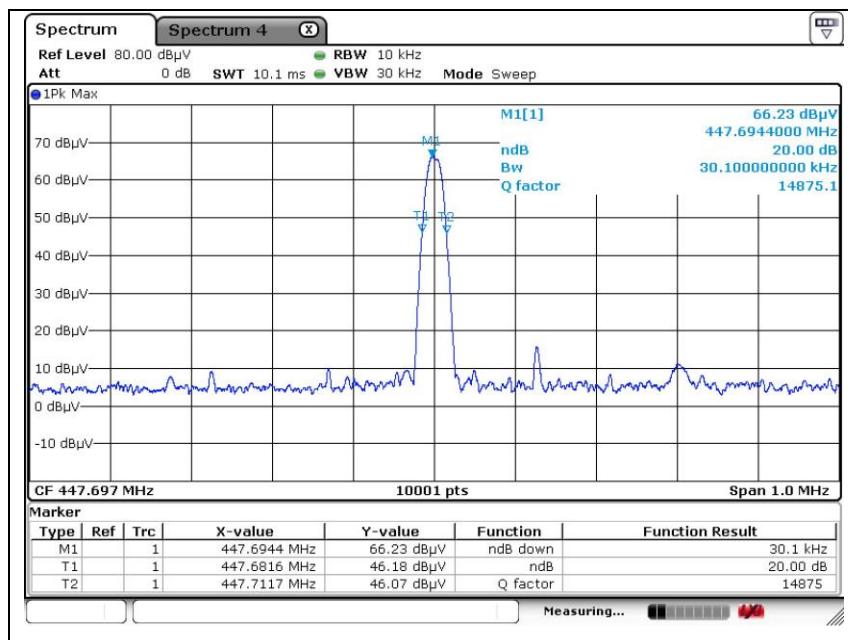

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
 The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
 The authenticity of the report, contact shchoi@kes.co.kr

### 3.2. Bandwidth of operation frequency

#### Test setup



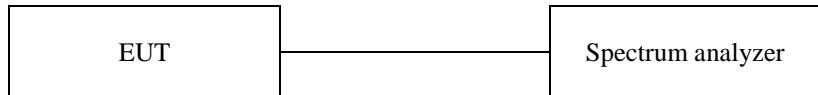
#### Test procedure


1. Use the following spectrum analyzer setting
2. RBW = 10 kHz
3. VBW = 30 kHz ( $\geq$  RBW)
4. Span = 1 MHz
5. Detector function = peak
6. Trace = max hold

#### Limit

The bandwidth of the emissions shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### Test results


| Frequency(MHz) | Bandwidth(kHz) | Limit (kHz) |
|----------------|----------------|-------------|
| 447.697        | 30.10          | 11 192.425  |



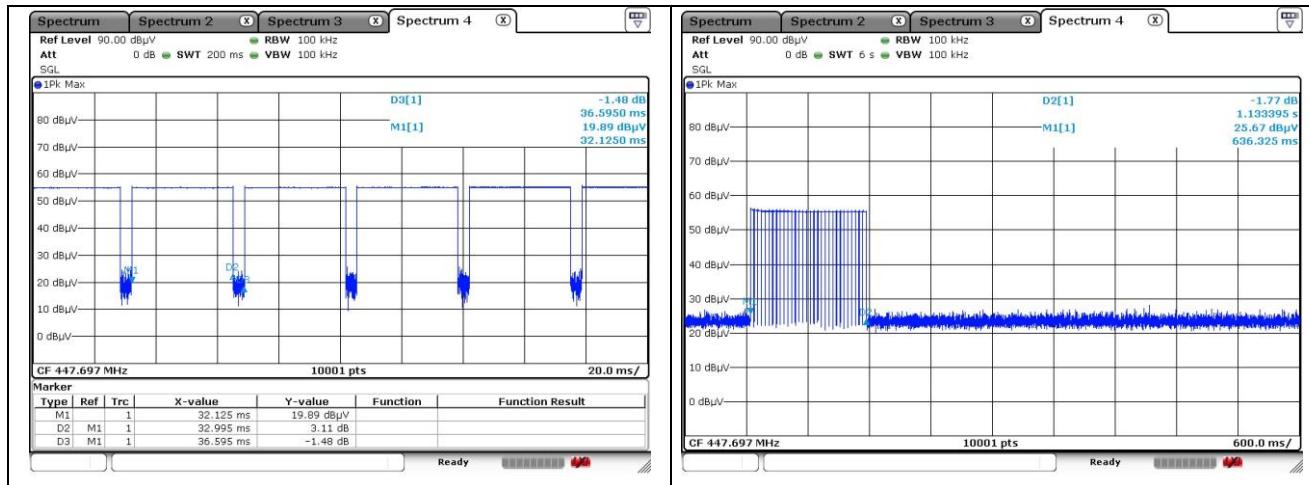
This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
 The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
 The authenticity of the report, contact shchoi@kes.co.kr

### 3.3. Transmission time

#### Test setup

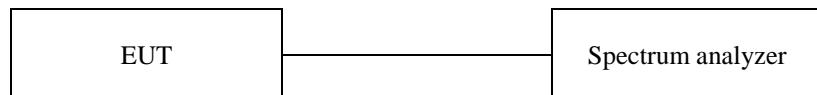


#### Test procedure


1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW=100 kHz, VBW=100 kHz, Span=0 Hz.

#### Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


#### Test results

| Frequency(MHz) | Transmission time (ms) | Limit (s)           |
|----------------|------------------------|---------------------|
| 447.697        | 1 133.395              | Same or less than 5 |



### 3.4. Duty cycle correction factor

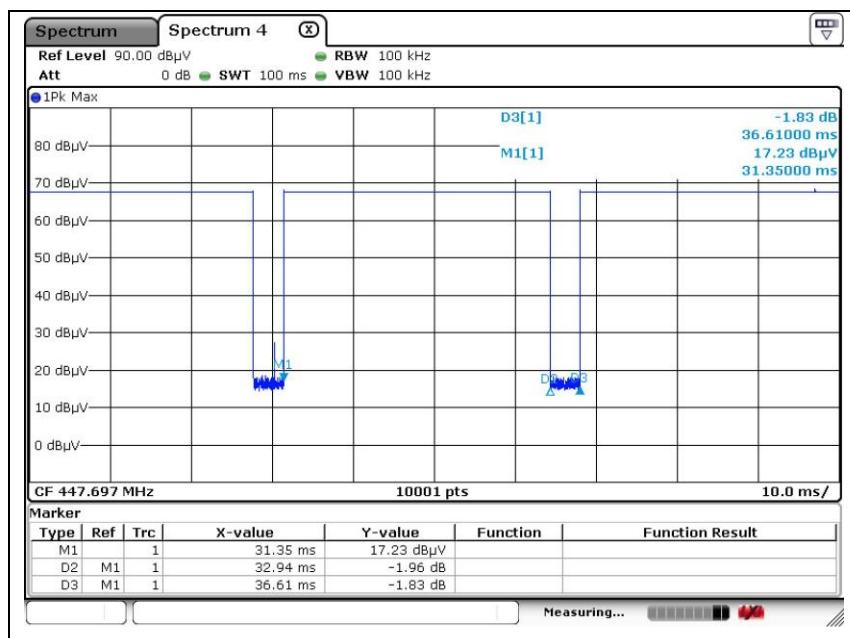
#### Test setup



#### Test procedure

1. The transmitter output is connected to the spectrum analyzer.
2. Set center frequency of spectrum analyzer = operating frequency.
3. Set the spectrum analyzer as RBW=100 kHz, VBW=100 kHz, Span=0 Hz and Sweep time =100 ms.

#### Limit


None (No dedicated Limit specified in the Rules)

#### Test results

Duty Cycle Correction Factor :  $20\log(T_{on} / 100 \text{ ms}) = 20\log(32.94 / 100) = -9.65$

$T_{x \text{ on time}} = 32.94 \text{ ms}$

$T_{x \text{ on+off}} \geq 100 \text{ ms}$  (pulse train is 100 ms)





## KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Test report No.:  
KES-RF1-22T0073  
Page (19 ) of (20)

### Appendix A. Measurement equipment

| Equipment                           | Manufacturer      | Model         | Serial No. | Calibration interval | Calibration due |
|-------------------------------------|-------------------|---------------|------------|----------------------|-----------------|
| Spectrum Analyzer                   | R&S               | FSV40         | 102194     | 1 year               | 2023.06.16      |
| 8360B Series Swept Signal Generator | HP                | 83630B        | 3844A00786 | 1 year               | 2023.01.14      |
| DC Power Supply                     | SORENSEN          | DCS40-75E     | 1408A02745 | 1 year               | 2023.06.16      |
| Attenuator                          | Mini-Circuits     | BW-S10-2W263+ | 3          | 1 year               | 2023.01.17      |
| Attenuator                          | HUBER+SUHNER      | 6806.17.A     | -          | 1 year               | 2023.04.01      |
| Loop Antenna                        | Schwarzbeck       | FMZB1513      | 225        | 2 years              | 2023.01.18      |
| BILOG ANTENNA                       | Schwarzbeck       | VULB 9168     | 9168-461   | 2 years              | 2024.04.27      |
| Horn Antenna                        | A.H               | SAS-571       | 414        | 1 year               | 2023.01.18      |
| Amplifier                           | SONOMA INSTRUMENT | 310N          | 401123     | 1 year               | 2023.06.02      |
| PREAMPLIFIER                        | HP                | 8449B         | 3008A00538 | 1 year               | 2023.06.02      |

### Peripheral devices

| Device | Manufacturer | Model No. | Serial No. |
|--------|--------------|-----------|------------|
| -      | -            | -         | -          |

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
The test results Shown in this test report refer only to the sample(s) tested unless otherwise stated.  
The authenticity of the report, contact shchoi@kes.co.kr