

FCC TEST REPORT FCC ID: 2A5JO-AMA005867

Product : Treadmill					
Model Name	:	AMA005867			
Brand	:	N/A			
Report No. : PTC22022200603E-FC02					
Prepared for					

Shenzhen Mingbofang Clothing Co., Ltd.

Room 403, Fuji Pavilion, No. 2058, Cuizhu Road, Cuida Community, Cuizhu Street, Luohu District, Shenzhen

Prepared by

Precise Testing & Certification Co., Ltd

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Applicant's name Shenzhen Mingbofang Clothing Co., Ltd.

Address Room 403, Fuji Pavilion, No. 2058, Cuizhu Road, Cuida Community, Cuizhu Street, Luohu District, Shenzhen

Community, Culzna Street, Laona District, Sherizhei

Manufacture's name : XIAMEN KSTAR SPORTS CO., LTD.

Address : No.999-3, Xinmin Road, Tong'an, XIAMEN

Product name : Treadmill

Model name : AMA005867

Test procedure : KDB 447498 D01 General RF Exposure Guidance v06

Test Date : Mar. 01, 2022 to Mar. 17, 2022

Date of Issue : Mar. 17, 2022

Test Result : PASS

This device described above has been tested by PTS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.


This report shall not be reproduced except in full, without the written approval of PTS, this document may be altered or revised by PTS, personal only, and shall be noted in the revision of the document.

Test Engineer: Win Wang

Win Wang / Engineer

Technical Manager:

Wu Weimin /Manager

Contents

	Page
2 TEST SUMMARY	4
3 GENERAL INFORMATION	5
3.1 GENERAL DESCRIPTION OF E.U.T	5
4 RF EXPOSURE	6
4.1 REQUIREMENTS	6
4.2 THE PROCEDURES / LIMIT	6
4.3 MPE CALCULATION METHOD	7
4 4 Test Result	7

2 Test Summary

Test Items	Test Requirement	Result			
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS			
Remark:					
N/A: Not Applicable					

3 General Information

3.1 General Description of E.U.T.

Product Name	:	Treadmill
Model Name	-	AMA005867
Additional model	:	N/A
Specification	:	BLE 4.2
Operation Frequency	:	2402-2480MHz
Number of Channel	:	40
Type of Modulation	:	GFSK
Antenna installation	:	PCB antenna
Antenna Gain		-0.58 dBi
Power supply	:	AC 120V/60Hz
Hardware Version	:	N/A
Software Version	:	N/A

4 RF Exposure

Test Requirement : FCC Part 1.1307(b)(1)

Evaluation Method : FCC Part 2.1091

4.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

4.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500	01.4	0.100	F/300	6
300-1300			F/300	0
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
	27.0	0.070	-	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

4.3 MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$
Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

4.4 Test Result

Item	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Result
BLE	0.87	-0.78	0.835603	0.000145	1	Pass

******THE END REPORT*****