

TEST REPORT

FCC PART 15 SUBPART C 15.247 & RSS-247

Report Reference No. CTL2311107041-WF02

Compiled by: (position+printed name+signature)

Happy Guo (File administrators)

Tested by:
(position+printed name+signature)

Gary Gao (Test Engineer)

Approved by: (position+printed name+signature)

Ivan Xie (Manager)

Product Name...... Bluetooth Speaker

Model/Type reference PLAYERGO

List Model(s)..... N/A

Trade Mark Blue Tees, Blue Tees Golf

FCC ID 2A5DA-PLYR-GO

Applicant's name Blue Tees Enterprises, LLC

California, United States 94596

Test Firm Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification.....:

Standard 47 CFR FCC Part 15 Subpart C 15.247

RSS-247 Issue 2, February 2017

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of receipt of test item........ Dec. 04, 2023

Date of sampling Dec. 05, 2023

Date of Test Date Dec. 06, 2023 - Dec. 12, 2023

Date of Issue...... Dec. 13, 2023

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Report No.: CTL2311107041-WF02

Test Report No. :	CTL2311107041-WF02	Dec. 13, 2023
100		Date of issue

Equipment under Test : Bluetooth Speaker

Sample No. : CTL2311107041

Model /Type : PLAYERGO

Listed Models : N/A

Applicant : Blue Tees Enterprises, LLC

Address : 1990 N. California Blvd., Suite 20, PMB 1111, Walnut

Creek, California, United States 94596

Manufacturer : Blue Tees Enterprises, LLC

Address : 1990 N. California Blvd., Suite 20, PMB 1111, Walnut

Creek, California, United States 94596

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Report No.: CTL2311107041-WF02

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2023-12-13	CTL2311107041-WF02	Tracy Qi
	× = 1	10		
M of the		- 1		
1		1.0	China Control of the	
		Calle Control		
	0 0	- 40		0 6
				D .
	The same of the			A 40

Table of Contents Page TEST STANDARDS5 1.1. 1.2. Test Facility6 1.3. 14 2. 2.1. 2.2. 23 2.4. EQUIPMENTS USED DURING THE TEST9 2.5. MODIFICATIONS 10 2.6. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8.

V1.0 Page 5 of 31 Report No.: CTL2311107041-WF02

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 15.247 Meas Guidance v05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

RSS-247-Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207 RSS-Gen 8.8	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2) RSS-247 5.2 (1)	6dB Bandwidth	PASS
RSS-Gen 6.7	Occupied bandwidth	PASS
FCC Part 15.247(d) RSS-247 5.5	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b) RSS-Gen 6.8 RSS-247 5.4 (4)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e) RSS-247 5.2 (2)	Power Spectral Density	PASS
FCC Part 15.205/ 15.209 RSS-Gen 8.9	Radiated Emissions	PASS
FCC Part 15.247(d) RSS-Gen 8.10	Band Edge	PASS
FCC Part 15.203/15.247 (b) RSS-Gen 6.8	Antenna Requirement	PASS

V1.0 Page 6 of 31 Report No.: CTL2311107041-WF02

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 9KHz-30MHz	±3.50dB	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)

V1.0 Page 7 of 31 Report No.: CTL2311107041-WF02

Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 8 of 31 Report No.: CTL2311107041-WF02

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Bluetooth Speaker		
Model/Type reference:	PLAYERGO		
S/N	N/A		
Power supply:	DC 3.70V from battery		
Hardware version:	V1.1		
Software version:	1.49		
Bluetooth LE			
Supported type:	Bluetooth low Energy		
Modulation:	GFSK		
Operation frequency:	2402MHz to 2480MHz		
Channel number:	40		
Channel separation:	2 MHz		
Antenna type:	PCB Antenna		
Antenna gain:	2.56 dBi		

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

There are 40 channels provided to the EUT and Channel 00/19/39 were selected for BLE test.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
19	2440
37	2476
38	2478
39	2480

Note: The line display in grey were the channel selected for testing

Power setting during the test:

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters:

Test Software Version	BT FCC Tool V2.24		
Frequency	2402MHz	2440MHz	2480MHz
BLE 1Mbps	4	4	4
BLE 2Mbps	4	4	4

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.		Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ESH2	2-Z5	860014/010	2023/05/04	2024/05/03
Double cone logarithmic antenna	Schwarzbeck	VULB	9168	824	2023/02/13	2026/02/12
Horn Antenna	Ocean Microwave	OBH10	0400	26999002	2021/12/22	2024/12/21
EMI Test Receiver	R&S	ESC	CI	1166.5950.03	2023/05/04	2024/05/03
Spectrum Analyzer	Agilent	E440	7B	MY41440676	2023/05/05	2024/05/04
Spectrum Analyzer	Agilent	N902	20A	UE22220290	2023/05/05	2024/05/04
Spectrum Analyzer	Keysight	N902	20A	MY53420874	2023/05/05	2024/05/04
Horn Antenna	Sunol Sciences Corp.	DRH-	118	A062013	2021/12/23	2024/12/22
Active Loop Antenna	Da Ze	ZN30900A		/	2021/05/13	2024/05/12
Amplifier	Agilent	8449B		3008A02306	2023/05/04	2024/05/03
Amplifier	Agilent	8447D		2944A10176	2023/05/04	2024/05/03
Amplifier	Brief&Smart	LNA-4018		2104197	2023/05/05	2024/05/04
Temperature/Humi dity Meter	Ji Yu	MC501		/	2023/05/09	2024/05/08
Power Sensor	Agilent	U202	1XA	MY55130004	2023/05/05	2024/05/04
Power Sensor	Agilent	U202	1XA	MY55130006	2023/05/05	2024/05/04
Power Sensor	Agilent	U2021XA		MY54510008	2023/05/05	2024/05/04
Power Sensor	Agilent	U2021XA		MY55060003	2023/05/05	2024/05/04
Spectrum Analyzer	RS	FSP		1164.4391.38	2023/05/05	2024/05/04
Test Software						
Name of Software			Version			
TST-PASS			V2.0			
EZ_EMC(Below 1GHz)				V1	1.1.4.2	7.004

V1.0 Page 10 of 31 Report No.: CTL2311107041-WF02

EZ_EMC((Above 1GHz)	V1.1.4.2
_ ''	

The calibration interval was one year

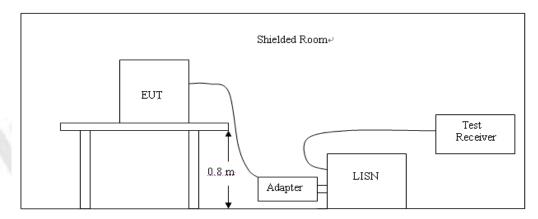
2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with FCC Part 15 Subpart C 15.247 Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

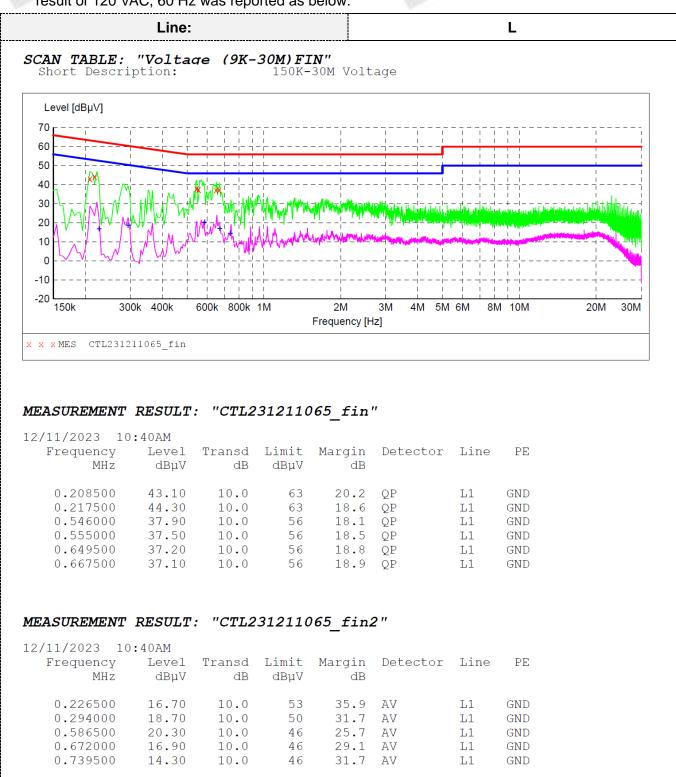

3.1. Conducted Emissions Test

LIMIT

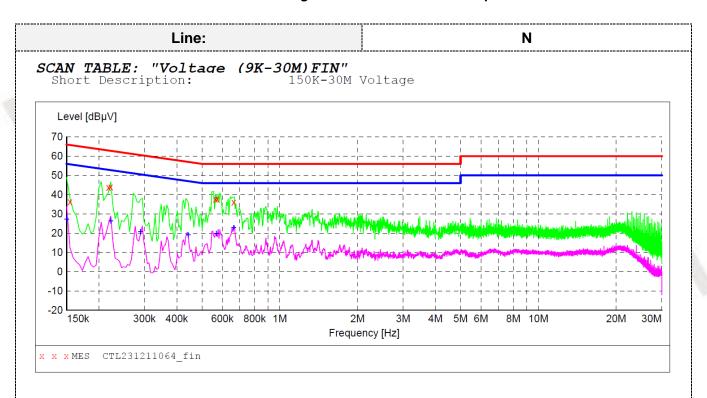
Francisco de (AALL-)	Limit (d	IBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION


TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.


TEST RESULTS

Remark:

- Both BLE 1Mpbs and BLE 2Mpbs have been tested. Only recorded the worst at BLE 2Mpbs low channel.
- 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Remark: Level(dBuV)=Reading(dBuV) + Transd.(dB)
Margin=Limit(dBuV)- Level(dBuV)

MEASUREMENT RESULT: "CTL231211064_fin"

12/11/2023 1	0:37AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dΒμV	dB			
0.154500	36.30	10.0	66	29.5	QP	N	GND
0.217500	43.70	10.0	63	19.2	QP	N	GND
0.222000	44.00	10.0	63	18.7	QP	N	GND
0.564000	37.80	10.0	56	18.2	QP	N	GND
0.573000	37.70	10.0	56	18.3	QP	N	GND
0.663000	36.10	10.0	56	19.9	QP	N	GND

MEASUREMENT RESULT: "CTL231211064_fin2"

12/11/2023 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.222000	27.10 26.20	10.0 10.0	56 53	28.9 26.5	AV AV	N N	GND GND
0.289500	20.70	10.0	51	29.8	AV	N	GND
0.442500	19.10	10.0	47	27.9	AV	N	GND
0.568500	19.70	10.0	46	26.3	AV	N	GND
0.663000	22.70	10.0	46	23.3	AV	N	GND

Remark: Level(dBuV)=Reading(dBuV) + Transd.(dB)
Margin=Limit(dBuV)- Level(dBuV)

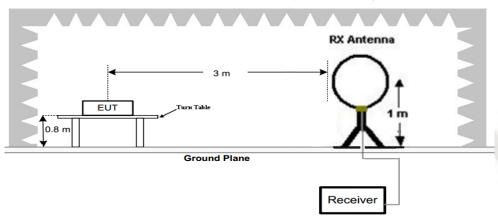
3.2. Radiated Emissions and Band Edge

Limit

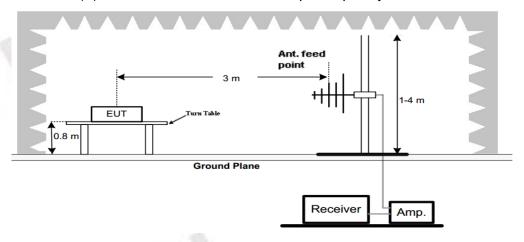
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

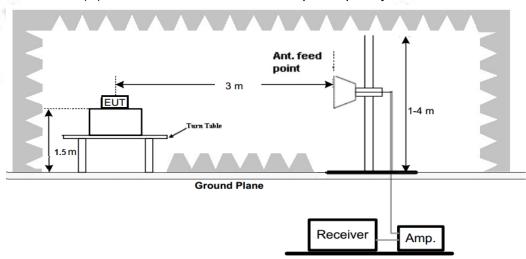
For intentional device, according to RSS-Gen section 8.9, the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in RSS-Gen section 8.10, must also comply with the radiated emission limits specified in RSS-Gen section 8.9

Radiated emission limits


- 10/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/			
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector	
range			
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep	QP	
301VII12-113112	time=Auto		
Cold.	Peak Value: RBW=1MHz/VBW=3MHz,		
1GHz-40GHz	Sweep time=Auto	Peak	
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	Peak	
The second second	Sweep time=Auto		

TEST RESULTS

952.0937

7.82

26.34

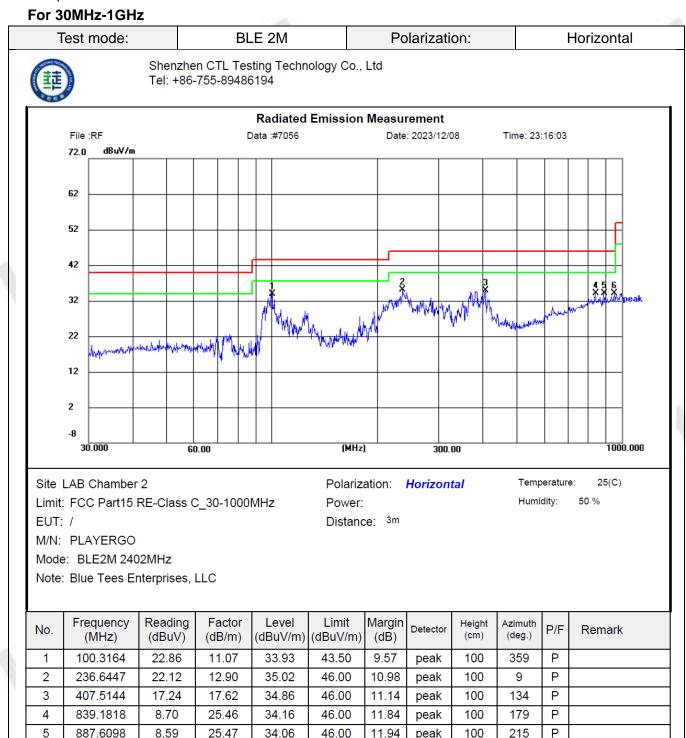
34.16

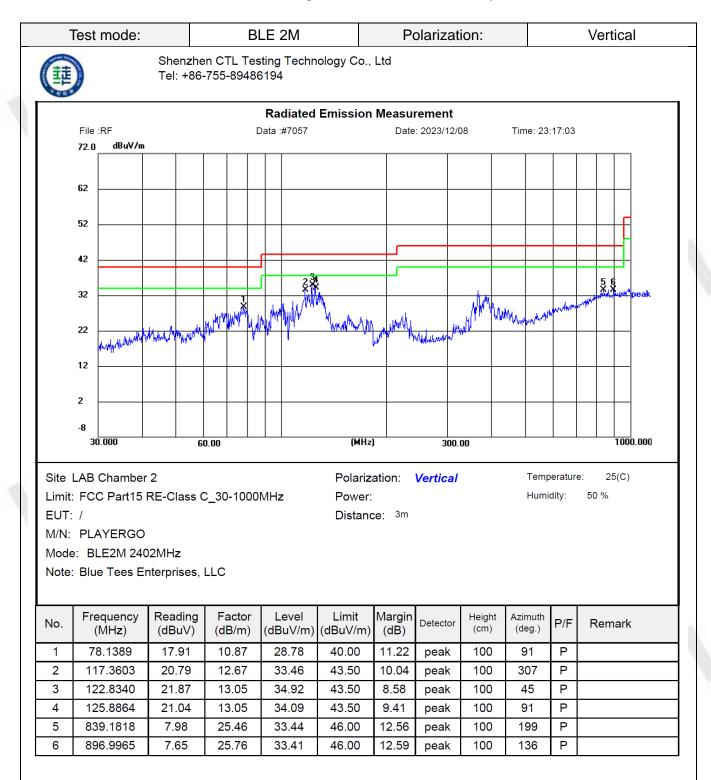
46.00

11.84

peak

100


81


Ρ

Remark:

V1.0

- 1. This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in Z position.
- 2. For below 1GHz radiated emissions test, only the worst case at BLE 2Mpbs low channel recorded.
- 3. For above 1GHz radiated emissions and band edge test, only the worst case at BLE 2Mpbs recorded.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and the emission levels from 9kHz to 30MHz are attenuated 20dB below the limit and not recorded in report.

Remark: Level(dBuV/m)=Reading(dBuV)+Factor(dB/m)
Margin=Limit(dBuV/m)-Level(dBuV/m)

For 1GHz to 25GHz

BLE 2M (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL	
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)
4804.00	43.84	PK	74	30.16	56.83	33.49	6.91	53.39	-12.99
4804.00		AV	54						
7206.00	52.67	PK	74	21.33	59.72	36.95	9.18	53.18	-7.05
7206.00		AV	54						

Freque	ncy(MHz	:):	2402		Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)
4804.00	44.34	PK	74	29.66	57.33	33.49	6.91	53.39	-12.99
4804.00		AV	54						
7206.00	51.52	PK	74	22.48	58.57	36.95	9.18	53.18	-7.05
7206.00		AV	54						

Freque	ncy(MHz):	2440		Polarity:		HORIZONTAL		۸L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)
4880.00	44.27	PK	74	29.73	57.05	33.60	6.95	53.33	-12.78
4880.00		AV	54			- B			
7320.00	48.50	PK	74	25.50	55.00	37.46	9.23	53.19	-6.50
7320.00		AV	54						

Freque	equency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)	
4880.00	44.97	PK	74	29.03	57.75	33.60	6.95	53.33	-12.78	
4880.00		AV	54					A	THE.	
7320.00	46.62	PK	74	27.38	53.12	37.46	9.23	53.19	-6.50	
7320.00		AV	54					=1		

Freque	ncy(MHz):			2480 Polarity:			HORIZONTAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)	
4960.00	44.75	PK	74	29.25	57.17	33.84	7.00	53.26	-12.42	
4960.00		AV	54		-00	1	300			
7440.00	48.19	PK	74	25.81	54.47	37.64	9.28	53.20	-6.28	
7440.00		AV	54		30					

Freque	ncy(MHz):	24	80	Pola	arity:			
Frequency (MHz)	Emis Lev (dBu	_	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)
4960.00	45.85	PK	74	28.15	58.27	33.84	7.00	53.26	-12.42
4960.00		AV	54		70				
7440.00	46.55	PK	74	27.45	52.83	37.64	9.28	53.20	-6.28
7440.00		AV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Humidity:

P

Р

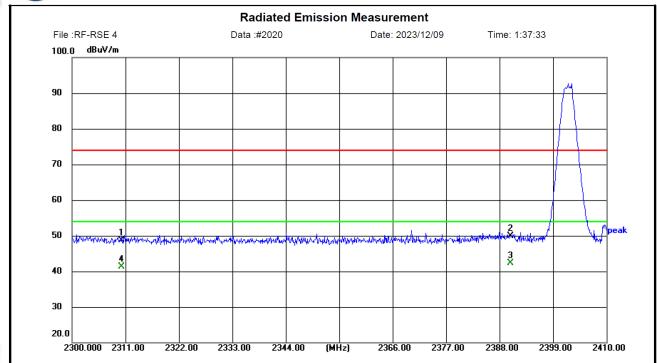
0

0

150

150

50 %


Results of Band Edges Test (Radiated)

BLE 2M

Test frequency: 2402 MHz Polarization: Horizontal

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

Site LAB Chamber 2 Polarization: *Horizontal* Temperature: 25(C)

Limit: FCC Part 15 C Power:

EUT: Distance: 3m

8.88

8.85

42.25

41.24

M/N: PLAYERGO

Mode: BLE2M 2402MHz TX
Note: Blue Tees Enterprises, LLC

2390.310

2310.230

33.37

32.39

3

4

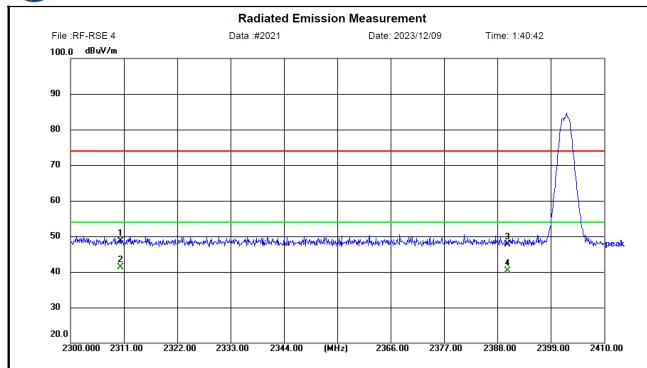
Frequency Reading Factor Level Limit Margin Height Azimuth No. Detector Remark (deg.) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) 25.35 Р 2310.230 39.80 8.85 48.65 74.00 150 360 1 peak 2390.310 74.00 150 360 Р 2 41.05 8.88 49.93 24.07 peak

11.75

12.76

AVG

AVG


54.00

54.00

Test frequency: 2402 MHz Polarization: Vertical

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

Site LAB Chamber 2

Limit: FCC Part 15 C

EUT:

M/N: PLAYERGO

Mode: BLE2M 2402MHz TX
Note: Blue Tees Enterprises, LLC

Polarization: Vertical Temperature: 25(C)

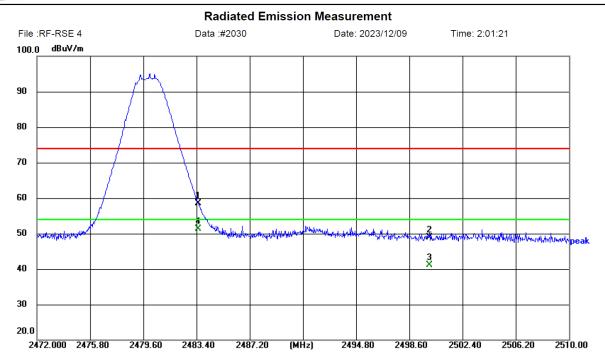
Power: Humidity: 50 %

Distance: 3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2310.340	39.85	8.85	48.70	74.00	25.30	peak	150	360	Р	
2	2310.340	32.39	8.85	41.24	54.00	12.76	AVG	150	0	Р	
3	2390.090	38.84	8.88	47.72	74.00	26.28	peak	150	360	Р	
4	2390.090	31.39	8.88	40.27	54.00	13.73	AVG	150	0	Р	

Test frequency:

2480 MHz


Polarization:

Horizontal

V1.0

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

Site LAB Chamber 2

Polarization: Horizontal

Temperature: 25(C)

Limit: FCC Part 15 C

Humidity: 50 %

EUT:

Distance: 3m

Power:

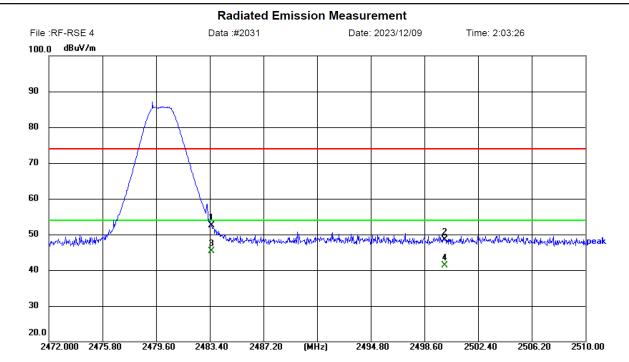
M/N: PLAYERGO

Mode: BLE2M 2480MHz TX
Note: Blue Tees Enterprises, LLC

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2483.514	49.58	8.99	58.57	74.00	15.43	peak	150	360	Р	
2	2500.006	39.79	9.05	48.84	74.00	25.16	peak	150	360	Ъ	
3	2500.006	32.12	9.05	41.17	54.00	12.83	AVG	150	0	Р	
4	2483.514	42.26	8.99	51.25	54.00	2.75	AVG	150	0	Р	_

25(C)

50 %


Temperature:

Humidity:

Test frequency: 2480 MHz Polarization: Vertical

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

Site LAB Chamber 2

Limit: FCC Part 15 C

EUT:

M/N: PLAYERGO

Mode: BLE2M 2480MHz TX Note: Blue Tees Enterprises, LLC

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2483.514	43.49	8.99	52.48	74.00	21.52	peak	150	360	Ъ	
2	2500.006	39.46	9.05	48.51	74.00	25.49	peak	150	360	Р	
3	2483.514	36.26	8.99	45.25	54.00	8.75	AVG	150	0	Р	
4	2500.006	32.23	9.05	41.28	54.00	12.72	AVG	150	0	Р	

Power:

Distance: 3m

Polarization: Vertical

REMARKS:

- 1. Level (dBuV/m) =Reading (dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value-Level value.
- 4. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

3.3. Maximum Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

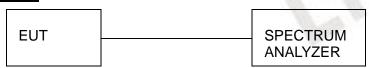
Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

Test Configuration

Test Results

3.4. Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

3.5. 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

V1.0 Page 27 of 31 Report No.: CTL2311107041-WF02

3.6. Occupied Bandwidth

Limit

N/A

Test Procedure


The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW VBW=approximately 3 X RBW Detector=Peak

Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

Test Configuration

Test Results

Report No.: CTL2311107041-WF02

3.7. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

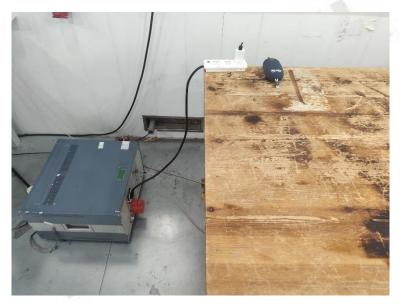
Test Results

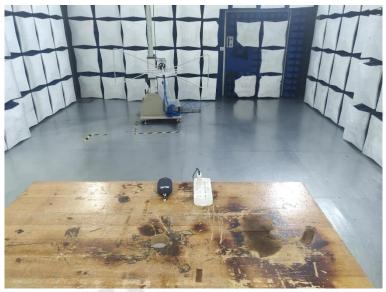
3.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c)(1)(i):


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 2.56 dBi.

4. Test Setup Photos of the EUT

5. Photos of the EUT

Reference to the test report No. CTL2311107041-WF01