

RF Exposure exemption

KDB447498, D04V01

1. 2.1, Declaration of RF exposure compliance for exemption from routine evaluation limits

FCC ID	2A5WLTSB65																																																										
Company Name	Suzhou Unison Auto Electronic Co., Ltd.																																																										
Model Number	TSB65																																																										
Manufacturer	Suzhou Unison Auto Electronic Co., Ltd.																																																										
<input type="checkbox"/> 2.1.2 1-mW Test Exemption	Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance.																																																										
<input type="checkbox"/> 2.1.3 SAR-Based Exemption	<p>Per § 1.1307(b)(3)(i)(B), a single RF source is considered an RF exempt device if its available maximum time-averaged (matched conducted) power or its effective radiated power (ERP), whichever is greater, are less than or the threshold P_{th} (mW) described in the following formula.</p> $P_{th} \text{ (mW)} = \begin{cases} (ERP_{20 \text{ cm}} (d/20 \text{ cm})^x) & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$ <p>Where</p> $x = -\log_{10} \left(\frac{60}{ERP_{20 \text{ cm}} \sqrt{f}} \right) \text{ and } f \text{ is in GHz;}$ <p>and</p> $ERP_{20 \text{ cm}} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases}$ <p>d = the separation distance (cm);</p>																																																										
<input type="checkbox"/> 2.1.4 MPE-Based Exemption	<p>Per § 1.1307(b)(3)(i)(C), a single RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as described below:</p> <table border="1"> <thead> <tr> <th colspan="2">RF Source Frequency</th> <th colspan="2">Minimum Distance</th> <th>Threshold ERP</th> </tr> <tr> <th>f_L MHz</th> <th>f_H MHz</th> <th>$\lambda_L / 2\pi$</th> <th>$\lambda_H / 2\pi$</th> <th>W</th> </tr> </thead> <tbody> <tr> <td>0.3</td> <td>—</td> <td>159 m</td> <td>—</td> <td>35.6 m</td> <td>1,920 R^2</td> </tr> <tr> <td>1.34</td> <td>—</td> <td>35.6 m</td> <td>—</td> <td>1.6 m</td> <td>3,450 R^2/f^2</td> </tr> <tr> <td>—</td> <td>30</td> <td>—</td> <td>1.6 m</td> <td>159 mm</td> <td>3.83 R^2</td> </tr> <tr> <td>—</td> <td>300</td> <td>—</td> <td>159 mm</td> <td>31.8 mm</td> <td>0.0128 R^2/f</td> </tr> <tr> <td>300</td> <td>—</td> <td>159 mm</td> <td>—</td> <td>0.5 mm</td> <td>19.2 R^2</td> </tr> <tr> <td>1,500</td> <td>—</td> <td>159 mm</td> <td>—</td> <td>—</td> <td>—</td> </tr> <tr> <td>—</td> <td>100,00</td> <td>31.8 mm</td> <td>—</td> <td>—</td> <td>—</td> </tr> <tr> <td>—</td> <td>0</td> <td>—</td> <td>0.5 mm</td> <td>—</td> <td>—</td> </tr> </tbody> </table> <p>Subscripts L and H are low and high; λ is wavelength. From § 1.1307(b)(3)(i)(C), modified by adding Minimum Distance columns.</p> <p>For 315MHz: $\text{Max. EIRP (dBm)} = E (\text{dB}\mu\text{V/m}) - 95.2 = -17.474 \text{ dBm}$ $\text{Max. ERP (dBm)} = \text{Max. EIRP (dBm)} - 2.15 \text{ dB} = -19.624 \text{ dBm}$ $\text{Max. Power (mW)} = 10^{(\text{Max. ERP (dBm)})/10} = 0.011 \text{ mW}$ $P_{th} \text{ (mW)} = 36.31 \text{ mW}$ $\text{Max. Power (mW)} < P_{th} \text{ (mW)}$</p> <p>For 433.92MHz: $\text{Max. EIRP (dBm)} = E (\text{dB}\mu\text{V/m}) - 95.2 = -23.699 \text{ dBm}$ $\text{Max. ERP (dBm)} = \text{Max. EIRP (dBm)} - 2.15 \text{ dB} = -25.849 \text{ dBm}$ $\text{Max. Power (mW)} = 10^{(\text{Max. ERP (dBm)})/10} = 0.003 \text{ mW}$ $P_{th} \text{ (mW)} = 23.17 \text{ mW}$ $\text{Max. Power (mW)} < P_{th} \text{ (mW)}$ Conclusion: Pass.</p>	RF Source Frequency		Minimum Distance		Threshold ERP	f_L MHz	f_H MHz	$\lambda_L / 2\pi$	$\lambda_H / 2\pi$	W	0.3	—	159 m	—	35.6 m	1,920 R^2	1.34	—	35.6 m	—	1.6 m	3,450 R^2/f^2	—	30	—	1.6 m	159 mm	3.83 R^2	—	300	—	159 mm	31.8 mm	0.0128 R^2/f	300	—	159 mm	—	0.5 mm	19.2 R^2	1,500	—	159 mm	—	—	—	—	100,00	31.8 mm	—	—	—	—	0	—	0.5 mm	—	—
RF Source Frequency		Minimum Distance		Threshold ERP																																																							
f_L MHz	f_H MHz	$\lambda_L / 2\pi$	$\lambda_H / 2\pi$	W																																																							
0.3	—	159 m	—	35.6 m	1,920 R^2																																																						
1.34	—	35.6 m	—	1.6 m	3,450 R^2/f^2																																																						
—	30	—	1.6 m	159 mm	3.83 R^2																																																						
—	300	—	159 mm	31.8 mm	0.0128 R^2/f																																																						
300	—	159 mm	—	0.5 mm	19.2 R^2																																																						
1,500	—	159 mm	—	—	—																																																						
—	100,00	31.8 mm	—	—	—																																																						
—	0	—	0.5 mm	—	—																																																						