

TEST REPORT

Applicant Name: Huizhou Dudu Pet Products Co., Itd

Address: Floor 2/3/4, Building 2 District D Qiaosheng Industrial Park,

Lilin Town, Huicheng District, Huizhou, China

2401T36013E-RF-00B Report Number: FCC ID: 2A55Q-DU-F03W

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Automatic Pet Feeder

Model No.: DU-F03W

Multiple Model(s) No.: DU-F03W-01, DU-F03W-02, DU-F03K, DU-F03B

Trade Mark: N/A

Date Received: 2024-05-28 Issue Date: 2024-08-06

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Approved By:

EKKO. Wu

Ekko Wu Nancy Wang

RF Supervisor RF Engineer

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼"

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF004 Page 1 of 53 Version 1.0 (2023/10/07)

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
REQUIREMENTS AND TEST PROCEDURES	12
AC LINE CONDUCTED EMISSIONS	
Spurious Emissions	
6 DB EMISSION BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
100 kHz Bandwidth of Frequency Band Edge Power Spectral Density	19
DUTY CYCLE	
TEST DATA AND RESULTS	
AC LINE CONDUCTED EMISSIONS.	
SPURIOUS EMISSIONS	
6DB EMISSION BANDWIDTH	
MAXIMUM CONDUCTED OUTPUT POWER	
100 kHz Bandwidth of Frequency Band Edge	43
POWER SPECTRAL DENSITY	45
DUTY CYCLE	48
RF EXPOSURE EVALUATION	50
ANTENNA REQUIREMENT	51
EUT PHOTOGRAPHS	52
TEST SETUP PHOTOGRAPHS	53

Report No.: 2401T36013E-RF-00B

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401T36013E-RF-00B	Original Report	2024-08-06

Report No.: 2401T36013E-RF-00B

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	2412~2462MHz		
Maximum Conducted Output Peak Power	22.65dBm		
Modulation Technique	DSSS, OFDM		
Antenna Specification#	2.54dBi (provided by the applicant)		
Voltage Range	DC 5V from adapter or DC 15V from battery		
Sample serial number	2M4N-8 for Conducted and Radiated Emissions Test 2M4N-9 for RF Conducted Test (Assigned by BACL, Shenzhen)		
Sample/EUT Status	Good condition		
Adapter Information Model: TPA-46B050100UU Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1000mA			
Note: The Multiple models are electrically identical with the test model except for model name and sales			

Report No.: 2401T36013E-RF-00B

Note: The Multiple models are electrically identical with the test model except for model name and sales channel. Please refer to the declaration letter[#] for more detail, which was provided by manufacturer.

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty
Occupied C	Occupied Channel Bandwidth		±5%
RF output	RF output power, conducted		0.72 dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz~150 kHz	3.94dB(k=2, 95% level of confidence)
Emissions		150 kHz ~30MHz	3.84dB(k=2, 95% level of confidence)
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)
	30MHz	~200MHz (Horizontal)	4.48dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)		4.55dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Horizontal)		4.85dB(k=2, 95% level of confidence)
Radiated Ellissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)
	1GHz - 6GHz		5.35dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.44dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.16dB(k=2, 95% level of confidence)
Temperature		2	±1°C
I	Humidity		±1%
Supply voltages		ges	±0.4%

Report No.: 2401T36013E-RF-00B

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

TR-EM-RF004 Page 5 of 53 Version 1.0 (2023/10/07)

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz Wi-Fi mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

Report No.: 2401T36013E-RF-00B

EUT Exercise Software

Exercise Software#		VI-mptool.exe		
Mode	Data rate	Power Level [#]		
Mode	Data rate	Low Channel	Middle Channel	High Channel
802.11b	1Mbps	42	42	42
802.11g	6Mbps	100	100	100
802.11n20	MCS0	103	103	103

Special Accessories

No special accessory.

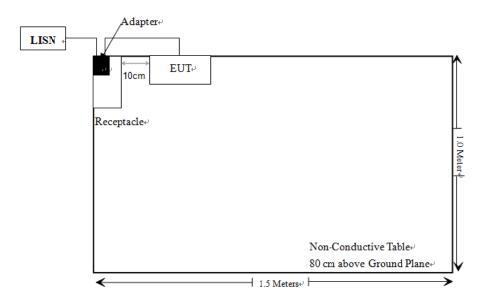
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

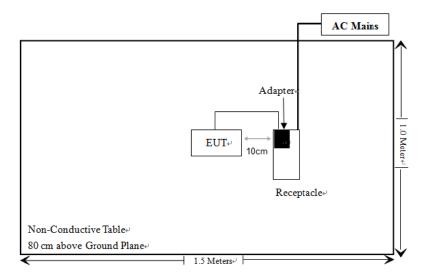
Manufacturer	Description	Model	Serial Number
Bull	Receptacle	Unknown	Unknown

External I/O Cable

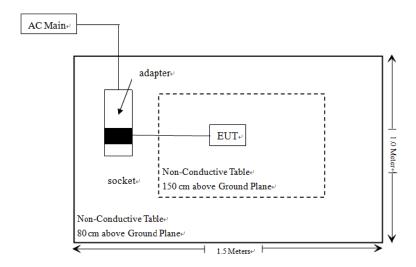

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Cable	1.0	EUT	Adapter
Un-shielding Detachable DC Cable	1.5	Receptacle	LISN/AC Mains

TR-EM-RF004 Page 6 of 53 Version 1.0 (2023/10/07)

^{802.11}b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 6 and 11.


Block Diagram of Test Setup

For Conducted Emissions:


Report No.: 2401T36013E-RF-00B

For Radiated Emissions below 1GHz:

TR-EM-RF004 Page 7 of 53 Version 1.0 (2023/10/07)

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1307 (b) (3) & §2.1091	RF Exposure	PASS
FCC §15.203	Antenna Requirement	PASS
FCC §15.207(a)	AC Line Conducted Emissions	PASS
FCC §15.205,§15.209,§15.247(d)	Radiated Spurious Emission	PASS
FCC §15.207(a)(2)	6dB Emission Bandwidth	PASS
RSS-Gen Clause 6.7	99% Occupied Bandwidth	PASS
FCC §15.247(b)(1)	Maximum Conducted Output Power	PASS
FCC §15.247(d)	100 kHz Bandwidth of Frequency Band Edge	PASS
FCC §15.247(d)	Power Spectral Density	PASS

Report No.: 2401T36013E-RF-00B

TR-EM-RF004 Page 9 of 53 Version 1.0 (2023/10/07)

TEST EQUIPMENT LIST

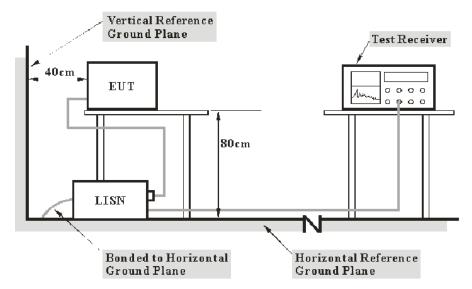
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15		
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15		
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20		
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		
		Radiated Em	ission Test				
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15		
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19		
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13		
Unknown	Cable	Chamber Cable 1	F-03-EM236	2024/05/21	2025/05/20		
Unknown	Cable	2Y194	0735	2024/05/21	2025/05/20		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26		
COM-POWER	Pre-amplifier	PA-122	181919	2023/06/29	2024/06/28		
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17		
Schwarzbeck	Horn Antenna	BBHA9120D(120 1)	1143	2023/07/26	2026/07/25		
Unknown	RF Cable	KMSE	0735	2023/10/08	2024/10/08		
Unknown	RF Cable	UFA147	219661	2023/10/08	2024/10/07		
SNSD	2.4G Band Reject filter	BSF2402- 2480MN-0898- 001	2.4G filter	2023/08/03	2024/08/02		
SNSD	2.4G Band Reject filter	BSF2402- 2480MN-0898- 001	2.4G filter	2024/06/27	2025/06/26		
A.H.System	Pre-amplifier	PAM-1840VH	190	2023/08/02	2024/08/01		
A.H.System Electro-	Pre-amplifier Horn Antenna	PAM-1840VH 3116	190 9510-2270	2024/06/18 2023/09/18	2025/06/17 2026/09/17		
Mechanics Co UTIFLEX	RF Cable	NO. 13	232308-001	2023/08/03	2024/08/02		
UTIFLEX	RF Cable	NO. 13	232308-001	2023/08/03	2024/08/02		

Report No.: 2401T36013E-RF-00B

TR-EM-RF004 Page 10 of 53 Version 1.0 (2023/10/07)

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSU26	200120	2024/01/08	2025/01/07
MARCONI	10dB Attenuator	6534/3	2942	2023/07/04	2024/07/03
ANRITSU	Microwave peak power sensor	MA24418A	12622	2024/05/21	2025/05/20

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).


REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

Applicable Standard

FCC§15.207

EUT Setup

Report No.: 2401T36013E-RF-00B

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

TR-EM-RF004 Page 12 of 53 Version 1.0 (2023/10/07)

Test Procedure

During the conducted emission test, the device was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

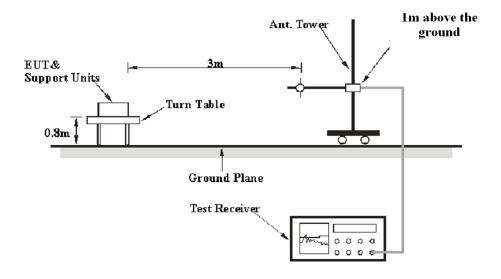
```
Factor = LISN VDF + Cable Loss
```

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

```
Over Limit = level – Limit
Level= reading level+ Factor
```

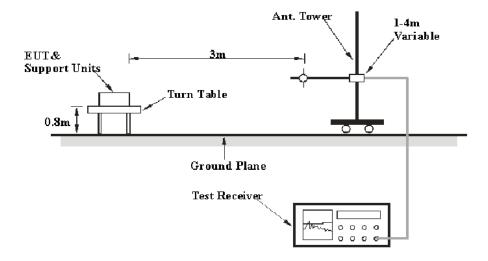
Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

Report No.: 2401T36013E-RF-00B

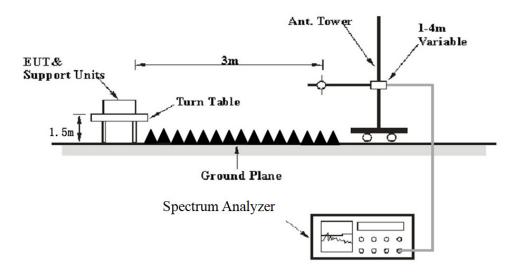

Spurious Emissions

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


EUT Setup

9 kHz-30MHz:


Report No.: 2401T36013E-RF-00B

30MHz-1GHz:

TR-EM-RF004 Page 14 of 53 Version 1.0 (2023/10/07)

Above 1GHz:

Report No.: 2401T36013E-RF-00B

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
9 kHz – 150 kHz	/	/	200 Hz	QP
9 KHZ — 130 KHZ	300 Hz	1 kHz	/	PK
150 kHz – 30 MHz	/	/	9 kHz	QP
130 KHZ – 30 MHZ	10 kHz	30 kHz	/	PK
20 MII- 1000 MII-	/	/	120 kHz	QP
30 MHz – 1000 MHz	100 kHz	300 kHz	/	PK

1-25GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
ATZ	>98%	1MHz	10 Hz
AV	<98%	1MHz	≥1/Ton

Note: Ton is minimum transmission duration

TR-EM-RF004 Page 15 of 53 Version 1.0 (2023/10/07)

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

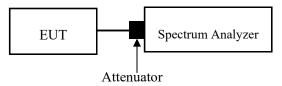
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor Report No.: 2401T36013E-RF-00B

6 dB Emission Bandwidth

Applicable Standard

According to FCC §15.247(a) (2)


Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: 2401T36013E-RF-00B

Test Procedure

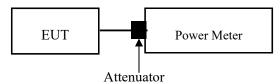
Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

TR-EM-RF004 Page 17 of 53 Version 1.0 (2023/10/07)

Maximum Conducted Output Power

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: 2401T36013E-RF-00B

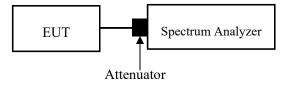
Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.3& 11.9.2.3.2

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

100 kHz Bandwidth of Frequency Band Edge

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: 2401T36013E-RF-00B

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TR-EM-RF004 Page 19 of 53 Version 1.0 (2023/10/07)

Power Spectral Density

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: 2401T36013E-RF-00B

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

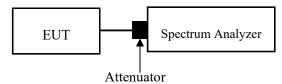
Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

- 1. Set the RBW to: 3kHz< RBW<100 kHz.
- 2. Set the VBW $\geq 3 \times RBW$.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Method: ANSI C63.10-2013 Clause 11.10.3 Method AVGPSD-1

The following procedure may be used when the maximum (average) conducted output power was used to determine compliance to the fundamental output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has a power averaging (rms) detector, then it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (D \geq 98%), or else sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter OFF time to be considered):

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set span to at least 1.5 times the OBW.
- 3. Set the RBW to: 3kHz≤ RBW≤100 kHz.
- 4. Set the VBW $\geq 3 \times BW$.
- 5. Detector = power averaging (rms) or sample detector (when rms not available)
- 6. Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).


TR-EM-RF004 Page 20 of 53 Version 1.0 (2023/10/07)

Test Method: ANSI C63.10-2013 Clause 11.10.5 Method AVGPSD-2

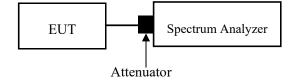
The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., D < 98%), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than $\pm 2\%$):

Report No.: 2401T36013E-RF-00B

- 1. Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. Set the RBW to: 3kHz≤ RBW≤100 kHz.
- 5. Set the VBW \geq 3×BW.
- 6. Detector = power averaging (rms) or sample detector (when rms not available)
- 7. Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.
- 8. Sweep time = auto couple.
- 9. Do not use sweep triggering; allow sweep to "free run."
- 10. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

TR-EM-RF004 Page 21 of 53 Version 1.0 (2023/10/07)

Duty Cycle


Test Procedure

According to ANSI C63.10-2013 Section 11.6

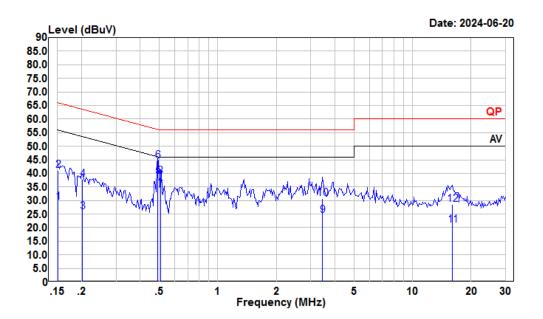
The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

Report No.: 2401T36013E-RF-00B

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW \geq RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T $\le 16.7 \,\mu s$.)

TR-EM-RF004 Page 22 of 53 Version 1.0 (2023/10/07)

TEST DATA AND RESULTS

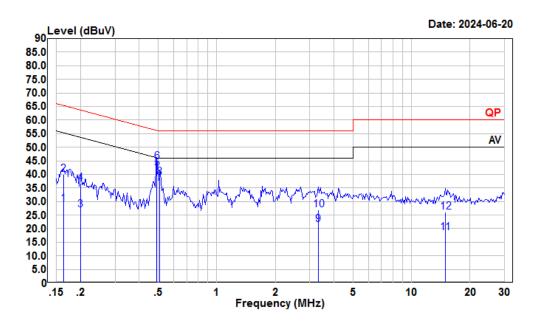

AC Line Conducted Emissions

Environmental Conditions

Temperature (°C)	26	Relative Humidity (%)	70				
ATM Pressure (kPa)	101	Test engineer	Macy.shi				
Test date	2024.6.20	2024.6.20					
EUT operation mode	Transmitting(Maximum	output power mode, 802	.11n, High channel)				

Report No.: 2401T36013E-RF-00B

TR-EM-RF004 Page 23 of 53 Version 1.0 (2023/10/07)


Condition: Line

Project : 2401T36013E-RF

tester : Macy.shi Note : 2.4G WIFI

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	8.47	29.50	10.90	10.13	55.91	-26.41	Average
2	0.15	20.09	41.12	10.90	10.13	65.91	-24.79	QP
3	0.20	4.85	25.74	10.80	10.09	53.54	-27.80	Average
4	0.20	16.92	37.81	10.80	10.09	63.54	-25.73	QP
5	0.49	18.18	38.83	10.51	10.14	46.14	-7.31	Average
6	0.49	23.96	44.61	10.51	10.14	56.14	-11.53	QP
7	0.51	12.99	33.63	10.50	10.14	46.00	-12.37	Average
8	0.51	18.27	38.91	10.50	10.14	56.00	-17.09	QP
9	3.45	4.00	24.55	10.36	10.19	46.00	-21.45	Average
10	3.45	10.30	30.85	10.36	10.19	56.00	-25.15	QP
11	16.05	0.19	21.07	10.67	10.21	50.00	-28.93	Average
12	16.05	7.76	28.64	10.67	10.21	60.00	-31.36	QP

TR-EM-RF004 Page 24 of 53 Version 1.0 (2023/10/07)

Condition: Neutral

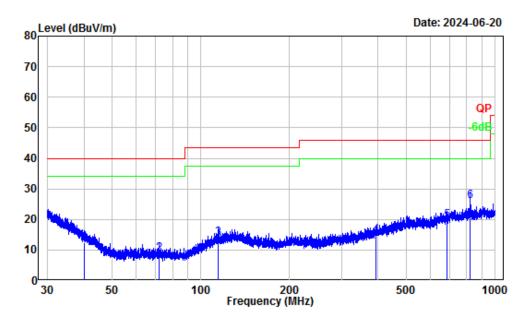
Project : 2401T36013E-RF

tester : Macy.shi Note : 2.4G WIFI

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.16	8.43	29.08	10.54	10.11	55.30	-26.22	Average
2	0.16	19.45	40.10	10.54	10.11	65.30	-25.20	QP
3	0.20	6.40	26.89	10.40	10.09	53.62	-26.73	Average
4	0.20	16.36	36.85	10.40	10.09	63.62	-26.77	QP
5	0.49	21.44	42.27	10.69	10.14	46.14	-3.87	Average
6	0.49	23.88	44.71	10.69	10.14	56.14	-11.43	QP
7	0.51	15.85	36.69	10.70	10.14	46.00	-9.31	Average
8	0.51	18.19	39.03	10.70	10.14	56.00	-16.97	QP
9	3.31	0.83	21.42	10.40	10.19	46.00	-24.58	Average
10	3.31	6.41	27.00	10.40	10.19	56.00	-29.00	QP
11	14.91	-2.64	18.38	10.80	10.22	50.00	-31.62	Average
12	14.91	5.09	26.11	10.80	10.22	60.00	-33.89	OP

TR-EM-RF004 Page 25 of 53 Version 1.0 (2023/10/07)

Spurious Emissions

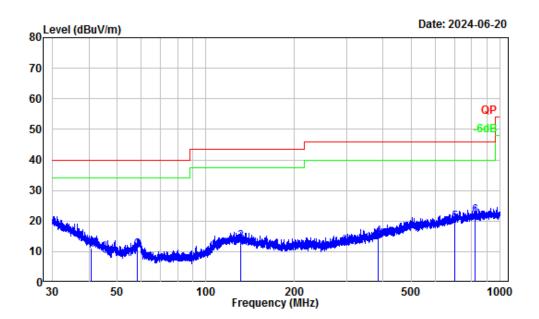

Environmental Conditions

Temperature (°C)	25-25.6	Relative Humidity (%)	50				
ATM Pressure (kPa):	101	Test engineer:	Anson Su&Dylan Yang				
Test date:	2024.6.20-2024.8.5						
EUT operation mode:		Below 1GHz: Transmitting (Maximum output power mode, 802.11n, High channel) Above 1GHz: Transmitting					
Note:	For 9kHz-30MHz, The below the limit was not		issions attenuated more than 20 dB				

Report No.: 2401T36013E-RF-00B

TR-EM-RF004 Page 26 of 53 Version 1.0 (2023/10/07)

Below 1GHz:


Report No.: 2401T36013E-RF-00B

Site : Chamber A Condition : 3m Horizontal Project Number: 2401T36013E-RF

Test Mode : 2.4G WIFI
Tester : Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	40.13	-11.60	23.92	12.32	40.00	-27.68	QP
2	72.15	-17.69	26.35	8.66	40.00	-31.34	QP
3	114.31	-12.77	26.72	13.95	43.50	-29.55	QP
4	392.10	-10.82	25.50	14.68	46.00	-31.32	QP
5	686.25	-6.32	26.00	19.68	46.00	-26.32	QP
6	823.87	-5.07	31.07	26.00	46.00	-20.00	QP

TR-EM-RF004 Page 27 of 53 Version 1.0 (2023/10/07)

Site : Chamber A Condition : 3m Vertical Project Number: 2401T36013E-RF

Test Mode : 2.4G WIFI
Tester : Anson Su

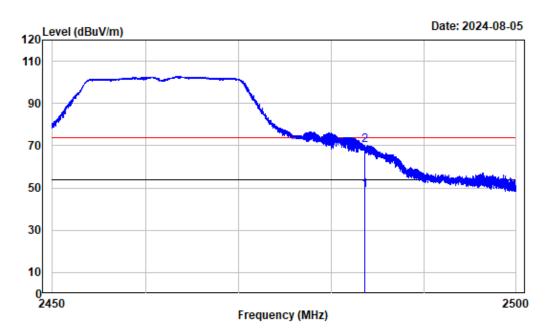
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.65	-13.38	24.51	11.13	40.00	-28.87	QP
2	58.54	-18.82	29.44	10.62	40.00	-29.38	QP
3	130.95	-12.63	25.88	13.25	43.50	-30.25	QP
4	383.43	-11.28	26.06	14.78	46.00	-31.22	QP
5	699.00	-6.57	26.33	19.76	46.00	-26.24	QP
6	823.87	-5.27	27.04	21.77	46.00	-24.23	QP

TR-EM-RF004 Page 28 of 53 Version 1.0 (2023/10/07)

Above 1GHz:

E	Rece	eiver	Dolon	Easts	Corrected	I ::4	M
Frequency (MHz)	Reading (dBμV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			802	2.11b			
			Low C	Channel			
2371.65	53.92	PK	Н	-2.93	50.99	74	-23.01
2371.65	39.97	AV	Н	-2.93	37.04	54	-16.96
2368.42	52.75	PK	V	-2.93	49.82	74	-24.18
2368.42	38.69	AV	V	-2.93	35.76	54	-18.24
4824	50.82	PK	Н	1.69	52.51	74	-21.49
4824	45.79	AV	Н	1.69	47.48	54	-6.52
4824	50.23	PK	V	1.69	51.92	74	-22.08
4824	45.62	AV	V	1.69	47.31	54	-6.69
			Middle	Channel	<u>.</u>		
4874	52.73	PK	Н	1.69	54.42	74	-19.58
4874	48.52	AV	Н	1.69	50.21	54	-3.79
4874	51.39	PK	V	1.69	53.08	74	-20.92
4874	46.33	AV	V	1.69	48.02	54	-5.98
			High (Channel		<u> </u>	
2486.72	56.01	PK	Н	-3.17	52.84	74	-21.16
2486.72	41.78	AV	Н	-3.17	38.61	54	-15.39
2499.93	54.86	PK	V	-3.2	51.66	74	-22.34
2499.93	40.47	AV	V	-3.2	37.27	54	-16.73
4924	53.42	PK	Н	1.79	55.21	74	-18.79
4924	49.09	AV	Н	1.79	50.88	54	-3.12
4924	51.48	PK	V	1.79	53.27	74	-20.73
4924	47.28	AV	V	1.79	49.07	54	-4.93
			802	2.11g			
				Channel			
2389.94	62.72	PK	Н	-2.93	59.79	74	-14.21
2389.94	46.59	AV	Н	-2.93	43.66	54	-10.34
2388.52	61.49	PK	V	-2.93	58.56	74	-15.44
2388.52	45.23	AV	V	-2.93	42.3	54	-11.7
4824	60.08	PK	H	1.69	61.77	74	-12.23
4824	45.67	AV	Н	1.69	47.36	54	-6.64
4824	59.24	PK	V	1.69	60.93	74	-13.07
4824	45.26	AV	V	1.69	46.95	54	-7.05
		***		Channel	10.50		,,,,,
4874	60.28	PK	Н	1.69	61.97	74	-12.03
4874	47.86	AV	H	1.69	49.55	54	-4.45
4874	59.75	PK	V	1.69	61.44	74	-12.56
4874	46.33	AV	V	1.69	48.02	54	-5.98

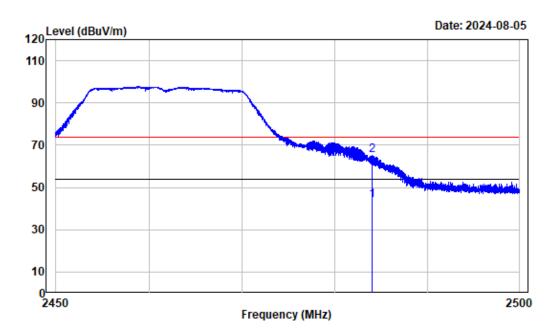
Area Compli	iance Laborato	ories Corp. (Sh	enzhen)		Report	No.: 2401T3	6013E-RF-0
			High (Channel			
2483.51	71.26	PK	Н	-3.1	68.16	74	-5.84
2483.51	53.41	AV	Н	-3.1	50.31	54	-3.69
2483.65	68.35	PK	V	-3.1	65.25	74	-8.75
2483.65	50.88	AV	V	-3.1	47.78	54	-6.22
4924	62.89	PK	Н	1.79	64.68	74	-9.32
4924	49.07	AV	Н	1.79	50.86	54	-3.14
4924	61.42	PK	V	1.79	63.21	74	-10.79
4924	48.23	AV	V	1.79	50.02	54	-3.98
,	,,		802.	11n20			
			Low C	Channel			
2389.94	73.24	PK	Н	-2.93	70.31	74	-3.69
2389.94	50.74	AV	Н	-2.93	47.81	54	-6.19
2388.29	72.14	PK	V	-2.93	69.21	74	-4.79
2388.29	49.35	AV	V	-2.93	46.42	54	-7.58
4824	62.77	PK	Н	1.69	64.46	74	-9.54
4824	48.32	AV	Н	1.69	50.01	54	-3.99
4824	61.35	PK	V	1.69	63.04	74	-10.96
4824	48.52	AV	V	1.69	50.21	54	-3.79
,	,,		Middle	Channel			
4874	62.2	PK	Н	1.69	63.89	74	-10.11
4874	47.81	AV	Н	1.69	49.5	54	-4.5
4874	61.31	PK	V	1.69	63	74	-11
4874	47.78	AV	V	1.69	49.47	54	-4.53
,	,,		High (Channel			
2483.62	73.23	PK	Н	-3.17	70.06	74	-3.94
2483.62	52.17	AV	Н	-3.17	49.00	54	-5.00
2483.99	68.26	PK	V	-3.17	65.09	74	-8.91
2483.99	47.28	AV	V	-3.17	44.11	54	-9.89
4924.00	64.34	PK	Н	1.79	66.13	74	-7.87
4924.00	49.19	AV	Н	1.79	50.98	54	-3.02
4924.00	59.01	PK	V	1.79	60.80	74	-13.20
4924.00	45.82	AV	V	1.79	47.61	54	-6.39


Note:

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude = Corrected Factor + Reading

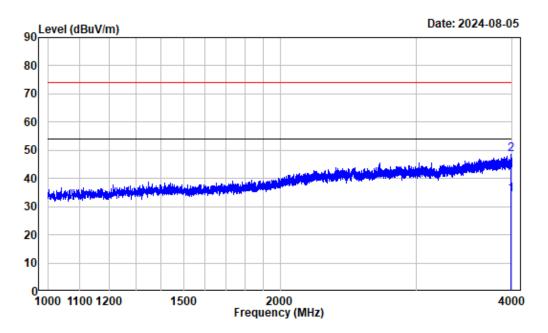
Margin = Corrected. Amplitude - Limit


The other spurious emission which is in the noise floor level was not recorded.

Condition : Horizontal Project No.: 2401T36013E-RF Tester : Dylan.Yang Note : 802.11N20_2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	2483.619	-3.17	52.17	49.00	54.00	-5.00	Average	
2	2483.619	-3.17	73.23	70.06	74.00	-3.94	Peak	

TR-EM-RF004 Page 31 of 53 Version 1.0 (2023/10/07)

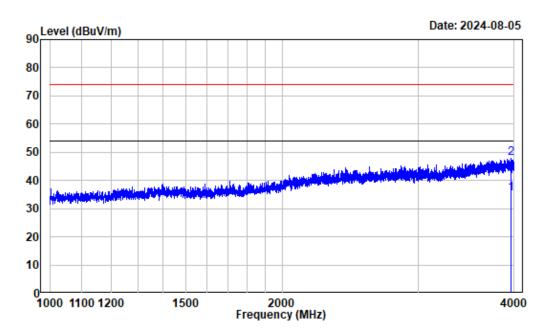


Condition : Vertical

Project No.: 2401T36013E-RF Tester : Dylan.Yang Note : 802.11N20_2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.988	-3.17	47.28	44.11	54.00	-9.89	Average
2	2483.988	-3.17	68.26	65.09	74.00	-8.91	peak

TR-EM-RF004 Page 32 of 53 Version 1.0 (2023/10/07)


Condition : Horizontal Project No.: 2401T36013E-RF

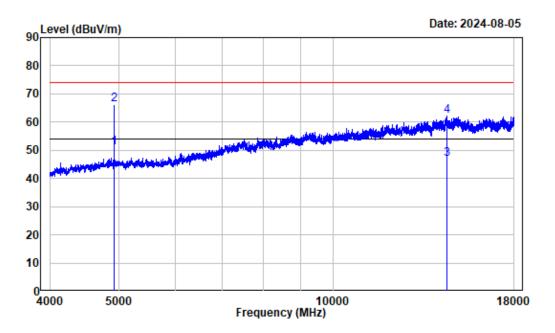
Tester : Dylan

Note : 802.11N20_2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	3986.500	-0.19	34.51	34.32	54.00	-19.68	Average	
2	3986.500	-0.19	48.66	48.47	74.00	-25.53	Peak	

TR-EM-RF004 Page 33 of 53 Version 1.0 (2023/10/07)

Condition : Vertical

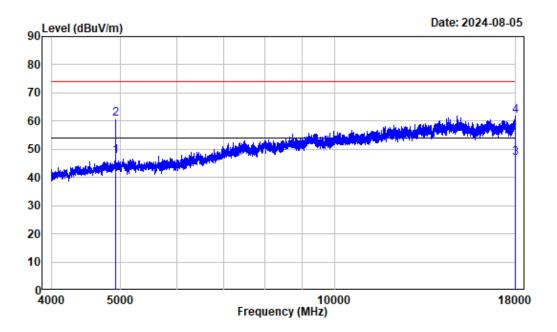

Project No.: 2401T36013E-RF

Tester : Dylan

Note : 802.11N20_2462

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	3965.500	-0.18	35.62	35.44	54.00	-18.56	Average
2	3965.500	-0.18	47.94	47.76	74.00	-26.24	Peak

TR-EM-RF004 Page 34 of 53 Version 1.0 (2023/10/07)


Condition : Horizontal Project No.: 2401T36013E-RF

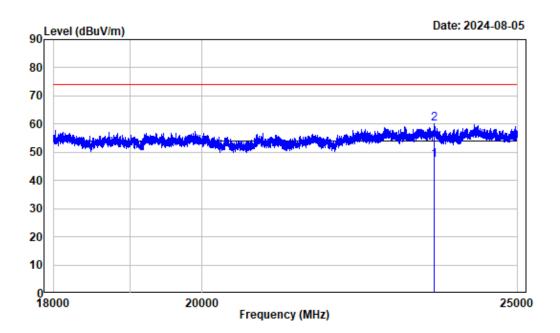
Tester : Dylan

Note : 802.11N20_2462

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4924.000	1.79	49.19	50.98	54.00	-3.02	Average
2	4924.000	1.79	64.34	66.13	74.00	-7.87	Peak
3	14466.750	17.39	29.35	46.74	54.00	-7.26	Average
	14466.750						_

TR-EM-RF004 Page 35 of 53 Version 1.0 (2023/10/07)

Condition : Vertical


Project No.: 2401T36013E-RF

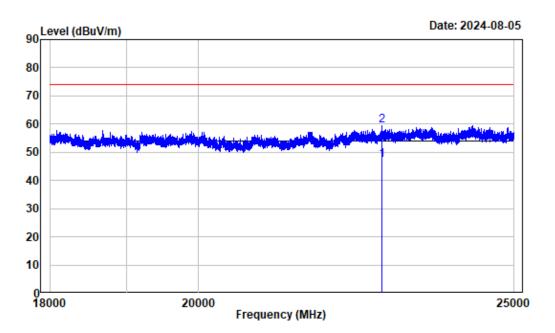
Tester : Dylan

Note : 802.11N20_2462

			Read		Limit	0ver		
	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	4924.000	1.79	45.82	47.61	54.00	-6.39	Average	
2	4924.000	1.79	59.01	60.80	74.00	-13.20	Peak	
3	17989.500	24.55	22.41	46.96	54.00	-7.04	Average	
	17989.500						_	

TR-EM-RF004 Page 36 of 53 Version 1.0 (2023/10/07)

Report No.: 2401T36013E-RF-00B


Condition : Horizontal Project No.: 2401T36013E-RF

Tester : Dylan

Note : 802.11N20_2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	23566.750	17.50	29.78	47.28	54.00	-6.72	Average	
2	23566.750	17.50	42.52	60.02	74.00	-13.98	peak	

TR-EM-RF004 Page 37 of 53 Version 1.0 (2023/10/07)

Report No.: 2401T36013E-RF-00B

Condition : Vertical

Project No.: 2401T36013E-RF

Tester : Dylan

Note : 802.11N20_2462

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	22770.500	17.22	30.11	47.33	54.00	-6.67	Average	
2	22770.500	17.22	42.28	59.50	74.00	-14.50	peak	

TR-EM-RF004 Page 38 of 53 Version 1.0 (2023/10/07)

6dB Emission Bandwidth

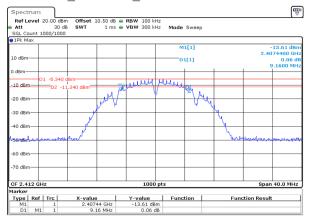
Test Information:

Serial No.:	2M4N-9	Test Date:	2024/06/21
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

Environmental Conditions:

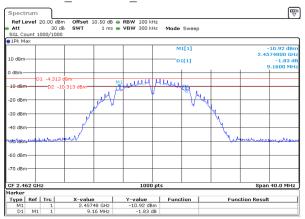
2.4G

Mode	Value (MHz)	Limit (MHz)	Result
b_2412MHz_Chain 0	9.160	0.5	Pass
b_2437MHz_Chain 0	9.160	0.5	Pass
b_2462MHz_Chain 0	9.160	0.5	Pass
g_2412MHz_Chain 0	16.400	0.5	Pass
g_2437MHz_Chain 0	16.400	0.5	Pass
g_2462MHz_Chain 0	16.440	0.5	Pass
n20_2412MHz_Chain 0	17.680	0.5	Pass
n20_2437MHz_Chain 0	17.640	0.5	Pass
n20_2462MHz_Chain 0	17.680	0.5	Pass

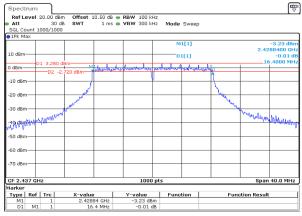

TR-EM-RF004

Page 39 of 53

Version 1.0 (2023/10/07)

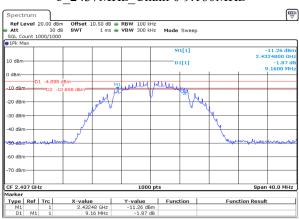

Report No.: 2401T36013E-RF-00B

b 2412MHz Chain 0 9.160MHz

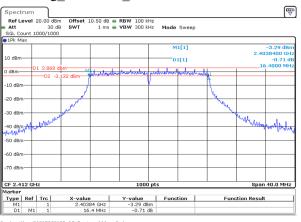

Date: 21.JUN.2024 00:41:28

b 2462MHz Chain 0 9.160MHz

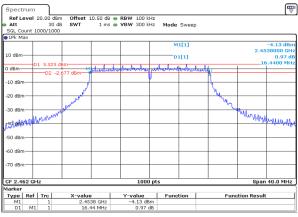
Date: 21.JUN.2024 00:42:42


g_2437MHz Chain 0 16.400MHz

Date: 21.JUN.2024 00:44:03

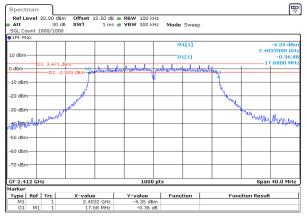

b 2437MHz Chain 0 9.160MHz

Report No.: 2401T36013E-RF-00B

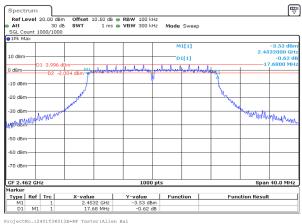

Date: 21.JUN.2024 00:42:04

g_2412MHz_Chain 0 16.400MHz

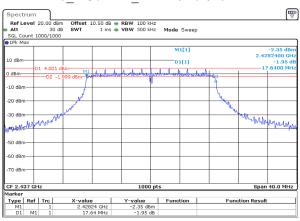
ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 21.JUN.2024 00:43:26


g_2462MHz Chain 0 16.440MHz

Date: 21.JUN.2024 00:44:44


TR-EM-RF004 Version 1.0 (2023/10/07) Page 40 of 53

n20_2412MHz_Chain 0 17.680MHz


ProjectNo.:2401T36013E-RF Tester:Allen Bai

$n20_2462 MHz_Chain~0~17.680 MHz$

n20_2437MHz_Chain 0 17.640MHz

Report No.: 2401T36013E-RF-00B

ProjectNo.:2401T36013E-RF Tester:Allen Bai

Maximum Conducted Output Power

Test Information:

Serial No.:	2M4N-9	Test Date:	2024/06/27
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

Report No.: 2401T36013E-RF-00B

Environmental Conditions:

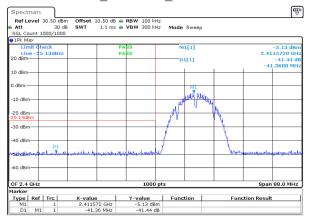
Temperature: (°C):	Relative Humidity: 48	ATM Pressure: (kPa)	101
--------------------	--------------------------	---------------------	-----

2.4G

Mode	Peak Output Power (dBm)	Average Output Power (dBm)	Limit (dBm)	Result
b_2412MHz_Chain 0	6.10	2.95	30.00	Pass
b_2437MHz_Chain 0	6.95	3.76	30.00	Pass
b_2462MHz_Chain 0	7.35	4.11	30.00	Pass
g_2412MHz_Chain 0	21.48	14.25	30.00	Pass
g_2437MHz_Chain 0	21.75	14.56	30.00	Pass
g_2462MHz_Chain 0	22.09	14.83	30.00	Pass
n20_2412MHz_Chain 0	21.94	14.72	30.00	Pass
n20_2437MHz_Chain 0	22.35	15.10	30.00	Pass
n20_2462MHz_Chain 0	22.65	15.47	30.00	Pass

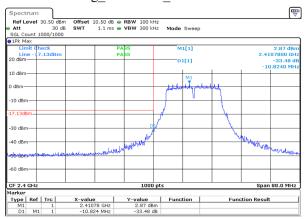
TR-EM-RF004 Page 42 of 53 Version 1.0 (2023/10/07)

100 kHz Bandwidth of Frequency Band Edge

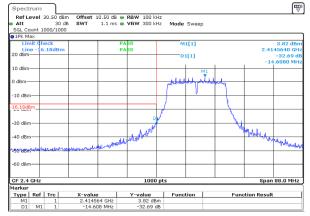

Test Information:

Serial No.:	2M4N-9	Test Date:	2024/06/21
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

Report No.: 2401T36013E-RF-00B

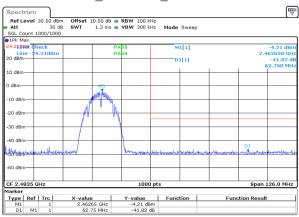

Environmental Conditions:

b 2412MHz Chain 0

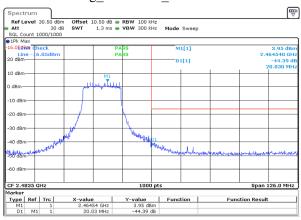

ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 21.JUN.2024 00:21:22

g 2412MHz Chain 0

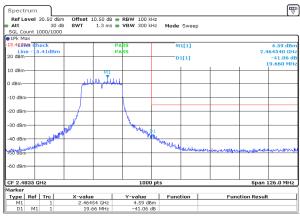
Date: 21.JUN.2024 00:22:35


n20 2412MHz Chain 0

Date: 21.JUN.2024 00:23:37


b 2462MHz Chain 0

Report No.: 2401T36013E-RF-00B


Date: 21.JUN.2024 00:22:03

g 2462MHz Chain 0

Date: 21.JUN.2024 00:23:02

n20 2462MHz Chain 0

Date: 21.JUN.2024 00:24:05

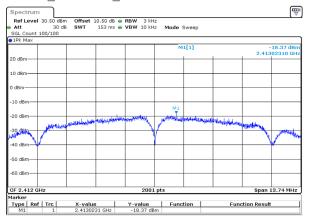
TR-EM-RF004 Version 1.0 (2023/10/07) Page 44 of 53

Power Spectral Density

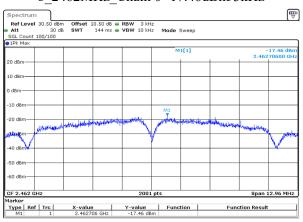
Test Information:

Serial No.:	2M4N-9	Test Date:	2024/06/21
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	Pass

Environmental Conditions:

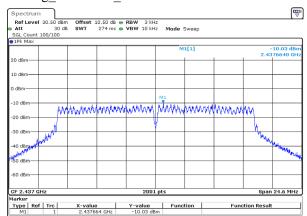

2.4G

Mode	Value (dBm/3kHz)	Limit (dBm/3kHz)	Result
b_2412MHz_Chain 0	-18.37	8.00	Pass
b_2437MHz_Chain 0	-18.62	8.00	Pass
b_2462MHz_Chain 0	-17.46	8.00	Pass
g_2412MHz_Chain 0	-9.81	8.00	Pass
g_2437MHz_Chain 0	-10.03	8.00	Pass
g_2462MHz_Chain 0	-9.80	8.00	Pass
n20_2412MHz_Chain 0	-9.58	8.00	Pass
n20_2437MHz_Chain 0	-10.00	8.00	Pass
n20_2462MHz_Chain 0	-9.95	8.00	Pass


TR-EM-RF004

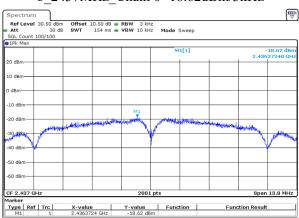
Report No.: 2401T36013E-RF-00B

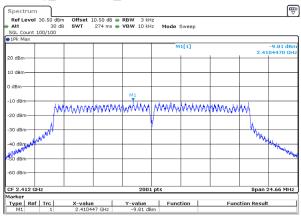
b_2412MHz_Chain 0 -18.37dBm/3kHz



b 2462MHz Chain 0 -17.46dBm/3kHz

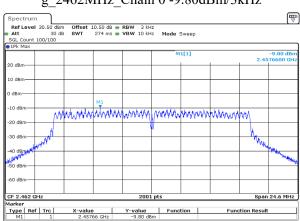
Date: 21.JUN.2024 00:28:47


g_2437MHz_Chain 0 -10.03dBm/3kHz


ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 21.JUN.2024 00:31:06

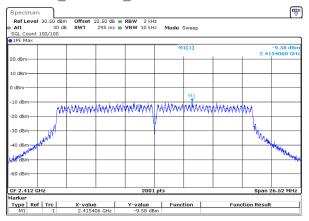
b_2437MHz_Chain 0 -18.62dBm/3kHz

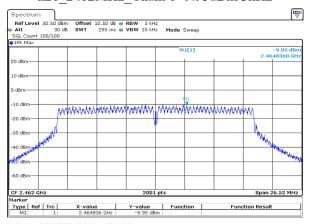
Report No.: 2401T36013E-RF-00B



g_2412MHz_Chain 0 -9.81dBm/3kHz

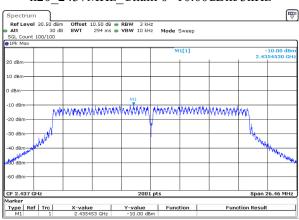
ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 21.JUN.2024 00:30:16


g_2462MHz_Chain 0 -9.80dBm/3kHz


ProjectNo.:2401T36013E-RF Tester:Allen Bai

Date: 21.JUN.2024 00:31:56

n20_2412MHz_Chain 0 -9.58dBm/3kHz


$n20_2462MHz_Chain\ 0\ -9.95dBm/3kHz$

ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 21.JUN.2024 00:34:36

$n20_2437MHz_Chain\ 0\ -10.00dBm/3kHz$

Report No.: 2401T36013E-RF-00B

ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 21.JUN.2024 00:33:44

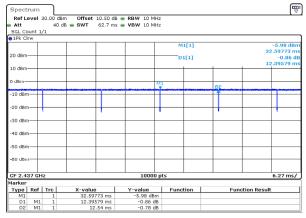
Duty Cycle

Test Information:

Serial No.:	2M4N-9	Test Date:	2024/06/25
Test Site:	RF	Test Mode:	Transmitting
Tester:	Allen Bai	Test Result:	/

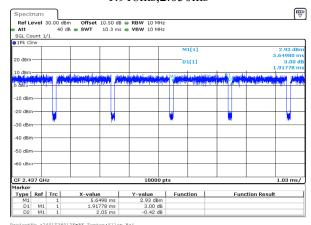
Environmental Conditions:

Temperature: (°C):	27	Relative Humidity: (%)	48	ATM Pressure: (kPa)	101
--------------------	----	------------------------------	----	------------------------	-----


2.4G

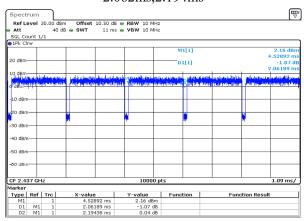
Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/T (Hz)	VBW Setting (kHz)
b_2437MHz_Chain 0	12.396	12.540	98.85	/	/	0.010
g_2437MHz_Chain 0	2.062	2.194	93.98	0.27	485.0	0.500
n20_2437MHz_Chain 0	1.918	2.050	93.56	0.29	521.0	1.000

Duty Cycle = Ton/(Ton+Toff)*100%


Report No.: 2401T36013E-RF-00B

b_2437MHz_Chain 0 12.396ms,12.540ms

ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 25.JUN.2024 21:16:18


n20_2437MHz_Chain 0 1.918ms,2.050ms

ProjectNo.:2401T36013E-RF Tester:Allen Bai Date: 25.JUN.2024 21:17:49

g_2437MHz_Chain 0 2.062ms,2.194ms

Report No.: 2401T36013E-RF-00B

ProjectNo.:2401T36013E-RF Tester:Allen Bai

TR-EM-RF004 Page 49 of 53 Version 1.0 (2023/10/07)

RF EXPOSURE EVALUATION

FCC §15.247 (i) & §1.1307 (b) (3) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: 2401T36013E-RF-00B

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(3)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation				
RF Source frequency (MHz)	Threshold ERP (watts)			
0.3-1.34	1,920 R ² .			
1.34-30	$3,450 R^2/f^2$.			
30-300	3.83 R ² .			
300-1,500	0.0128 R ² f.			
1,500-100,000	19.2R ² .			

Ris the minimum separation distance in meters

f = frequency in MHz

Result

Mode	Frequency (MHz)	Tune up conducted	Antenn	a Gain#	EF	RP	Evaluation Distance	ERP Limit
	(11112)	power [#] (dBm)	(dBi)	(dBd)	(dBm)	(W)	(m)	(W)
2.4G WiFi	2412~2462	23	2.54	0.39	23.39	0.218	0.2	0.768

Note: The tune up conducted power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

TR-EM-RF004 Page 50 of 53 Version 1.0 (2023/10/07)

ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than t hat furnished by the responsible party shall be used with the device. The use of a permanently attached ant enna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient t o comply with the provisions of this Section. The manufacturer may design the unit so that a broken anten na can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: 2401T36013E-RF-00B

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached, the antenna gain is 2.54dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant

TR-EM-RF004 Page 51 of 53 Version 1.0 (2023/10/07)

Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2401T36013E-RF-00B
EUT DUOTOCD A DUC	
EUT PHOTOGRAPHS	
Please refer to the attachment 2401T36013E-RF External ph	oto and 2401T36013E-RF Internal photo.