

FCC Radio Test Report

FCC ID: 2A5XM-MC01

Report No. : TBR-C-202202-0171-2

Applicant : Shenzhen Youshida High Technology Co., Ltd

Equipment Under Test (EUT)

EUT Name : Microphone

Model No. : MC01

Series Model No. : MC02, MC03, MC04, MC05, MC06, MC07, MC08

Brand Name : SU-YOSD

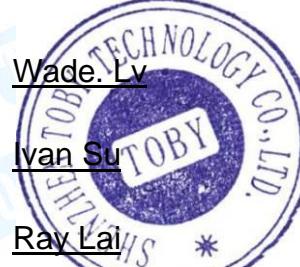
Sample ID : RW-C-202202-0171-2-1#&RW-C-202202-0171-2-2#

Receipt Date : 2022-02-24

Test Date : 2022-02-24 to 2022-03-29

Issue Date : 2022-03-30

Standards : FCC Part 15, Subpart C (15.236)


Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer : Wade. Lv

Engineer Supervisor : Ivan Su

Engineer Manager : Fay Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CONTENTS.....	2
1. GENERAL INFORMATION ABOUT EUT.....	5
1.1 Client Information	5
1.2 General Description of EUT (Equipment Under Test)	5
1.3 Block Diagram Showing the Configuration of System Tested	6
1.4 Description of Support Units	7
1.5 Description of Test Mode.....	7
1.6 Description of Test Software Setting	7
1.7 Measurement Uncertainty	8
1.8 Test Facility	8
2. TEST SUMMARY.....	9
3. TEST SOFTWARE.....	9
4. TEST EQUIPMENT.....	10
5. CONDUCTED EMISSION TEST	12
5.1 Test Standard and Limit.....	12
5.2 Test Setup	12
5.3 Test Procedure.....	13
5.4 Deviation From Test Standard.....	13
5.5 EUT Operating Mode	13
5.6 Test Data.....	13
6. RF OUTPUT POWER TEST	14
6.1 Test Standard and Limit.....	14
6.2 Test Setup	14
6.3 Test Procedure.....	14
6.4 Deviation From Test Standard.....	15
6.5 EUT Operating Condition	15
6.6 Test Data.....	15
7. BANDWIDTH TEST.....	16
7.1 Test Standard and Requirement	16
7.2 Test Setup	16
7.2 Test Procedure.....	16
7.4 Deviation From Test Standard.....	16
7.5 EUT Operating Condition	16
7.6 Test Data.....	16
8. EMISSION MASK TEST	17
8.1 Test Standard	17
8.2 Test Limit.....	17
8.3 Test Setup	17
8.4 Test Procedure.....	17
8.5 Deviation From Test Standard.....	18
8.6 Test Data.....	18

9.	RADIATED SPURIOUS EMISSION TEST	19
9.1	Test Standard and Limit.....	19
9.2	Test Setup.....	19
9.3	Test Procedure.....	20
9.4	Deviation From Test Standard.....	20
9.5	Test Data.....	20
10.	FREQUENCY STABILITY	21
10.1	Test Standard and Limit	21
10.2	Test Setup.....	21
10.3	Test Procedure.....	21
10.4	Deviation From Test Standard.....	21
10.5	Test Data.....	21
ATTACHMENT A-- CONDUCTED EMISSION TEST DATA		22
ATTACHMENT B--POWER OUTPUT TEST DATA		24
ATTACHMENT C--BANDWIDTH TEST DATA		25
ATTACHMENT D--EMISSION MASK TEST DATA		26
ATTACHMENT E--RADIATED SPURIOUS EMISSION TEST DATE.....		27
ATTACHMENT F--FREQUENCY STABILITY TEST DATA		31

Revision History

1. General Information about EUT

1.1 Client Information

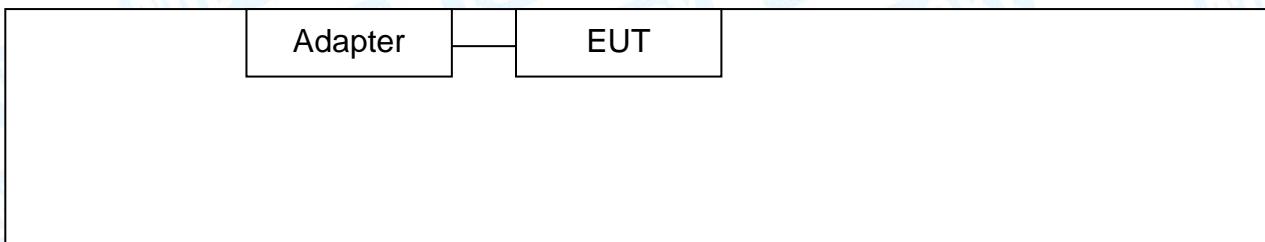
Applicant	:	Shenzhen Youshida High Technology Co., Ltd
Address	:	5/F Building A, Runchang Industrial Park, Xuexiang, Bantian Street, Longgang District, Shenzhen
Manufacturer	:	Shenzhen Youshida High Technology Co., Ltd
Address	:	5/F Building A, Runchang Industrial Park, Xuexiang, Bantian Street, Longgang District, Shenzhen

1.2 General Description of EUT (Equipment Under Test)

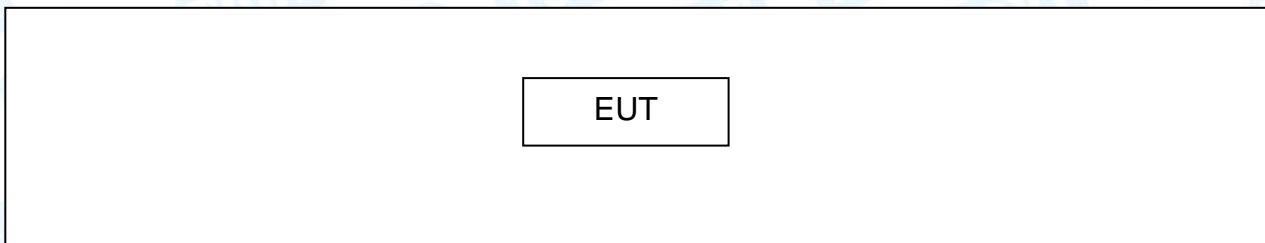
EUT Name	:	Microphone	
Models No.	:	MC01, MC02, MC03, MC04, MC05, MC06, MC07, MC08	
Model Difference	:	All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance.	
Product Description	Operation Frequency:	602MHz	
	Number of Channel:	1 Channels	
	Max Power Output:	2.492dBm	
	Antenna Gain:	0dBi PCB Antenna	
	Equipment System:	Digital systems	
Power Rating	:	USB Input: DC 5V DC 3.7V 1500mAh by Li-ion Battery	
Software Version	:	YSD2.0	
Hardware Version	:	YS1.3	
Remark	:	The antenna gain provided by the applicant, the verified for the RF conduction test and adapter provided by TOBY test lab.	

Note:

Applicable Standards: FCC CFR 47 Part 2, & 15, KDB 206256 D01 v02, ANSI C63.10- 2013, ANSI C63.26 2015


(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:


Channel	Frequency (MHz)
01	602

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

TX Mode

1.4 Description of Support Units

Equipment Information				
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"
ADAPTER	05002000	---	HUAWEI	√
Cable Information				
Number	Shielded Type	Ferrite Core	Length	Note
----	-----	----	----	----

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test	
Final Test Mode	Description
Mode 1	TX Mode
For Radiated Test	
Final Test Mode	Description
Mode 1	TX Mode(Channel 01)

Note:

For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

- (1)According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.
- (2)During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

Control by pressing the button. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF mode.

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U_{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	± 3.50 dB ± 3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	± 4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	± 4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	± 4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

FCC Part 15 Subpart C(15.236)				
Standard Section	Test Item	Test Sample(s)	Judgment	Remark
15.207(a)	Conducted Emission	RW-C-202202-0171-2-1#	PASS	N/A
15.236(d)(2)	RF Power Output	RW-C-202202-0171-2-2#	PASS	N/A
15.236(f)(2)	Occupied Bandwidth	RW-C-202202-0171-2-2#	PASS	N/A
15.236(g) 8.3 of ETSI EN 300 422-1	Emission Mask	RW-C-202202-0171-2-2#	PASS	N/A
15.236(g) 8.4 of ETSI EN 300 422-1	Radiated Spurious Emission	RW-C-202202-0171-2-2#	PASS	N/A
15.236(f)(3)	Frequency Stability vs. Temperature Frequency Stability vs. Voltage	RW-C-202202-0171-2-2#	PASS	N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

4. Test Equipment

Used Equipment List					
Radiation Emission Test (A Site)					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb.27, 2022	Feb.26, 2023
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 02, 2022	Mar. 01, 2023
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	May. 20, 2021	May. 19, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Radiation Emission Test (B Site)					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	KEYSIGHT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	May 20, 2021	May 19, 2022
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	May 20, 2021	May 19, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022

Antenna Conducted Emission

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	Agilent	5182B	MY59101429	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	5181A	MY48180463	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jul. 02, 2021	Jul. 01, 2022
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	144382	Sep. 03, 2021	Sep. 02, 2022

5. Conducted Emission Test

5.1 Test Standard and Limit

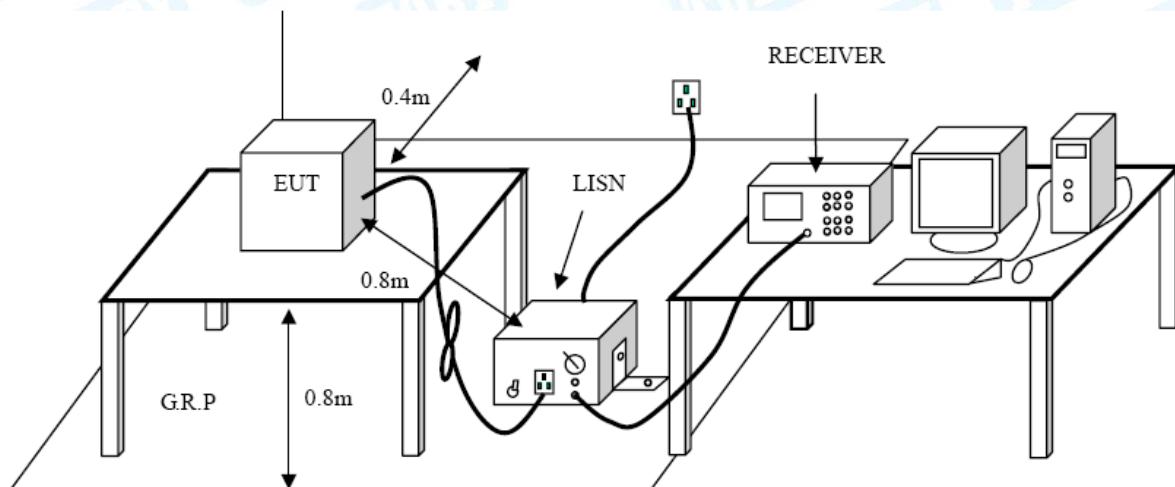
5.1.1 Test Standard

FCC Part 15.207

5.1.2 Test Limit

Conducted Emission Test Limit

Frequency	Maximum RF Line Voltage (dB μ V)	
	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. RF Output Power Test

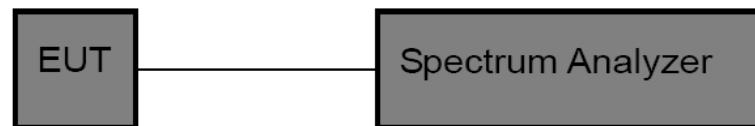
6.1 Test Standard and Limit

6.1.1 Test Standard:

FCC Part 15.236(d)(2)

6.1.2 Test Limit

§15.236 Operation of wireless microphones in the bands 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-698 MHz.


(d) The maximum radiated power shall not exceed the following values:

(2) In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.

Procedure: KDB 971168 D01 Average Power Measurements section 5.2.1

Power Limit 20mW= 13dBm

6.2 Test Setup

6.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) Set the $RBW \geq \text{Bandwidth}$
- (2) Set $VBW \geq 3 \times RBW$
- (3) Set $\text{Span} \geq 3 \times RBW$
- (4) Sweep time=auto
- (5) Measurement points $\geq 2 \text{ span} / RBW$
- (6) Detector=Average
- (7) Trace mode= max hold.

Allow trace to fully stabilize, and then use peak marker function to determine the Average amplitude level.

- (8) Radiated RF power= Conduction measurement Level + Ant. Gain

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The EUT was set to Continual Transmitting in maximum power, and new batteries are used during testing.

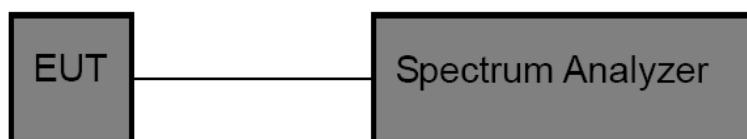
6.6 Test Data

Please refer to the Attachment B.

7. Bandwidth Test

7.1 Test Standard and Requirement

7.1.1 Test Standard


FCC Part 15.236(f)(2)

7.1.2 Test Limit

One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

7.1.3 Requirement: ANSI C63.26 sec. 5.4.3

7.2 Test Setup

7.2 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
Bandwidth: RBW=10 kHz, VBW=30kHz.
- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst -case (i.e the widest) bandwidth.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The EUT was set to continuously transmitting for the Bandwidth Test.

7.6 Test Data

Please refer to the Attachment C.

8. Emission Mask Test

8.1 Test Standard

(g) Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08), *Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; Part 1: Technical characteristics and methods of measurement*. Emissions outside of this band shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 V1.4.2 (2011-08).

8.2 Test Limit

The transmitter output spectrum shall be within the mask defined in figure 4. This mask may also be used for analogue.

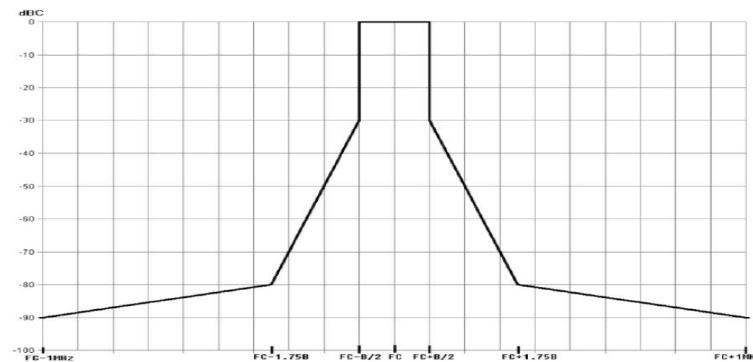
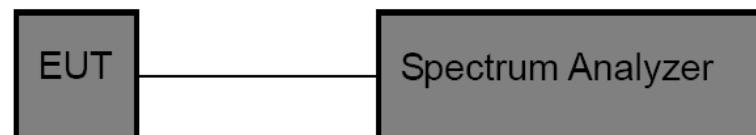



Figure 4: Spectrum mask for digital systems below 1 GHz

8.3 Test Setup

8.4 Test Procedure

Measure the "Maximum Relative Level (dBc) at Specified Carrier Offsets" with the following spectrum analyser setup:

- Centre Frequency = fc
- Span $\geq 5 \times B$
- Detector = RMS
- Trace Mode = Peak Hold
- RBW&VBW = 1 kHz
- Sweep time ≥ 2 s

8.5 Deviation From Test Standard

No deviation

8.6 Test Data

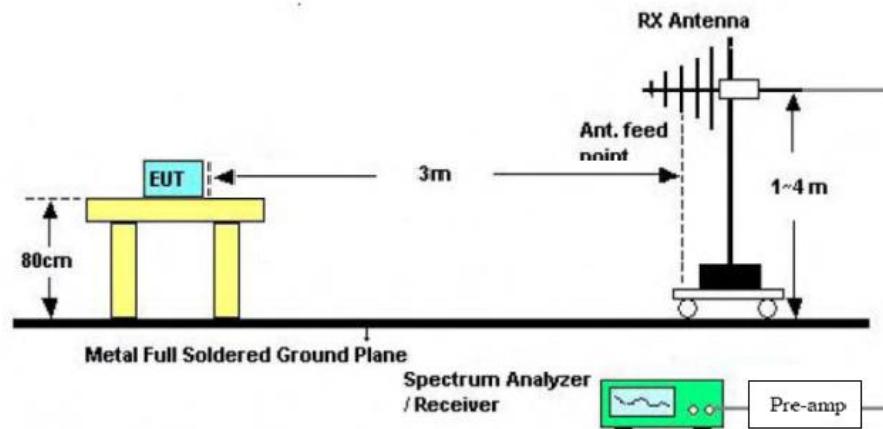
Please refer to the Attachment D.

9. Radiated Spurious Emission Test

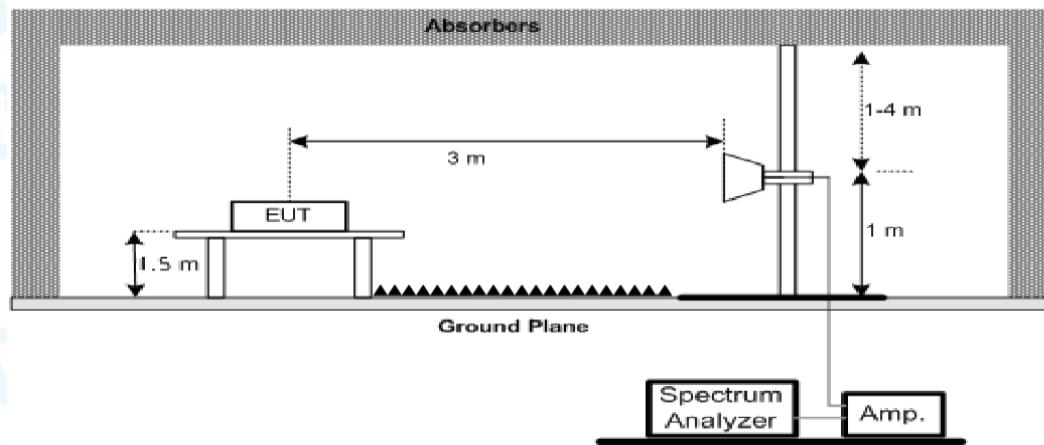
9.1 Test Standard and Limit

9.1.1 Test Standard: FCC Part 15.236(g)

Requirement: ETSI EN 300 422-1 V1.4.2


(g) Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08), *Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; Part 1: Technical characteristics and methods of measurement*. Emissions outside of this band shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 V1.4.2 (2011-08).

9.1.2 Limits


State	Frequency		
	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz
Operation	4 nW	250 nW	1 μ W
Standby	2 nW	2 nW	20 nW

9.2 Test Setup

A. Radiated Emission Test Set-Up Frequency Below 1 GHz.

B. Radiated Emission Test Set-Up Frequency Above 1 GHz.

9.3 Test Procedure

1. The EUT was placed on the top of the turntable in chamber.
2. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. This measurement shall be repeated with the transmitter in standby mode where applicable.
4. For spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
5. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
6. Replace the EUT by standard antenna and feed the RF port by signal generator.
7. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
8. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
9. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
10. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

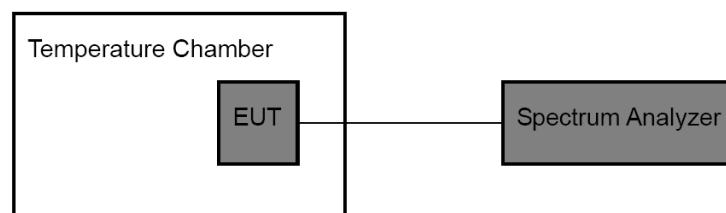
9.4 Deviation From Test Standard

No deviation

9.5 Test Data

Please refer to the Attachment E.

10. Frequency stability


10.1 Test Standard and Limit

10.1.1 Test Standard: FCC 15.236(f)(3)

10.1.2 Test Limit

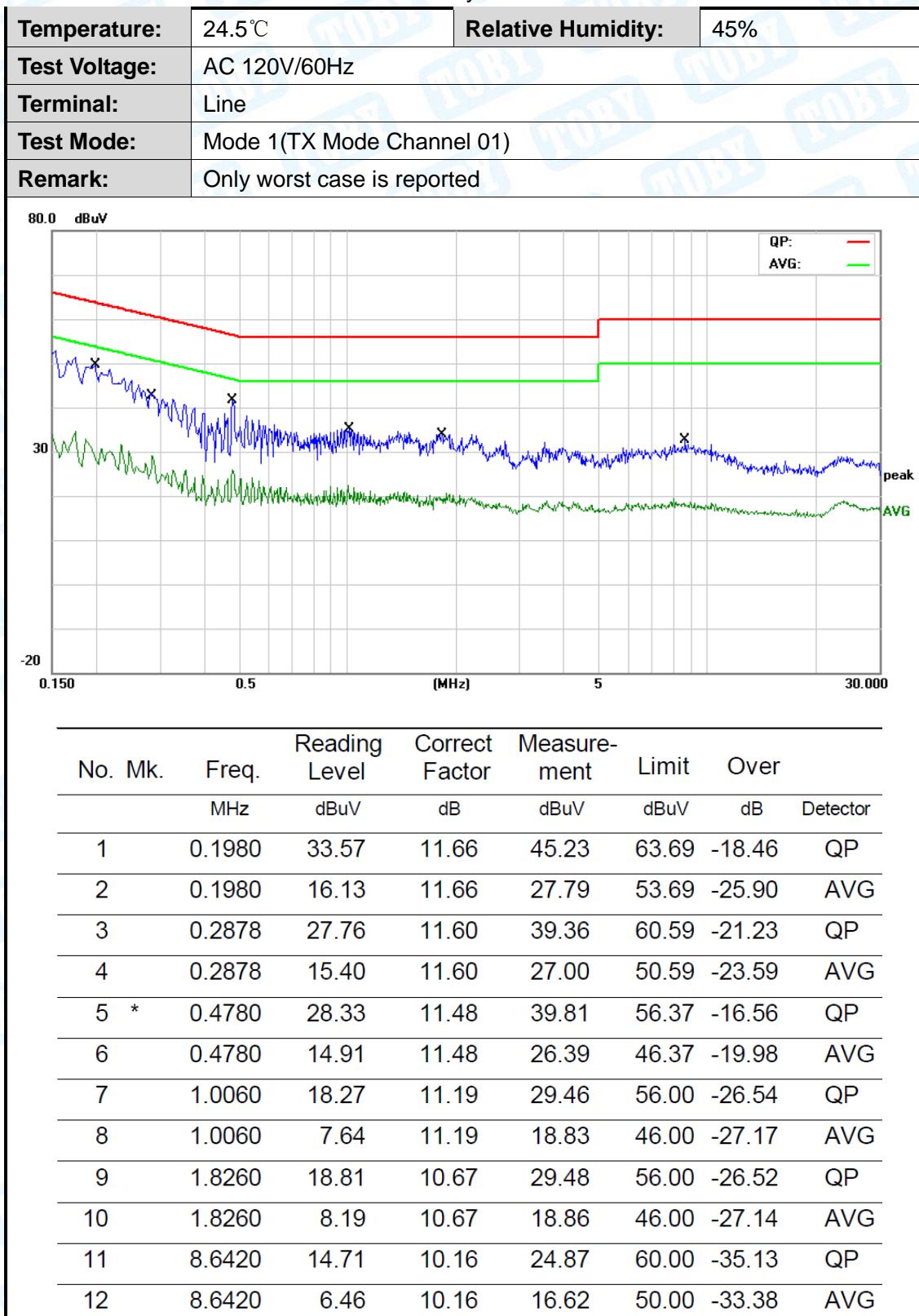
The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

10.2 Test Setup

10.3 Test Procedure

The test was conducted as follows: The transmitter was placed in the temperature chamber at 25 °C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15-second intervals. The worst case number used in the table below. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -20 °C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15-second intervals. The worst-case number was again used in the table below. This procedure was repeated in 10-degree increments up to + 50 °C.

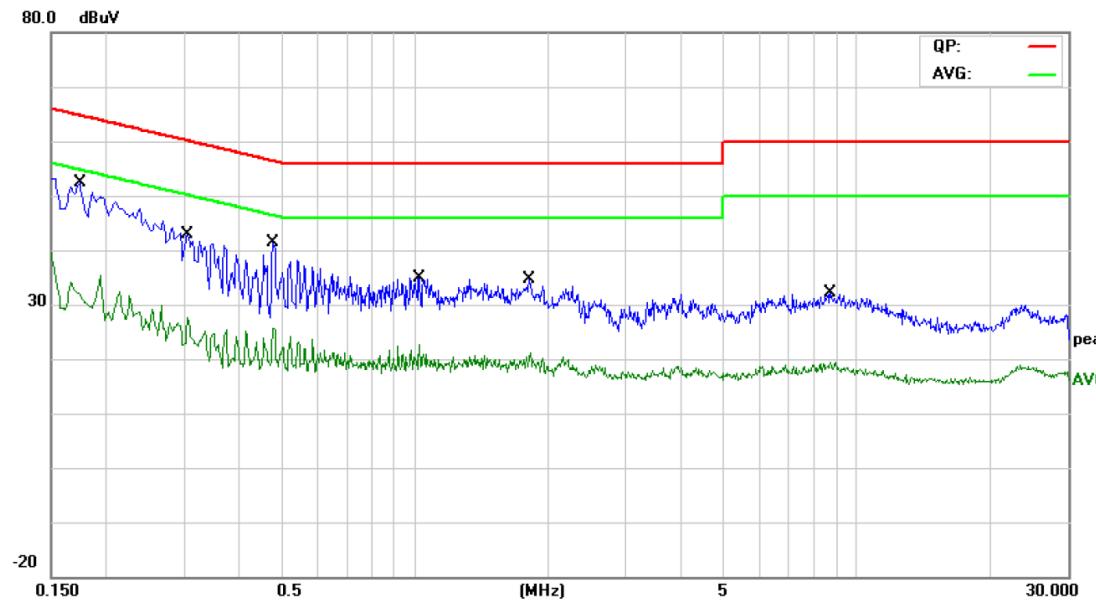
10.4 Deviation From Test Standard


No deviation

10.5 Test Data

Please refer to the Attachment F.

Attachment A-- Conducted Emission Test Data


Remark: All channels have been tested and Shows only the worst channels.

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.5°C	Relative Humidity:	45%
Test Voltage:	AC 120V/60Hz		
Terminal:	Neutral		
Test Mode:	Mode 1(TX Mode Channel 01)		
Remark:	Only worst case is reported		

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over
			Level	Factor	ment		
		MHz	dBuV	dB	dBuV	dBuV	dB
1	*	0.1740	37.03	11.63	48.66	64.76	-16.10
2		0.1740	19.59	11.63	31.22	54.76	-23.54
3		0.3067	27.67	11.57	39.24	60.06	-20.82
4		0.3067	13.34	11.57	24.91	50.06	-25.15
5		0.4780	27.76	11.50	39.26	56.37	-17.11
6		0.4780	14.04	11.50	25.54	46.37	-20.83
7		1.0220	19.03	11.19	30.22	56.00	-25.78
8		1.0220	8.77	11.19	19.96	46.00	-26.04
9		1.8100	17.53	10.61	28.14	56.00	-27.86
10		1.8100	7.65	10.61	18.26	46.00	-27.74
11		8.7140	15.65	10.08	25.73	60.00	-34.27
12		8.7140	7.05	10.08	17.13	50.00	-32.87

Remark:

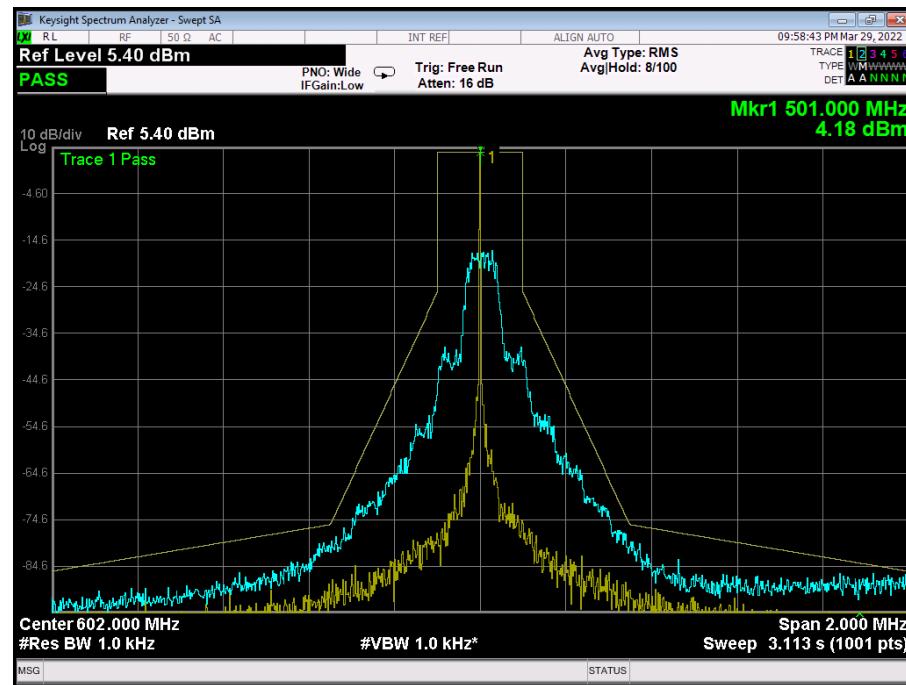
1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Power Output Test Data

Frequency (MHz)	Conduction measurement Level (dBm)	Ant. Gain(dBi)	Radiated RF power(dBm)	Limit	Margin (dB)
602	2.492	0	2.492	20mw (13dBm)	-10.508

Note: Radiated RF power= Conduction measurement Level + Ant. Gain

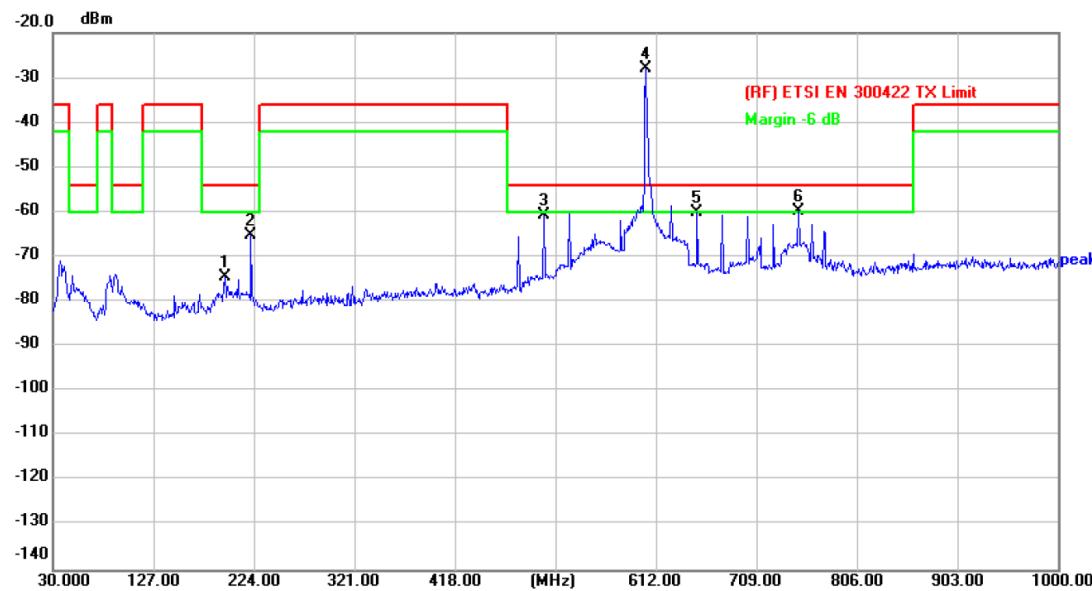
Attachment C--Bandwidth Test Data


Channel Frequency (MHz)	99% Bandwidth (KHz)	26dB Bandwidth (KHz)
602	146.06	213.8

602MHz

Attachment D--Emission Mask Test Data

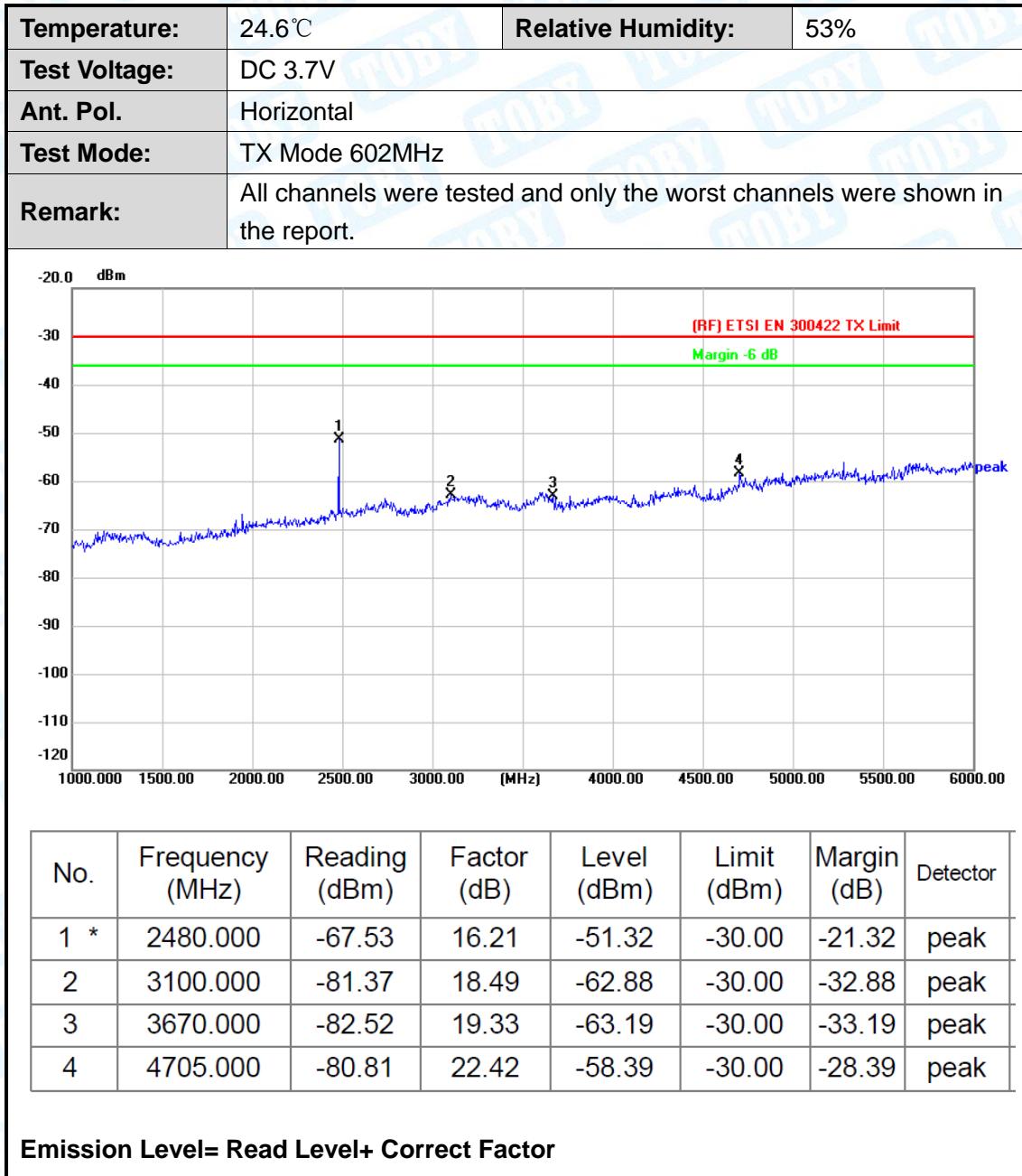
Temperature:	26°C	Relative Humidity:	60%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V (Normal)
Test Mode :	TX 602MHz		
Result:	PASS		

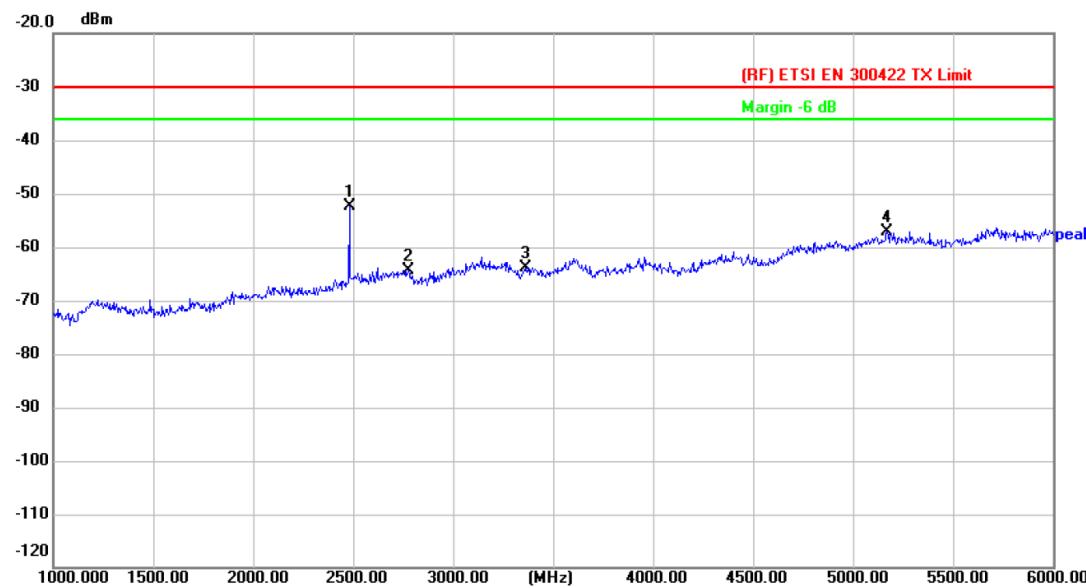

Attachment E--Radiated Spurious Emission Test Date

Below 1 GHz

Temperature:	24.6°C	Relative Humidity:	53%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX Mode 602MHz						
Remark:	All channels were tested and only the worst channels were shown in the report.						
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	221.0900	-49.78	-10.40	-60.18	-54.00	-6.18	peak
2 !	504.3300	-52.88	-5.98	-58.86	-54.00	-4.86	peak
3 *	602.3000	-25.07	-3.18	-28.25	Fundamental Frequency		peak
4 !	676.0200	-57.03	-2.90	-59.93	-54.00	-5.93	peak
5	725.4900	-58.33	-2.40	-60.73	-54.00	-6.73	peak
6 !	774.9600	-58.55	-1.43	-59.98	-54.00	-5.98	peak

Emission Level= Read Level+ Correct Factor


Temperature:	24.6°C	Relative Humidity:	53%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX Mode 602MHz		
Remark:	All channels were tested and only the worst channels were shown in the report.		


No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	195.8700	-64.31	-10.29	-74.60	-54.00	-20.60	peak
2	221.0900	-53.33	-11.84	-65.17	-54.00	-11.17	peak
3	504.3300	-54.92	-5.62	-60.54	-54.00	-6.54	peak
4 *	602.3000	-24.91	-3.05	-27.96	Fundamental Frequency		peak
5 !	651.7700	-56.65	-3.33	-59.98	-54.00	-5.98	peak
6 !	749.7400	-58.43	-1.29	-59.72	-54.00	-5.72	peak

Emission Level= Read Level+ Correct Factor

Above 1 GHz

Temperature:	24.6°C	Relative Humidity:	53%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX Mode 602MHz		
Remark:	All channels were tested and only the worst channels were shown in the report.		

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1 *	2480.000	-68.78	16.42	-52.36	-30.00	-22.36	peak
2	2775.000	-80.83	16.49	-64.34	-30.00	-34.34	peak
3	3365.000	-81.94	18.04	-63.90	-30.00	-33.90	peak
4	5170.000	-80.13	23.10	-57.03	-30.00	-27.03	peak

Emission Level= Read Level+ Correct Factor

Attachment F--Frequency Stability Test Data

Pressure:	1010 hPa	Test Voltage :	DC 3.7V (Normal)			
Test Mode :	TX 602MHz (Modulation)					
Remark:	All channels were tested and only the worst channels were shown in the report.					
Test Conditions		Measurement Frequency(MHz)	Test Conditions			
Test Temperature	Test Voltage		Test Voltage	Test Temperature		
-20°C	DC 3.7V	602	85%	20°C		
-10°C		602	95%			
0°C		602	100%			
10°C		602	105%			
20°C		602	110%			
30°C		602	115%			
40°C		602				
50°C		602				
Max. Deviation Frequency				0.007		
Max. Frequency Error				0.00013%		
Limits				±0.005%		
Result				PASS		
Note: The frequency tolerance of the carrier signal shall be maintained within ±0.005% of the operating frequency.						

-----END OF REPORT-----