

Test Report 21-1-0116002T01a

Number of pages: 25 Date of Report: 2022-May-30

Testing company: CETECOM GmbH Applicant: Alois Kober GmbH

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150

Product: E&P levelsystem

Model: E&P levelsystem Touchpanel

FCC ID: 2A5AD-4100938 IC: N/A

Testing has been carried out in accordance with:

Title 47 CFR, Chapter I

FCC Regulations, Subchapter A Part 15, Subpart C: §15.249

 $\label{lem:periodications} Deviations, modifications or clarifications (if any) to above mentioned documents are written$

in each section under "Test method and limit".

Tested Technology: SRD

Test Results:

☑ The EUT complies with the requirements in respect of selected parameters subject to

the test.

The test results relate only to devices specified in this document

Signatures:

Dipl.-Ing. Christian Lorenz Senior Test manager Authorization of test report Timo Franke Test manager Responsible of test report

Table of Contents

Ta	ble	of Annex	3					
1	(General information	4					
	1.1	1 Disclaimer and Notes	4					
	1.2	2 Attestation	4					
	1.3	3 Summary of Test Results	5					
	1.4	4 Summary of Test Methods	6					
2		Administrative Data	7					
	2.1	1 Identification of the Testing Laboratory	7					
	2.2	2 General limits for environmental conditions	7					
	2.3	3 Test Laboratories sub-contracted	7					
	2.4	4 Organizational Items	7					
	2.5	5 Applicant's details	7					
	2.6	6 Manufacturer's details	7					
	2.7	7 Equipment under Test (EUT)	8					
	2.8	8 Untested Variant (VAR)	8					
	2.9	9 Auxiliary Equipment (AE)	8					
	2.1	10 Connected cables (CAB)	8					
	2.1	11 Software (SW)	8					
	2.1	12 EUT set-ups	8					
	2.1	13 EUT operation modes	8					
3	1	Equipment under test (EUT)	9					
	3.1	1 General Data of Main EUT as Declared by Applicant	9					
	3.2	2 Detailed Technical data of Main EUT as Declared by Applicant	9					
	3.3	3 Modifications on Test sample	9					
4	-	Measurements	10					
	4.1	Transmitter Peak output power radiated and band edge, §15.249(a)	10					
	4.2	Radiated field strength emissions below 30 MHz, §15.209	12					
	4.3	Radiated field strength emissions 30 MHz – 1 GHz, §15.209 and §15.249(d)	16					
	4.4	Radiated field strength emissions above 1 GHz, §15.209 and §15.249(a)(d)(e)	18					
	4.5	5 Occupied Channel Bandwidth 99%, §2.1049(h)	20					
	4.6	6 Equipment lists	21					
5	1	Results from external laboratory	23					
6		Opinions and interpretations						
7	1	List of abbreviations	23					
8	1	Measurement Uncertainty valid for conducted/radiated measurements	24					
9	,	Versions of test reports (change history)25						

	Table of Annex					
Annex No.	Contents	Reference Description	Total Pages			
Annex 1 Test result diagrams		CETECOM_TR21-1-0116002T01a_A1	21			
Annex 2	Internal photographs of EUT	To be provided by applicant				
Annex 3	External photographs of EUT	CETECOM_TR21-1-0116002T01a_A3	4			
Annex 4	Annex 4 Test set-up photographs CETECOM_TR21-1-0116002T01a_A4 8					
The listed attachments are separate documents.						

CETECOM_TR21-1-0116002T01a 3/25

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

CETECOM_TR21-1-0116002T01a 4/25

1.3 Summary of Test Results

The EUT integrates a non-specific 902 MHz – 928 Mhz transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference Clause FCC ⊠	Reference Clause ISED ☑	Page	Remark	Result
Occupied Channel Bandwidth 99%	2.202(a)	RSS-Gen, Issue 5,	20		PASSED
Occupied Charmer Bandwidth 9976	2.1049(h)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20		FASSED
Transmitter Peak output power	§15.249(a)	RSS-210, Issue 10:	11		PASSED
radiated	§15.249(d)	B.10(a)			
Band edge radiated	, ,	, ,			
Radiated field strength emissions	§15.205(a)	RSS-Gen, Issue 5:	12		PASSED
below 30 MHz	§15.209	§8.9 Table 6 + 7			
	§15.249(d)				
Radiated field strength emissions	§15.205(a)	RSS-Gen, Issue 5:	15		PASSED
<u>30 MHz – 1 GHz</u>	§15.209	§8.9 Table 5 + 7			
	§15.249(d)	RSS-210, Issue 10:			
		B.10 (a)			
Radiated field strength emissions	§15.205	RSS-Gen, Issue 5:	17		PASSED
above 1 GHz	§15.209	§8.9 Table 5+7			
	§15.249(a)(d)(e)	RSS-210, Issue 10:			
		B.10 (b)			
Frequency stability	§15.249(b)			Only for fixed point-	N/A
				to-point operation	
AC conducted emissions	§15.207	RSS-Gen, Issue 5			N/A

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

N/A Test case does not apply to the test object.

NP The test was not performed by the CETECOM Laboratory.

CETECOM_TR21-1-0116002T01a 5/25

^{*}The calculation of the measurement uncertainty shows compliance with the "maximum measurement uncertainties" of the tested standard and therefore for result evaluation the stated uncertainties will not be additionally added to the measured results.

1.4 Summary of Test Methods

Test case	Test method
Transmitter Peak output power radiated	ANSI C63.10-2013 §6.3, §11.9
Band-edge measurements	ANSI C63.10-2013 §6.10.6 "Marker-delta method"
Occupied Channel Bandwidth 99%	ANSI C63.10:2013 §6.9.3
Emissions in non-restricted frequency bands	ANSI C63.10-2013 §11.11, §6.10.5
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, §6.6

And reference also to Test methods in KDB558074

CETECOM_TR21-1-0116002T01a 6 / 25

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH
Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage: FCC ISED

IC Lab company No. / CAB ID: 3462D / DE0005

Test location: CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name: --

2.4 Organizational Items

Responsible test manager: Timo Franke

Receipt of EUT: 2021-Nov-29

Date(s) of test: 01-28-2022 to 02-03-2022

Version of template: 22.0301

2.5 Applicant's details

Applicant's name: Alois Kober GmbH

Address: Ichenhauser Str. 14

89359 Kötz Bavaria Germany

Contact Person: Mr. Sebastian Weis

Contact Person's Email: sebastian.weis@alko-tech.com

2.6 Manufacturer's details

Manufacturer's name:

Q.E.F. electronic innovations

Address:

Marconiweg 2A

3417 XK Montfoort

The Netherlands (NL)

CETECOM_TR21-1-0116002T01a 7/25

2.7 Equipment under Test (EUT)

EUT	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							
EUT 1	21-1-01160S05_C01	E&P levelsystem	E&P levelsystem	Remote Touchpanel	0117	V1.5	V1.11.xW
			Touchpanel	Camper/Caravan			

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							

^{*)} The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

	AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
	No.*)						
ı	AE 1	21-1-001160S07_C01	Charging station	n/a	n/a	n/a	n/a

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation.

2.10 Connected cables (CAB)

САВ	Sample No.	Cable Type	Connectors / Details	Length
No.*)				

^{*)} CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation.

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				

^{*)} SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
Set. 1	EUT 1 (+ AE 1)	Used for Radiated and conducted measurements. AE 1 just used to charge the internal battery of EUT 1 and is not part of the radiated measurements

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

	•	
EUT operating mode no.*1)	Operating modes	Additional information
Op. 1	TX-Mode	EUT set to a specific fixed channel, continuosly transmitting a modulated carrier. Power setting 3 was used.

^{*1)} EUT operating mode no. is used to simplify the test report.

CETECOM_TR21-1-0116002T01a 8/25

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	☐ for normal use	□ Special version for test exe	cution
Power supply	☐ AC Mains	-	
	☐ DC Mains	-	
	⊠ Battery	Internal battery	
Operational conditions	T _{nom} = 21 °C	T _{min} = n/a °C	T _{max} = n/a °C
EUT sample type	Engineering Samples		
Weight	0.2 kg		
Size [LxWxH]	13.0 cm x 9.0 cm x 1.5 cm		
Interfaces/Ports			
For further details refer Applicants Decla	ration & following technical d	ocuments	
3af39eec97851004cba7123651444dfa.pd	f		

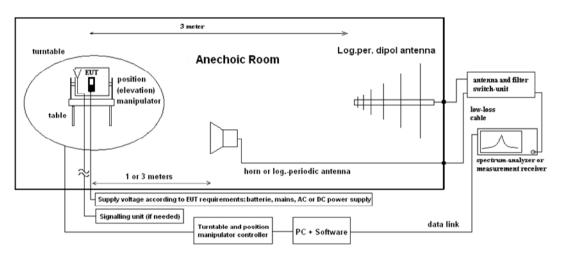
3.2 Detailed Technical data of Main EUT as Declared by Applicant

		, , , ,		
Frequency Band	902 MHz – 915 MHz			
Number of Channels	15			
(USA/Canada -bands)				
Nominal Channel Bandwidth	58 kHz – 540 kHz (depend	s on data rate)		
Type of Modulation Data Rate	19 kbit / s			
	☐ WIFI			
Other installed options	☐ Bluetooth LE (not teste	d within this report)		
Other installed options	☐ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)			
	⊠ none			
Output Power	0 dBm			
Antenna Type	Not reported			
Antenna Gain	Not reported			
FCC label attached	No			
Test firmware / software and storage	EUT 1			
location	2012			
For further details refer Applicants Decla	ration & following technic	al documents		
Description of Reference Document (sup	plied by applicant)	Version	Total Pages	
EPH_0611 - Wireless Communication 22	2.10.2021	1.0	11	

3.3 Modifications on Test sample

Additions/deviations or exclusions	-

CETECOM_TR21-1-0116002T01a 9 / 25


4 Measurements

4.1 Transmitter Peak output power radiated and band edge, §15.249(a)

4.1.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 6)

4.1.2 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz
-----------	--

4.1.3 Limit radiated power

Frequency Range [MHz]	Limit [mV/m]	Limit [dBµV/m]	Limit EIRP [dBm]	Detector
902 – 928	50	94	-1.25	MaxPeak

CETECOM_TR21-1-0116002T01a 10 / 25

4.1.4 Result radiated power

Diagram	Mode	Channel	Frequency [MHz]	Max Peak Value [dBμV/m]	Max Peak Power [dBm] 1)	Result
3.04a	Op. 1 standing	Low	902.46	86.17	-9.03	PASSED
3.04b	Op. 1 lying	Low	902.48	86.08	-9.12	PASSED
3.05a	Op. 1 standing	Mid	905.98	85.76	-9.44	PASSED
3.05b	Op. 1 lying	Mid	905.98	85.65	-9.55	PASSED
3.06a	Op. 1 standing	High	909.48	85.35	-9.85	PASSED
3.06b	Op. 1 lying	High	909.48	85.25	-9.95	PASSED

Remark: for more information and graphical plot see annex A1CETECOM_TR21-1-0116002T01a_A1

Remark 1: Max Peak Power [dBm] = Max Peak Value [dB μ V/m] – 95.2dB (correction factor for 3 m measurement distance)

Remark 2: worst cast position is determined to be the standing position

4.1.5 Limit radiated band-edge

Frequency Range [MHz]	Limit	Detector
902 – 928	50 dBc or general emission limits in § 15.209, whichever is less attenuation	MaxPeak

4.1.6 Result radiated band-edge

Diagram	Mode	Channel	Frequency [MHz]	Max peak value [dBuV/m]	Level at band edge [dBµV/m]	Limit at band edge [dBµV/m] 1)	Result
3.04a	Op. 1 standing	Low	902.48	86.17	43.66 ⁴⁾	46 ²⁾	PASSED
3.04b	Op. 1 lying	Low	902.48	86.08	43.57 ⁴⁾	46 ²⁾	PASSED
3.06a	Op. 1 standing	High	909.48	85.35	1) 2)	3)	PASSED
3.06b	Op. 1 lying	High	909.48	85.25	1) 2)	3)	PASSED

Remark: for more information and graphical plot see annex A1CETECOM_TR21-1-0116002T01a_A1

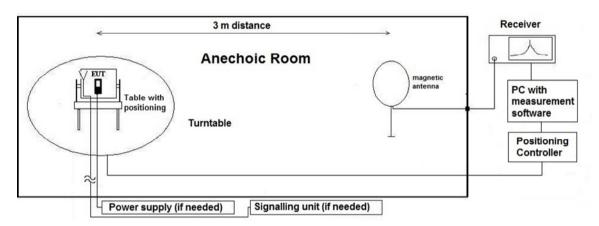
Remark 1): noise level

Remark 2): general § 15.209 emission limit

Remark 3): due the large margin to the upper band edge and the small signal bandwidth measurement is not critical

Remark 4): marker delta method -> measured delta = 42.51 dB | delta is subtracted by the measured radiated Max Peak value

CETECOM_TR21-1-0116002T01a 11 / 25


4.2 Radiated field strength emissions below 30 MHz, §15.209

4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

CETECOM_TR21-1-0116002T01a 12 / 25

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ AF = Antenna factor

C_L = Cable loss

 $M = L_T - E_C \hspace{1cm} D_F = Distance \ correction \ factor \ (if used)$

 E_C = Electrical field – corrected value

 E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.2.2 Measurement Location

Test site 120901 - SAC - Radiated Emission <1GHz

CETECOM_TR21-1-0116002T01a 13 / 25

4.2.3 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
nange	[2,2]	[]	[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)	field)	Formula
	9	22222 22	E20E 17		fullfilled	<u> </u>	-80.00
	10	33333.33 30000.00	5305.17 4774.65	-	fullfilled	not fullfilled not fullfilled	-80.00
	20	15000.00		-	fullfilled		-80.00
	30		2387.33	-	fullfilled	not fullfilled not fullfilled	
		10000.00	1591.55	-			-80.00
	40	7500.00	1193.66	-	fullfilled	not fullfilled	-80.00
	50	6000.00	954.93	-	fullfilled	not fullfilled	-80.00
	60	5000.00	795.78	-	fullfilled	not fullfilled	-80.00
	70	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
	80	3750.00	596.83	-	fullfilled	not fullfilled	-80.00
kHz	90	3333.33	530.52	-	fullfilled	not fullfilled	-80.00
КПZ	100	3000.00	477.47	-	fullfilled	not fullfilled	-80.00
	125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37	-	fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49	-	fullfilled	not fullfilled	-40.00
	600	500.00	79.58	-	fullfilled	not fullfilled	-40.00
	700	428.57	68.21	-	fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31		fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
MHz	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65]	not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39]	not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27		not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08		not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91		not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77		not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65		not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

CETECOM_TR21-1-0116002T01a 14 / 25

4.2.4 Limit

	Radiated emissions limits, (3 meters)						
Frequency Range [MHz]	Limit [μV/m]	Limit [dBμV/m]	Distance [m]	Detector	RBW [kHz]		
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2		
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2		
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2		
0.15 - 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9		
0.49 – 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9		
1.705 - 30	30	29.5	30	Quasi peak	9		

^{*}Remark: In Canada same limits apply, just unit reference is different

4.2.5 Result

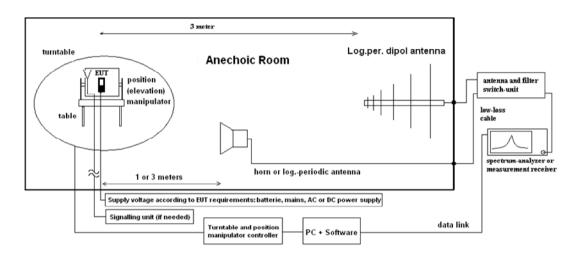
Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 0.009 – 30 MHz	Result
2.01	Low 902.5 MHz	1	19.862 (PK) ¹⁾	PASSED
2.02	Mid 906 Mhz	1	20.071 (PK) ¹⁾	PASSED
2.03	High 909.5 MHz	1	19.205 (PK) ¹⁾	PASSED

Remark: for more information and graphical plot see annex A1CETECOM_TR21-1-0116002T01a_A1

Remark 1): noise level

Remark 2: standing position is determined to be worst case position, therefore only standing position was tested

CETECOM_TR21-1-0116002T01a 15 / 25



4.3 Radiated field strength emissions 30 MHz - 1 GHz, §15.209 and §15.249(d)

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

CETECOM_TR21-1-0116002T01a 16 / 25

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \quad \mbox{(1)} \qquad \qquad AF = \mbox{Antenna factor}$ $C_L = \mbox{Cable loss}$

 $M = L_T - E_C$ (2) $D_F = Distance correction factor (if used)$

E_C = Electrical field – corrected value E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.3.2 Measurement Location

Test site 120901 - SAC - Radiated Emission <1GHz	
--	--

4.3.3 Limit

Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [μV/m]	Limit Detector [dΒμV/m]		RBW / VBW [kHz]			
[IVIII2]	[μν/ιιι]	[ubµv/iii]		[KHZ]			
30 - 88	100	40.0	Quasi peak	100 / 300			
88 - 216	150	43.5	Quasi peak	100 / 300			
216 - 960	200	46.0	Quasi peak	100 / 300			
960 - 1000	500	54.0	Quasi peak	100 / 300			

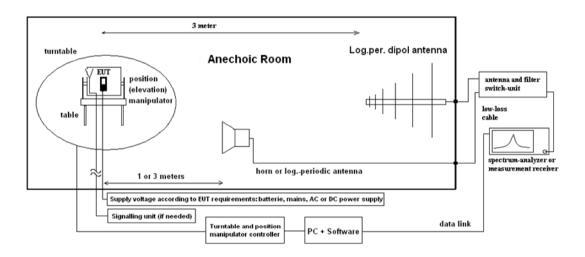
4.3.4 Result radiated spurious emissions

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 30 – 1000 MHz	Result
3.01b	Low 902.5 MHz lying	Op. 1	35.442 (PK)	PASSED
3.02b	Mid 906 Mhz lying	Op. 1	36.465 (PK)	PASSED
3.03b	High 909.5 MHz lying	Op. 1	38.661 (PK)	PASSED

Remark: for more information and graphical plot see annex A1CETECOM_TR21-1-0116002T01a_A1

Remark 1: standing position is determined to be worst case position, therefore only standing position was tested

CETECOM_TR21-1-0116002T01a 17 / 25



4.4 Radiated field strength emissions above 1 GHz, §15.209 and §15.249(a)(d)(e)

4.4.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

CETECOM_TR21-1-0116002T01a 18 / 25

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis, the antenna height and tilting or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A$ (1) $E_C = Electrical field - corrected value$

E_R = Receiver reading

 $M = L_T - E_C (2) M = Margin$

 $L_T = Limit$

 A_F = Antenna factor

 C_L = Cable loss

D_F = Distance correction factor (if used)

G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.4.2 Measurement Location

Test site 1 – 9.5 GHz 120904 - FAC1 - Radiated Emissions

4.4.3 Limit

- 1							
Radiated emissions limits, (3 meters)							
	Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
	Above 1000	500	54	Average	1000 / 3000		
	Above 1000	5000	74	Peak	1000 / 3000		

4.4.4 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 1 – 9.5 GHz	Result
4.01	Low 902.5 MHz	1	49.44 (AV) ¹⁾	PASSED
4.02	Mid 906 Mhz	1	43.70 (AV) ¹⁾	PASSED
4.03	High 909.5 MHz	1	45.45 (AV) 1)	PASSED

Remark: for more information and graphical plot see annex A1CETECOM_TR21-1-0116002T01a_A1

Remark 1): level where margin in relation to limit is most critical.

Remark 2: standing position is determined to be worst case position, therefore only standing position was tested

CETECOM_TR21-1-0116002T01a 19 / 25

4.5 Occupied Channel Bandwidth 99%, §2.1049(h)

4.5.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then on the RF-coupler the coupled RF-path is connected to a Bluetooth test unit communication tester (5). The direct RF-path is connected to the spectrum – analyzer (4) for specific RF-measurements. The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting the measurement readings on the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

EUT settings

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

4.5.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.5.3 Limit

When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.5.4 Result

Op.Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [kHz]
1	Low	902.5	248.00
1	Mid	906.0	252.00
1	High	909.5	225.00

Remark: for more information and graphical plot see annex A1

CETECOM_TR21-1-0116002T01a 20 / 25

4.6 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next (
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 07-21-2015	cal: 10Y	cal: July
					chk: 07-27-2021	chk: 12M	chk: July
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: - chk: -	cal: - chk: -	
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH	879824/13	cal	cal: 04-07-2020	cal: 24M	cal: April
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 05-21-2021	cal: 12M	cal: May
20020	Test neceiver 25020	Memmingen	100302	cai	Cai. 05 21 2021	Cai. 12IVI	cai. ivia
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH	980026L	cal	cal: 05-03-2019	cal: 36M	cal: Ma
0885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: -	cal: -	
					chk: -	chk: -	
0442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	
					chk: -	chk: -	
	120904 - FAC1 - Radiated Emissions			chk	chk: 06-11-2021	chk: 12M	chk: Jun
0341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	cal	cal: 05-25-2020	cal: 24M	cal: Ma
0558	Fully Anechoic Chamber 1	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cai. ivia
0330	runy meenole enameer 1	Ero Emagren amony radianenen		C	chk: -	chk: -	
0254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042	chk			
					chk: 06-11-2021	chk: 12M	chk: Jur
0868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	chk			
					chk: 06-11-2021	chk: 12M	chk: Jun
0291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14	chk			
					chk: 06-11-2021	chk: 12M	chk: Jun
0020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	calchk	cal: 08-17-2021	cal: 36M	cal: Augu
0302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG / Schönau	155	cpu	chk: 04-20-2013	chk: 12M	
0302	Horri Arternia BBNA5170 (Weas 1)	Schwarzbeck Wess Elektronik Orla / Schonau	133	сри	chk: 04-15-2020	chk: 12M	
0549	Log. Per. Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	calchk	cal: 08-18-2021	cal: 36M	cal: Augu
						chk: 12M	
0720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	cnn	cal: -	cal: -	
					chk: -	chk: -	
0512	Notch Filter WRCA 800/960-02/40-6EEK (GSM	Wainwright Instruments GmbH	24	chk			
	850)				chk: 06-11-2021	chk: 12M	chk: Jur
0290	Notch Filter WRCA 901,9/903,1SS	Wainwright Instruments GmbH	3RR	chk			
0122	Notch Filter WRCB 1747/1748	Wainwright Instruments GmbH	12	chk	chk: 06-11-2021	chk: 12M	chk: Jur
0122	Notch Filter WRCB 1747/1748	wallwright instruments dinbh	12	CHK	chk: 06-11-2021	chk: 12M	chk: Jur
0121	Notch Filter WRCB 1879,5/1880,5EE	Wainwright Instruments GmbH	15	chk	CIM: 00 11 2021	CIIIC ZEIVI	cinc. sur
					chk: 06-11-2021	chk: 12M	chk: Jur
0448	Notch Filter WRCT 1850.0/2170.0-5/40-10SSK	Wainwright Instruments GmbH	5	chk			
					chk: 06-11-2021	chk: 12M	chk: Jur
0066	Notch Filter WRCT 1900/2200-5/40-10EEK	Wainwright Instruments GmbH	5	chk			
					chk: 06-11-2021	chk: 12M	chk: Jur
0449	Notch Filter WRCT 824.0/894.0-5/40-8SSK	Wainwright Instruments GmbH	1	chk	chk: 06-11-2021	chk: 12M	chk: Jur
0611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	cpu	CIIK. 00-11-2021	CIIK. 12IVI	Clik. Jul
0338	Pre-Amplifier 100MHz - 26GHz JS4-00102600-	Miteq Inc.	838697	chk			
0330	38-5P	Time quie.	030037	Citic	chk: 06-11-2021	chk: 12M	chk: Jur
0484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-	Miteq Inc.	1244554	chk			
	02501800-25-10P				chk: 06-11-2021	chk: 12M	chk: Jun
0287	Pre-Amplifier 25MHz - 4GHz AMF-2D-	Miteq Inc.	379418	chk		İ	
	100M4G-35-10P				chk: 06-11-2021	chk: 12M	chk: Jun
0670	Radio Communication Tester CMU200	Rohde & Schwarz Messgerätebau GmbH	106833	cal	cal: 06-16-2020	cal: 24M	cal: Jur
0690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	cal	cal: 05-20-2021	cal: 24M	cal: Ma
0489	Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH /	100030	cal	cal: 05-19-2021	cal: 12M	cal: Ma
0439	Ultrabroadband-Antenna HL562	Memmingen Rohde & Schwarz Messgerätebau GmbH	100248	calchk	cal: 03-10-2017	cal: 72M	cal: Marc
U433	Ontrabi Daubanu-Antenilla FILD02	nonde & Juliwai z iviessgeratebau GilibH	100240	Calclik	cai. U3-1U-2U1/	chk: 12M	cai. iviaro
	120910 - Radio Laboratory 1 (TS 8997)			chk		CIIIC ZEIVI	
					chk: 03-16-2022	chk: 12M	chk: Marc
0904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH	58226223240010	cal	cal: 05-09-2020	cal: 12M	cal: Ma
0871	NRP-Z81	Rohde & Schwarz Messgerätebau GmbH	104631	cal	cal: 05-20-2021	cal: 12M	cal: Ma
0872	NRX Power Meter	Rohde & Schwarz Messgerätebau GmbH	101831	cal	cal: 01-28-2020	cal: 24M	cal: Janua
0805	Open Switch and control Platform OSP	Rohde & Schwarz Messgerätebau GmbH	101264	cal	cal: 05-13-2020	cal: 36M	cal: Ma
	B157WX 40GHz 8Port Switch						
0691	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101056	cal	cal: 05-13-2020	cal: 36M	cal: Ma
0866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH	101247	cal	cal: 09-24-2021	cal: 12M	cal: Septembe
0687	Signal Generator SMF 100A	Rohde & Schwarz Messgerätebau GmbH	102073	cal	cal: 02-07-2020	cal: 24M	cal: Ma
0559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH	103736	cal	cal: 05-20-2021	cal: 24M	cal: Ma
0873	WTS-80 Schirmbox	CETECOM GmbH	P3101	cnn	cal: - chk: -	cal: - chk: -	

4.6.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

CETECOM_TR21-1-0116002T01a 21/25

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
cpu	Verification before usage

CETECOM_TR21-1-0116002T01a 22 / 25

5	Results from external laboratory					
No	one	-				
6	Opinions and i	nterpretations				
No	one	-				
	List of abbrevia	ations				
NIZ	ana	4				

CETECOM_TR21-1-0116002T01a 23 / 25

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type	of meas		Calculated Uncertainty based on	Remarks
	Start [MHz]	Stop [MHz]	confidence level of 95.54%	
Magnetic field strength	0.009	30	4.86	Magnetic loop antenna, Pre-amp on
	30	100	4.57	without Pre-Amp
	30	100	4.91	with PreAmp
	100	1000	4.02	without Pre-Amp
	100	1000	4.26	with PreAmp
	1000	18000	4.36	without Pre-Amp
DE Output names (sim)	1000	18000	5.23	with PreAmp
RF-Output power (eirp) Unwanted emissions (eirp)	18000 33000	33000 50000	4.92 4.17	Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna) Set-up for Q-Band (WR-22), non-wave guide antenna
[dB]	40000	60000	4.17	Set-up Ior Q-Band (WR-22), non-wave guide antenna Set-up U-Band (WR-19), non-wavequide antenna
[ub]	50000	75000	4.09	External Mixer set-up V-Band (WR-15)
	75000	110000	4.17	External Mixer set-up V-Band (WR-15) External Mixer set-up W-Band (WR-6)
	90000	140000	5.49	External Mixer set-up W-Band (WR-8)
	140000	225000	6,22	External Mixer set-up G-Band (WR-5)
	225000	325000	7.04	External Mixer set-up (WR-3)
	325000	500000	8.84	External Mixer set-up (WR-2.2)
		40000		T
	1000 18000	18000 33000	2.85	Typical set-up with microwave generator and antenna, value for 7GHz calculated
Radiated Blocking	33000	50000	4.66 3.48	Typical set-up with microwave generator and antenna
[dB]	50000	75000	3.48	WR-22 set-up WR-15 set-up
	75000	110000	4.26	WR-6 set-up
	73000	110000	4.20	wk-o set-up
Frequency Error	40000	77000	276.19	calculated for 77 GHz (FMCW) carrier
[kHz]	6000	7000	33.92	calculated for 6.5GHz UWB Ch.5
	30	6000	1.11	Power measurement with Fast-sampling-detector
	30	6000	1.20	Power measurement with Spectrum-Analyzer
	30	6000	1.20	Power Spectrum-Density measurement
	30	7500	1.20	4. Conducted Spurious emissions:
TS 8997	0.009	30	2.56	5. Conducted Spurious emissions:
conducted Parameters	2.4 5.18	2.48 5.825	1.95 ppm	6a. Bandwidth / 2-Marker Method for 2.4GHz ISM 6b. Bandwidth / 2-Marker Method for 5GHz WLAN
	5.18	5.825	7.180 ppm 1.099 ppm	7 Frequency (Marker method) for 5GHz WLAN
	30	6000	0.11561µs	8 Medium-Utilization factor / Timing
	30	6000	1.85	9 Blocking-Level of companion device
	30	6000	1.62	9 Blocking Generator level
Conducted emissions	0.009	30	3.57	

CETECOM_TR21-1-0116002T01a 24 / 25

9 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2022-May-30

End Of Test Report

CETECOM_TR21-1-0116002T01a 25 / 25