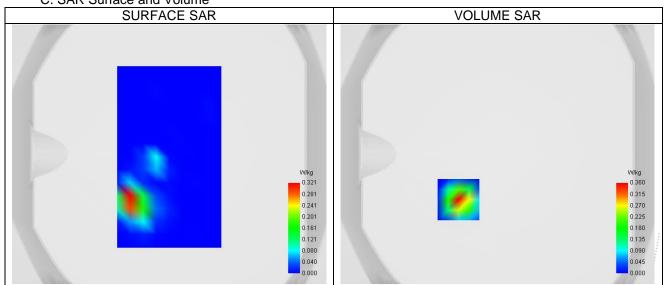


Plot 4


A. Experimental conditions.

Probe	SN 4621 EPGO362	
ConvF	26.43	
Area Scan	surf_sam_plan.txt	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast	
Phantom	Validation plane	
Device Position	Body	
Band	IEEE 802.11a U-NII	
Channels	Middle (149)	
Signal	IEEE802.a (Crest factor: 1.0)	

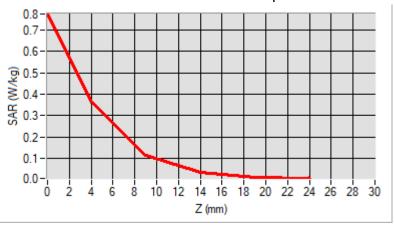
B. Permitivity

Frequency (MHz)	2437.000
Relative permitivity (real part)	52.717
Relative permitivity (imaginary part)	14.311
Conductivity (S/m)	1.938

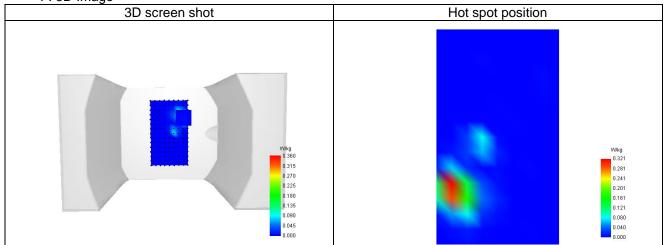
C. SAR Surface and Volume

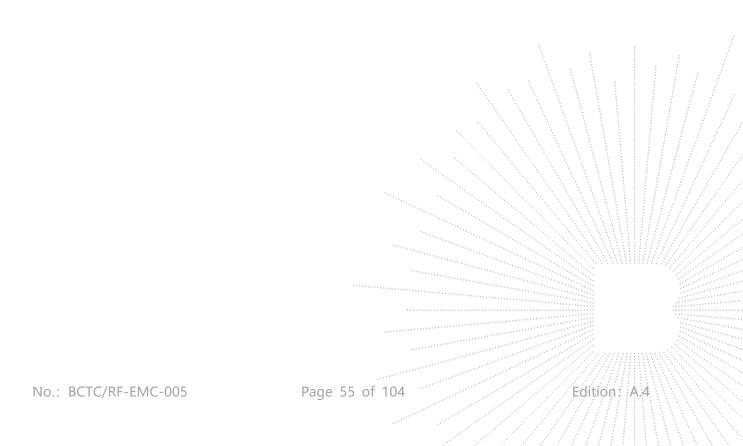
Maximum location: X=-30.00, Y=-35.00; SAR Peak: 0.78 W/kg

D. SAR 1g & 10g


SAR 10g (W/Kg)	0.116, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SAR 1g (W/Kg)	0.328
Variation (%)	
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

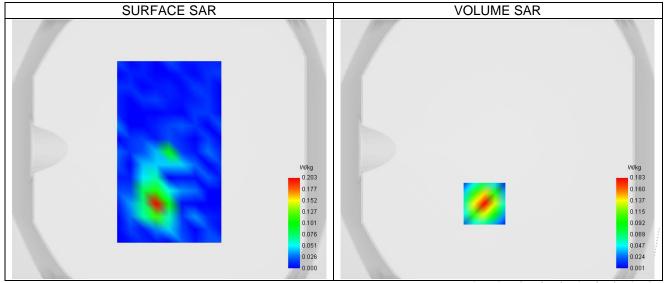
E. Z Axis Scan


Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.774	0.360	0.115	0.032	0.011


No.: BCTC/RF-EMC-005 Page 54 of 104 Edition A.4

F. 3D Image

Plot 5


A. Experimental conditions.

SN 4621 EPGO362	
26.43	
surf_sam_plan.txt	
5x5x7,dx=8mm dy=8mm dz=5mm,Very fast	
Validation plane	
Body	
IEEE 802.11b ISM	
Low (1)	
IEEE802.b (Crest factor: 1.0)	

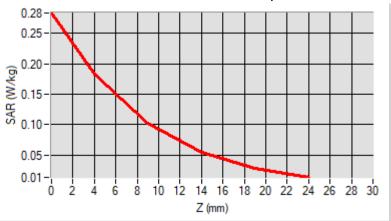
B. Permitivity

Frequency (MHz)	2437.000
Relative permitivity (real part)	52.717
Relative permitivity (imaginary part)	14.311
Conductivity (S/m)	1.938

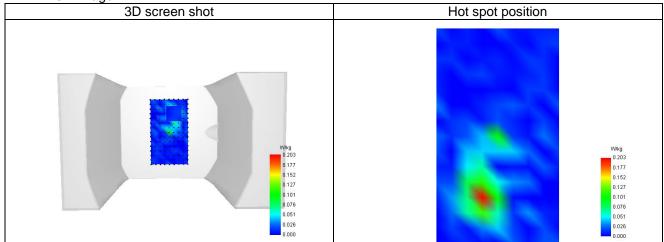
C. SAR Surface and Volume

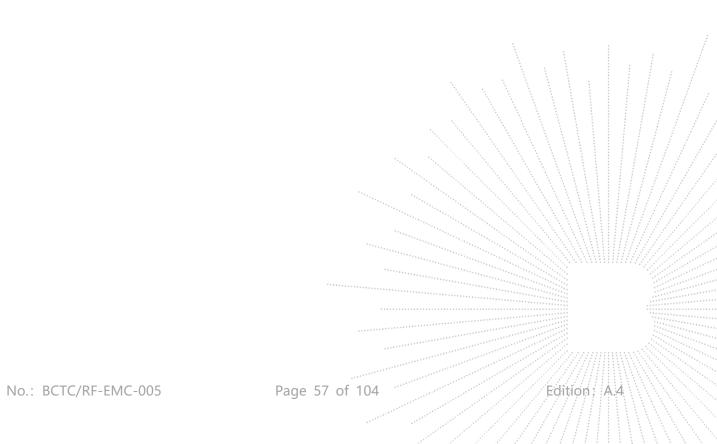
Maximum location: X=-10.00, Y=-42.00; SAR Peak: 0.29 W/kg

D. SAR 1g & 10g


SAR 10g (W/Kg)	0.077
SAR 1g (W/Kg)	0,165 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Variation (%)	3.510
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

E. Z Axis Scan


Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.283	0.183	0.102	0.055	0.029


No.: BCTC/RF-EMC-005 Page 56 of 104 Edition A.4

Plot 6


A. Experimental conditions.

SN 4621 EPGO362	
24.50	
surf_sam_plan.txt	
5x5x7,dx=8mm dy=8mm dz=5mm,Very fast	
Validation plane	
Body	
IEEE 802.11a U-NII	
Low (36)	
IEEE802.a (Crest factor: 1.0)	

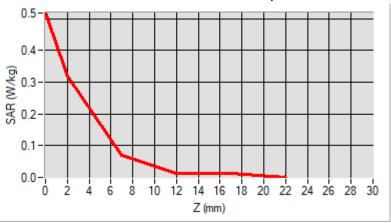
B. Permitivity

Frequency (MHz)	5500.000
Relative permitivity (real part)	48.607
Relative permitivity (imaginary part)	18.380
Conductivity (S/m)	5.616

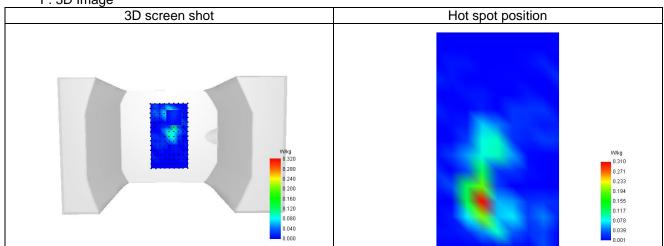
C. SAR Surface and Volume

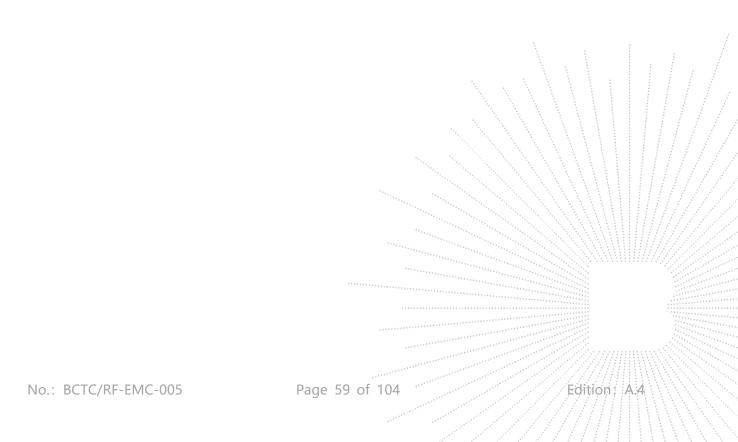
Maximum location: X=-10.00, Y=-42.00; SAR Peak: 0.55 W/kg

D. SAR 1g & 10g


SAR 10g (W/Kg)	0.068
SAR 1g (W/Kg)	0.184 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Variation (%)	-3.950 \\\\\\\
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

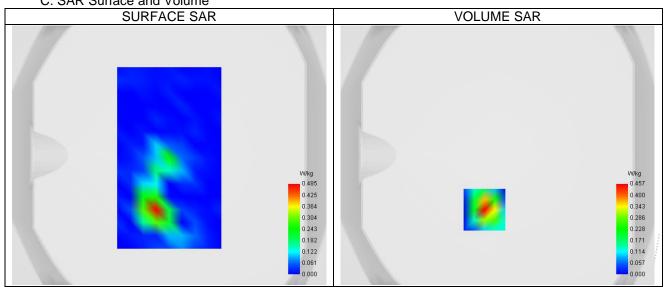
E. Z Axis Scan


Z (mm)	0.00	2.00	7.00	12.00	17.00
SAR (W/Kg)	0.518	0.320	0.071	0.015	0.012


No.: BCTC/RF-EMC-005 Page 58 of 104 Edition A.4

F. 3D Image

Plot 7


A. Experimental conditions.

SN 4621 EPGO362
24.50
surf_sam_plan.txt
5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Validation plane
Body
IEEE 802.11a U-NII
High (62)
IEEE802.a (Crest factor: 1.0)

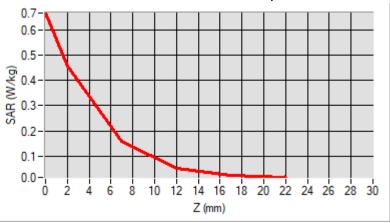
B. Permitivity

Frequency (MHz)	5500.000
Relative permitivity (real part)	48.607
Relative permitivity (imaginary part)	18.380
Conductivity (S/m)	5.616

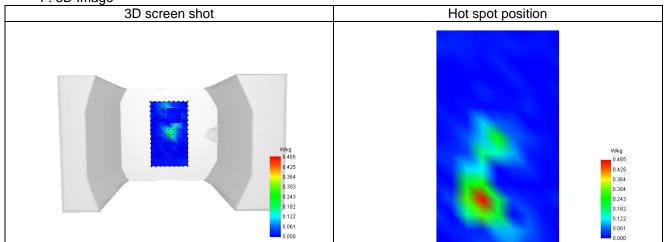
C. SAR Surface and Volume

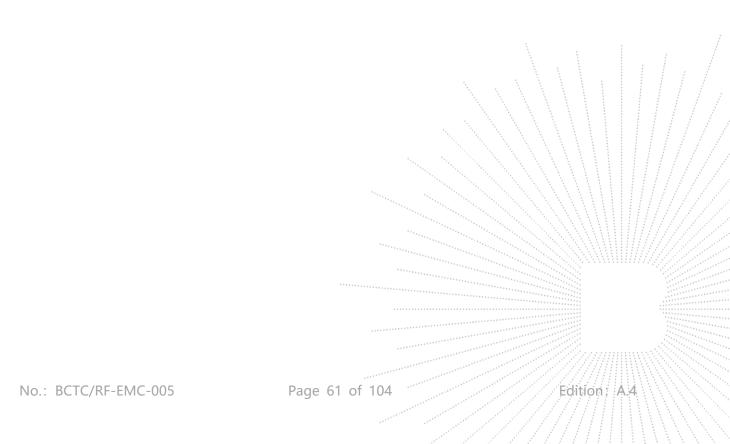
Maximum location: X=-10.00, Y=-42.00; SAR Peak: 0.71 W/kg

D. SAR 1g & 10g

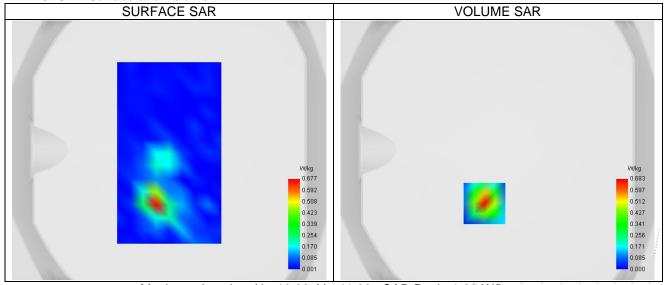

SAR 10g (W/Kg)	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SAR 1g (W/Kg)	0.289
Variation (%)	-0.210
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

E. Z Axis Scan


Z (mm)	0.00	2.00	7.00	12.00	17.00
SAR (W/Kg)	0.666	0.457	0.159	0.053	0.024


No.: BCTC/RF-EMC-005 Page 60 of 104 Edition A.4

Plot 8


A. Experimental conditions.

Probe	SN 4621 EPGO362
ConvF	24.50
Area Scan	surf_sam_plan.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Validation plane
Device Position	Body
Band	IEEE 802.11a U-NII
Channels	Low (149)
Signal	IEEE802.a (Crest factor: 1.0)

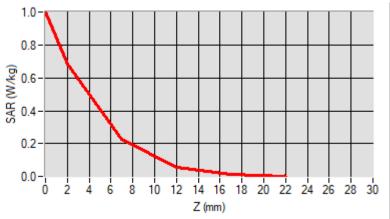
B. Permitivity

Frequency (MHz)	5500.000
Relative permitivity (real part)	48.607
Relative permitivity (imaginary part)	18.380
Conductivity (S/m)	5.616

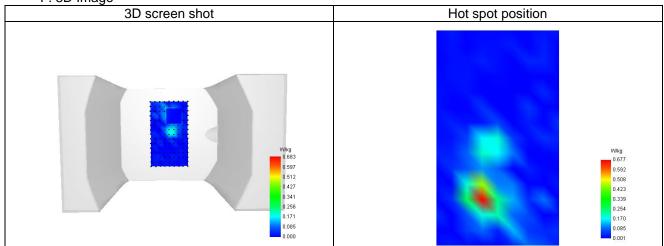
C. SAR Surface and Volume

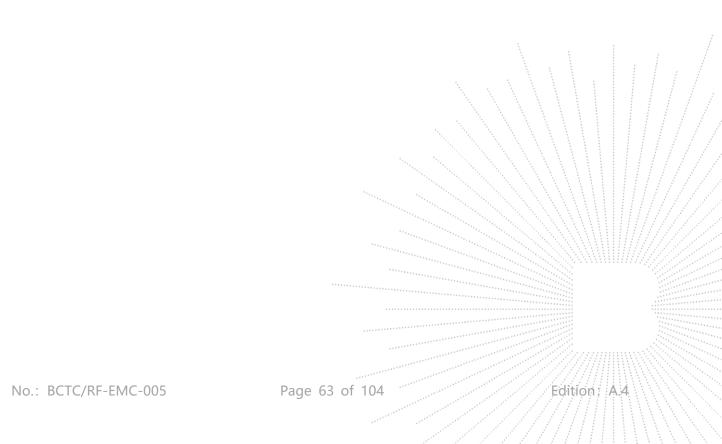
Maximum location: X=-10.00, Y=-41.00; SAR Peak: 1.03 W/kg

D. SAR 1g & 10g


SAR 10g (W/Kg)	0.166
SAR 1g (W/Kg)	0.419 \ \ \ \ \ \
Variation (%)	-0.750
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

E. Z Axis Scan


Z (mm)	0.00	2.00	7.00	12.00	17.00
SAR (W/Kg)	1.001	0.683	0.225	0.057	0.011


No.: BCTC/RF-EMC-005 Page 62 of 104 Edition A.4

16. Calibration Certificates

Probe-EPGO362 Calibration Certificate SID2450Dipole Calibration Ceriticate SID5000Dipole Calibration Ceriticate

No.: BCTC/RF-EMC-005 Page 64 of

COMOSAR E-Field Probe Calibration Report

Ref: ACR.329.6.21.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD.

1~2/F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 46/21 EPGO362

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 11/25/2021

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

No.: BCTC/RF-EMC-005 Page 65 of 104 Edition A.4

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A

	Name	Function	Date	Signature
Prepared by:	Jérôme Luc	Technical Manager	11/25/2021	23
Checked by :	Jérôme Luc	Technical Manager	11/25/2021	JE
Approved by:	Yann Toutain	Laboratory Director	11/25/2021	Gann TOUTAN

2021.11.25 11:50:23 +01'00'

	Customer Name
Distribution :	Shenzhen BCTC Technology Co.,
	Ltd.

Name	Date	Modifications
Jérôme Luc	11/25/2021	Initial release

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005 Page 66 of 104

No.: BCTC/RF-EMC-005

Report No: BCTC2203790914-4E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A

TABLE OF CONTENTS

1	Dev	ice Under Test4	
2	Pro	luct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	4
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.1	Boundary Effect	5
4	Mea	surement Uncertainty6	
5	Cali	bration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	
	5.4	Isotropy	9
6	List	of Equipment	

Page: 3/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 67 of 104

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A.

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 46/21 EPGO362		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.221 MΩ		
	Dipole 2: R2=0.231 MΩ		
	Dipole 3: R3=0.212 MΩ		

PRODUCT DESCRIPTION

GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 90.1.21 BES A

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{step} along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{be}}/(\delta/2)}\right)}{\delta/2} \quad \mathrm{for} \ \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \ \mathrm{mm}$$

where

is the uncertainty in percent of the probe boundary effect SARuncertainty

is the distance between the surface and the closest zoom-scan measurement d_{be}

point, in millimetre

is the separation distance between the first and second measurement points that Δ_{step}

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

8 is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

⊿SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vik
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A.

MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe	alibration in wave	guide			
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Liquid Temperature 20 +/- 1 °C			
Lab Temperature 20 +/- 1 °C			
Lab Humidity 30-70 %			

5.1 SENSITIVITY IN AIR

Normx dipole		
$1 \left(\mu V / (V/m)^2 \right)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
1.25	0.74	1.41

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
110	107	107

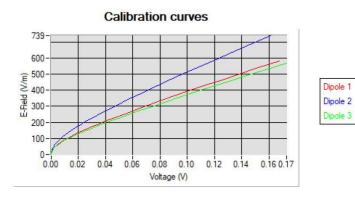
Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

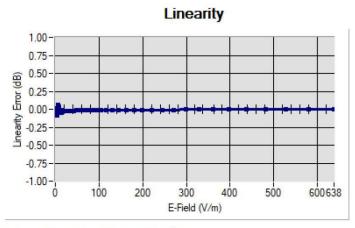
Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 70 of 104 Edition: A.4 No.: BCTC/RF-EMC-005


No.: BCTC/RF-EMC-005

Report No: BCTC2203790914-4E



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A

5.2 <u>LINEARITY</u>

Linearity:+/-1.89% (+/-0.08dB)

Page: 7/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 71 of 104

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A

5.3 <u>SENSITIVITY IN LIQUID</u>

<u>Liquid</u>	Frequency (MHz +/- 100MHz)	ConvF
HL450*	450	2.13
BL450*	450	2.08
HL750	750	2.04
BL750	750	2.12
HL850	835	2.08
BL850	835	2.17
HL900	900	2.13
BL900	900	2.22
HL1800	1800	2.35
BL1800	1800	2.72
HL1900	1900	2.50
BL1900	1900	2.96
HL2100	2100	2.63
BL2100	2100	3.12
HL2300	2300	2.95
BL2300	2300	3.41
HL2450	2450	2.99
BL2450	2450	3.38
HL2600	2600	2.87
BL2600	2600	2.98
HL5200	5200	2.78
BL5200	5200	2.90
HL5400	5400	2.63
BL5400	5400	2.75
HL5600	5600	2.59
BL5600	5600	2.55
HL5800	5800	2.59
BL5800	5800	2.70

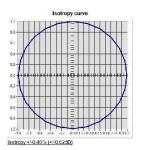
^{*} Frequency not covered by COFRAC scope, calibration not accredited

LOWER DETECTION LIMIT: 8mW/kg

Page: 8/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Edition: A.4 No.: BCTC/RF-EMC-005 Page 72 of 104



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A

5.4 <u>ISOTROPY</u>

HL1800 MHz

Page: 9/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005 Page 73 of 104

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.

Page: 10/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.90.1.21.BES.A

Wa∨eguide	MVG	I SN 30/16 W(310 1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 11/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 75 of 104 Edition: A.4 No.: BCTC/RF-EMC-005

SAR Reference Dipole Calibration Report

Ref: ACR.329.15.21.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD.

1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD,
TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ SERIAL NO.: SN 47/21 DIP 2G450-627

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 11/25/2021

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/13

No.: BCTC/RF-EMC-005 Page 76 of 104 Edition: A.4

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.15.21.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	11/25/2021	JES
Checked by :	Jérôme Luc	Technical Manager	11/25/2021	Jes
Approved by :	Yann Toutain	Laboratory Director	11/25/2021	Gann TOUTANN

2021.11.25 11:56:55 +01'00'

	Customer Name		
Distribution :	Shenzhen BCTC Technology Co.,		
	Ltd.		

Issue	Name	Date	Modifications
A	Jérôme Luc	11/25/2021	Initial release

Page: 2/13

Template ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005 Page 77 of 104

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.15.21.BES.A

TABLE OF CONTENTS

1	Intro	Introduction4	
2	Dev	Device Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	8
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	11
	7.4	SAR Measurement Result With Body Liquid	12
8	List	of Equipment 13	

Page: 3/13

Template ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005 Page 78 of 104