Radio Test Report

Report No.:CTA231102005W01

Issued for

SHENZHEN REOSTUDIO TECHNOLOGY CO.,LTD

Room 213-214, Internet of Things Demonstration Park, No. 6 Minhuan Road, Longhua District, Shenzhen, China

Product Name:

NuPhy® CTATESTING **Brand Name:**

Air75 V2 Model Name:

N/A Series Model(s):

2A542AIR75PRO FCC ID:

FCC Part15.247 Test Standards:

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from CTA, all test data presented in this report is only applicable to presented test sample.

Page 2 of 65 Report No.: CTA231102005W01

	TEST REPORT	
Applicant's Name	SHENZHEN REOSTUDIO TECHNOLOGY CO.,LTD	
Address	Room 213-214, Internet of Things Demonstration Park, No. 6 Minhuan Road, Longhua District, Shenzhen, China	
Manufacturer's Name	SHENZHEN ARBITER TECHNOLOGY CO.,LTD	
Address:	Floor 2, 3 and 4, Bldg. A, Meisheng Industrial Park, Chongqing Ro Fuhai St., Baoan Dist., Shenzhen, Guangdong, China	j.,
Product Description	Tanar da, Badan Bida, GridiEridin, Guarigading, Grimia	
Product Name		
Brand Name:	NuPhy® . Air75 V2	
Model Name	. Air75 V2	
Series Model(s)	N/A FCC Part 15.247	
Test Standards	FCC Part 15.247	
Test Procedure:	ANSI C63.10-2013	
test (EUT) is in compliance with identified in the report. This report shall not be reproduct	s been tested by CTA, the test results show that the equipment und the FCC requirements. And it is applicable only to the tested sample ed except in full, without the written approval of CTA, this document A, personal only, and shall be noted in the revision of the document	le nt
Date of Test	CTA CTA	
Date of receipt of test item		
Date (s) of performance of tests.		
Date of Issue		
Test Result	neer : Zoey Cow	
Testing Engi	neer: Zoey Con	
	(Zoey Cao)	
Technical Ma	anager: Amy Wen	
	(Amy Wen)	
Authorized S	ignatory: Evic Wong	

(Eric Wang)

Table of Contents **Page** 1. SUMMARY OF TEST RESULTS 6 1.1 TEST FACTORY 7 1.2 MEASUREMENT UNCERTAINTY 2. GENERAL INFORMATION 8 2.1 GENERAL DESCRIPTION OF THE EUT 8 2.2 DESCRIPTION OF THE TEST MODES 10 2.3 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 10 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 12 CTATE13 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS 3.1 CONDUCTED EMISSION MEASUREMENT 3.2 RADIATED EMISSION MEASUREMENT 19 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION 30 4.1 LIMIT 30 **4.2 TEST PROCEDURE** 30 4.3 TEST SETUP 31 4.4 EUT OPERATION CONDITIONS 31 4.5 TEST RESULTS 31 5. NUMBER OF HOPPING CHANNEL 32 32 5.1 LIMIT 5.2 TEST PROCEDURE 32 5.3 TEST SETUP 32 5.4 EUT OPERATION CONDITIONS 32 5.5 TEST RESULTS 32 6. BANDWIDTH TEST 33 6.1 LIMIT 33 **6.2 TEST PROCEDURE** 33 6.3 DEVIATION FROM STANDARD 33 6.4 TEST SETUP 33 6.5 EUT OPERATION CONDITIONS 33 6.6 TEST RESULTS 33 7. PEAK OUTPUT POWER TEST 34 7.1 LIMIT 34

FCC PART 15.247, SUBPART C

65

Table of Contents **Page** 7.2 TEST PROCEDURE 34 7.3 TEST SETUP 34 7.4 EUT OPERATION CONDITIONS 34 7.5 TEST RESULTS 34 **8. ANTENNA REQUIREMENT** 35 8.1 STANDARD REQUIREMENT 35 8.2 EUT ANTENNA 35 9. AVERAGE TIME OF OCCUPANCY 36 9.1 LIMIT 36 CTATE 36 9.2 TEST PROCEDURE 9.3 TEST SETUP 36 9.4 EUT OPERATION CONDITIONS 36 9.5 TEST RESULTS 36 10. HOPPING CHANNEL SEPARATION MEASUREMEN 37 10.1 LIMIT 37 10.2 TEST PROCEDURE 37 10.3 TEST SETUP 37 10.4 EUT OPERATION CONDITIONS 37 10.5 TEST RESULTS 37 **APPENDIX 1-TEST DATA** 38 1. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER 38 2. MAXIMUM PEAK CONDUCTED OUTPUT POWER 41 3. -20DB BANDWIDTH 44 4. CARRIER FREQUENCIES SEPARATION 47 CTATESO 5. NUMBER OF HOPPING CHANNEL 6. BAND EDGE 7. BAND EDGE(HOPPING) 55 8. CONDUCTED RF SPURIOUS EMISSION 58 9. DWELL TIME 62

APPENDIX 2-PHOTOS OF TEST SETUP

Revision History

		Page 5 of 65	Rep	oort No.: CTA231102005W0
		Revision Hi	<u>story</u>	
Rev.	Issue Date	Report No.	Effect Page	Contents
00	03 Nov. 2023	CTA231102005W01	ALL	Initial Issue
			CONT. C	, , ,

CTATES

1. SUMMARY OF TEST RESULTS

	FCC Part 15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(a)(1)&(b)(1)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	TEST
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	CIP.
15.247(a)(1)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(1)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.205	Restricted bands of operation	PASS	3 <u>-</u> -
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

CTATEST NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- CTA TESTING (2) All tests are according to ANSI C63.10-2013.

Page 7 of 65 Report No.: CTA231102005W01

1.1 TEST FACTORY

Shenzhen CTA Testing Technology Co., Ltd.
Room 106 Building 4 No.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an CTATES

District, Shenzhen, China

FCC test Firm Registration Number: 517856

IC test Firm Registration Number: 27890

Сегипсаte No. A2LA Certificate No.: 6534.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence

of approximately 95 %

	Test	Range	Measurement Uncertainty	
	Radiated Emission	30~1000MHz	4.06 dB	
	Radiated Emission	1~18GHz	5.14 dB	
	Radiated Emission	18-40GHz	5.38 dB	
	Conducted Disturbance	0.15~30MHz	2.14 dB	
CIP	Output Peak power	30MHz~18GHz	0.55 dB	
CTA	Power spectral density	/	0.57 dB	
50	Spectrum bandwidth	/	1.1%	
<u> </u>	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	
<u>-</u>	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	CTAT
NG	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	
NG	CTATESTING	A CTATESTING		

2. GENERAL INFORMATION

Product Name	Keyboard	TESTING		
Brand Name	NuPhy ®			
Model Name	Air75 V2			
Series Model(s)	N/A			
Model Difference	N/A			
	The EUT is a Keyboard			
	Operation Frequency:	2402-2480MHz		
Product Description	Modulation Type:	GFSK		
	Number of Channel:	40CH		
	Antenna Type:	РСВ		
	Antenna Gain (dBi): 0 dBi		
Channel List	Please refer to the	Note 3.	>	
Rating	Input: DC 5V	TATESI		
Battery		Rated Voltage:3.8V Charge Limit Voltage:4.35V		
Hardware version number	F2 Pro-BT926-B-V	1.0		
Software version number	0xdf8f9e5b			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. <u>1E</u> 9	ATESTING		Page 9 of	65	Report	No.: CTA231	102005W01
CIP			Cha	nnel List			
Channe	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480
3. Table fo	r Filed Antenn	а		TATE	SI		
	.	Mo	odel	C /		O : (ID:)	NOTE

3. Table for Filed Antenna

а	ble for Filed Antenna								
	Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE		
	1	NuPhy ®	Air75 V2	РСВ	N/A	0 dBi	2.4G ANT		

Note:. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer. CTA TESTING

Page 10 of 65 Report No.: CTA231102005W01

2.2 DESCRIPTION OF THE TEST MODES

Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX CH00(2402MHz)	GFSK
Mode 2	TX CH19(2440MHz)	GFSK
Mode 3	TX CH39(2480MHz)	GFSK
Mode 4	Hopping	GFSK

Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V /60Hz is shown in the report.
- (3) The battery is fully-charged during the radited and RF conducted test.

AC Conducted Emission

Test Case					
AC Conducted Emission	Mode 5: Keeping TX				
TATES					
$^{\prime}C_{I,I}$					

2.3 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
2.4G	2.4G	GFSK	0	3	nrfconnect-setup-4.2.0-x64
	CTA'		CTA CTA	TESTING	CTATESTING

Page 11 of 65 Report No.: CTA231102005W01

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiation Test Set C-1 E-1 Notebook

Conduction Test Set AC Plug E-1 Adapter C-2 E-2 Notebook EUT

CTA TESTING

Report No.: CTA231102005W01 Page 12 of 65

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

			<u> </u>		
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
				A CONTRACTOR OF THE PARTY OF TH	

Support units

						A Committee of the Comm
CTATEST			ING	Support units		
	Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
		Notebook Adapter	LENOVO	ADLX45DLC3A	N/A	N/A
		Notebook	LENOVO	Think Pad E470	N/A	N/A
		USB Cable	N/A	N/A	150cm	NO

Note:

(1) For detachable type I/O cable should be specified the length in cm in Length column.

CTA TESTING (2) "YES" is means "with core": "NO" is means "without core".

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01	
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01	
EMI Test Receive	er R&S	ESPI	CTA-307	2023/08/02	2024/08/01	
EMI Test Receive	er R&S	ESCI	CTA-306	2023/08/02	2024/08/01	
Spectrum Analyz	er Agilent	N9020A	CTA-301	2023/08/02	2024/08/01	
Spectrum Analyza	er R&S	FSP	CTA-337	2023/08/02	2024/08/01	
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01	
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01	
WIDEBAND RADIO COMMUNICATION N TESTER	O CMW500	R&S	CTA-302	2023/08/02	2024/08/01	
Temperature and humidity meter	L COMO	ZG-7020	CTA-326	2023/08/02	2024/08/01	
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16	F
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12	
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16	l
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01	
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01	
Directional couple	er NARDA	4226-10	CTA-303	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01	
High-Pass Filter	r XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01	
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01	
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01	
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01	P

			Page 14 of 65	Report	No.: CTA23110	2005W01	
	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	SN/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	ATES
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
CTATES	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
		CTATES		TESTING			
				1			

GTA CTATESTING

Page 15 of 65 Report No.: CTA231102005W01

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

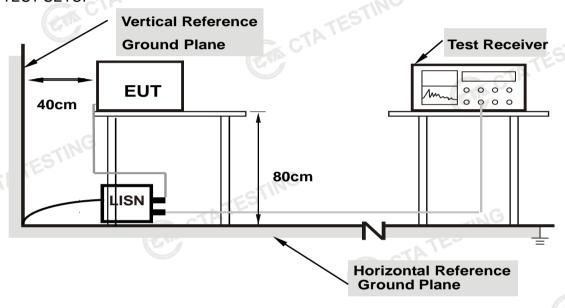
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

		Conducted Emissionlimit (dBuV)			
	FREQUENCY (MHz)	Quasi-peak	Average		
ESTI	0.15 -0.5	66 - 56 *	56 - 46 *		
CTATL	0.50 -5.0	56.00	46.00		
	5.0 -30.0	60.00	50.00		

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	_G 10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

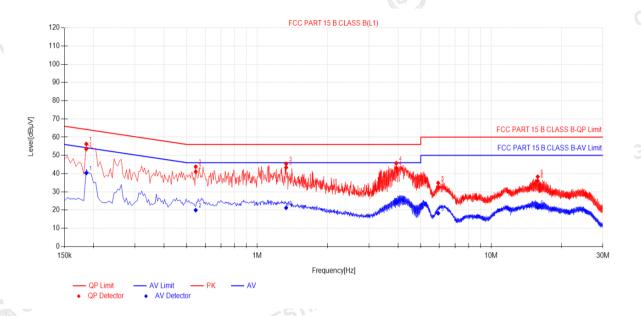
Page 16 of 65 Report No.: CTA231102005W01

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

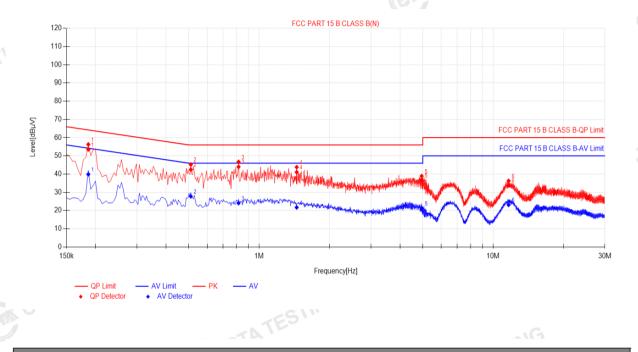

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

Temperature:	26.2(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	LESTING
Test Mode:	Mode 5	CTA	


Fina	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.186	10.03	43.48	53.51	64.21	10.70	30.30	40.33	54.21	13.88	PASS
2	0.546	10.03	31.01	41.04	56.00	14.96	9.91	19.94	46.00	26.06	PASS
3	1.329	9.90	33.46	43.36	56.00	12.64	11.32	21.22	46.00	24.78	PASS
4	3.93	9.92	33.12	43.04	56.00	12.96	14.12	24.04	46.00	21.96	PASS
5	5.937	10.13	22.45	32.58	60.00	27.42	8.11	18.24	50.00	31.76	PASS
6	15.8055	10.33	25.61	35.94	60.00	24.06	11.07	21.40	50.00	28.60	PASS

Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 18 of 65

	G Page 18 of	65 Report No	o.: CTA231102005W01
Temperature:	26.2(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	NTING
Test Mode:	Mode 5	C CTAT	

	Final Data List											
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
	1	0.186	10.01	43.52	53.53	64.21	10.68	29.90	39.91	54.21	14.30	PASS
	2	0.51	10.02	32.48	42.50	56.00	13.50	17.76	27.78	46.00	18.22	PASS
	3	0.816	10.14	33.84	43.98	56.00	12.02	13.94	24.08	46.00	21.92	PASS
ſ	4	1.446	10.14	30.93	41.07	56.00	14.93	11.58	21.72	46.00	24.28	PASS
ſ	5	4.947	10.08	26.50	36.58	56.00	19.42	11.05	21.13	46.00	24.87	PASS
	6	11.6385	10.41	23.32	33.73	60.00	26.27	12.74	23.15	50.00	26.85	PASS

Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Page 19 of 65 Report No.: CTA231102005W01

3.2 RADIATED EMISSION MEASUREMENT

3.2.1RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Field Strength	Measurement Distance
(micorvolts/meter)	(meters)
2400/F(KHz)	300
24000/F(KHz)	30
30	30
100	3
150	3
200	3 CTP
500	3
	(micorvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

	(dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Page 20 of 65

Report No.: CTA231102005W01

For Radiated Emission

and the same of th	Spectrum Parameter	Setting	
22300	Attenuation	Auto	
	Detector	Peak/QP/AV	
	Start Frequency	9 KHz/150KHz(Peak/QP/AV)	
	Stop Frequency	150KHz/30MHz(Peak/QP/AV)	(2.110
	16	200Hz (From 9kHz to 0.15MHz)/	CIA
EST	RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);	TO WASHINGTON
CTATEST	band)	200Hz (From 9kHz to 0.15MHz)/	
	-ATES!	9KHz (From 0.15MHz to 30MHz)	

Spectrum Parameter	Setting				
Attenuation	Auto				
Detector	Peak/QP				
Start Frequency	30 MHz(Peak/QP)				
Stop Frequency	1000 MHz (Peak/QP)				
RB / VB (emission in restricted band)	120 KHz / 300 KHz				

	Spectrum Parameter	Setting
	Attenuation	Auto
	Detector	Peak/AV
	Start Frequency	1000 MHz(Peak/AV)
	Stop Frequency	10th carrier hamonic(Peak/AV)
CTATEST	RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
CLY,	band)	1 MHz/1/T MHz(AVG)
	or Postricted band	

For Restricted band

. Critecticted band					
Spectrum Parameter	Setting				
Detector	Peak/AV				
Start/Stan Fraguenay	Lower Band Edge: 2310 to 2430 MHz				
Start/Stop Frequency	Upper Band Edge: 2445 to 2500 MHz				
DD /VD	1 MHz / 3 MHz(Peak)				
RB / VB	1 MHz/1/T MHz(AVG)				
CTATESTING	ATESTING				

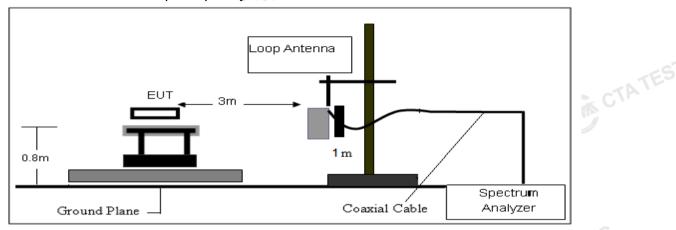
CTA TESTING

Page 21 of 65 Report No.: CTA231102005W01

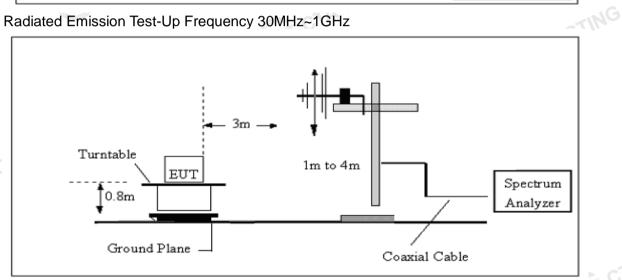
Receiver Parameter	Setting	
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP	
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	110

3.2.2 TEST PROCEDURE

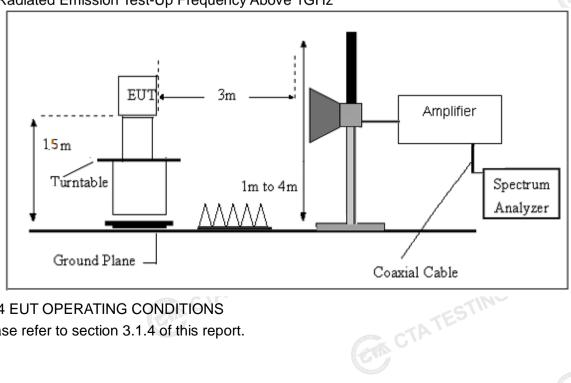
- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

TING


Report No.: CTA231102005W01 Page 22 of 65

3.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

Page 23 of 65 Report No.: CTA231102005W01

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic CTATEST CTATEST equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example								
Frequency	FS	RA	AF	CL	AG	Factor		
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		
300	40	58.1	12.2	1.6	31.9	-18.1		
Factor=AF+CL-AG								

Page 24 of 65 Report No.: CTA231102005W01

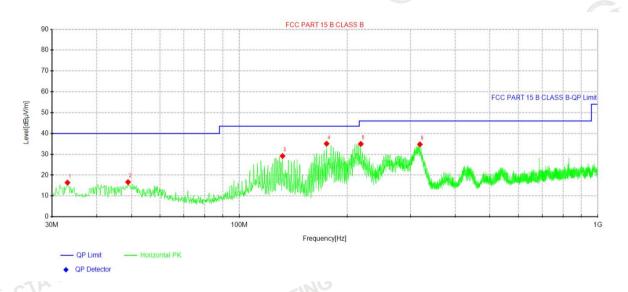
3.2.6 TEST RESULT

9KHz-30MHz

3.2.6 TEST RES	ULT		
9KHz-30MHz		TESTI	
Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.8V	Polarization:	
Test Mode:	TX Mode		CAN

	rest wode.	1 × IVIOGE				Carl C
-61	ING					The state of the s
CTATES	Freq.	Reading	Limit	Margin	State	Test
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Result
	C			-ESTING		PASS
			CTP		-	PASS

Note:

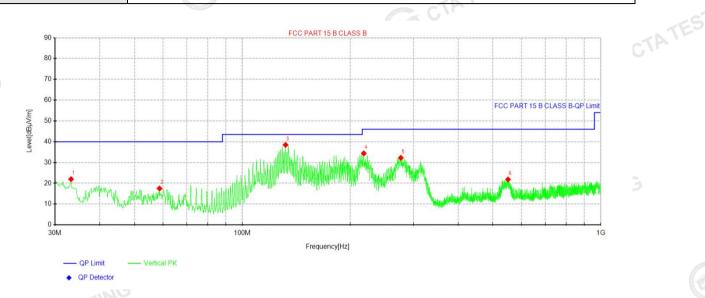

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor. CTATES CTATESTING

(30MHz - 1000MHz)

Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.8V	Phase:	Horizontal
Test Mode:	Mode 1/2/3 (Mode 2worst mode)	CTA	


Suspe	Suspected Data List										
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	33.1525	34.58	16.39	-18.19	40.00	23.61	100	267	Horizontal		
2	48.915	32.80	16.66	-16.14	40.00	23.34	100	359	Horizontal		
3	131.971	50.57	29.16	-21.41	43.50	14.34	100	299	Horizontal		
4	175.136	55.86	35.08	-20.78	43.50	8.42	100	75	Horizontal		
5	218.18	53.82	34.96	-18.86	46.00	11.04	100	86	Horizontal		
6	318.938	51.69	34.76	-16.93	46.00	11.24	100	86	Horizontal		

CTATESTING Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB) CTATESTING
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 26 of 65

		Page 26 of	65 Report	No.: CTA231102005W01				
Co. Lie	Temperature:	23.1(C)	Relative Humidity:	60%RH				
	Test Voltage:	DC 3.8V	Phase:	Vertical				
	Test Mode:	Mode 1/2/3 (Mode 2 worst mode)						

Suspe	Suspected Data List										
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalasita		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	33.2738	40.15	21.99	-18.16	40.00	18.01	100	241	Vertical		
2	58.7362	35.44	17.50	-17.94	40.00	22.50	100	101	Vertical		
3	131.971	59.87	38.46	-21.41	43.50	5.04	100	253	Vertical		
4	218.18	53.27	34.41	-18.86	46.00	11.59	100	27	Vertical		
5	276.743	49.96	32.26	-17.70	46.00	13.74	100	123	Vertical		
6	550.89	35.50	21.85	-13.65	46.00	24.15	100	263	Vertical		

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- CTATESTING 3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 27 of 65

Report No.: CTA231102005W01

For 1GHz to 25GHz

GFSK (above 1GHz)

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency	Emission		Limit Margin		Raw	Antenna	Cable	Pre-amplif	Correction
(MHz)	Le	vel		(dB)	Value	Factor	Factor	ier	Factor
(1711 12)	(dBuV/m)		(abav/iii)	(ub)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4804	60.59	PK	74	13.41	64.86	32.33	5.12	41.72	-4.27
4804	43.38	ΑV	54	10.62	47.65	32.33	5.12	41.72	-4.27
7206	52.08	PK	74	21.92	52.60	36.6	6.49	43.61	-0.52
7206	41.08	AV	54	12.92	41.60	36.6	6.49	43.61	-0.52

	Frequency(MHz):			24	02	Pola	arity:		VERTICAL	re-amplifi Correction er Factor (dR) (dR/m) 41.72 -4.27 41.72 -4.27	
Fr	Frequency	Emis	sion	Limit	Margin	Raw	Antenna	Cable	Pre-amplifi	Correction	
(MHz)	Lev	vel	(dBuV/m)	(dB)	Value	Factor	Factor	er	Factor		
	(1411 12)	(dRu)	V/m)	(aba v/iii)	(ab)	(dRul/)		(AR)	(dR)	(dR/m)	
	4804	61.85	PK	74	12.15	66.12	32.33	5.12	41.72	-4.27	
	4804	43.59	AV	54	10.41	47.86	32.33	5.12	41.72	-4.27	
	7206	51.01	PK	74	22.99	51.53	36.6	6.49	43.61	-0.52	
	7206	41.36	AV	54	12.64	41.88	36.6	6.49	43.61	-0.52	

Frequency(MHz):			24	40	Pola	arity:	HORIZONTAL		
Frequency	Emis	sion	Limit	Margin	Raw	Antenna	Cable	Pre-amplif	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	ier	Factor
()	(dRu	\//m\	(3.2 3. 17111)	(%-)	(dRuV)	(dRuV) (dR/m)	(dR)	(dR)	(dR/m)
4880	60.42	PK	74	13.58	64.30	32.6	5.34	41.82	-3.88
4880	43.02	AV	54	10.98	46.90	32.6	5.34	41.82	-3.88
7320	51.09	PK	74	22.91	51.20	36.8	6.81	43.72	-0.11
7320	41.07	AV	54	12.93	41.18	36.8	6.81	43.72	-0.11

Frequency(MHz):			24	40	Pola	arity:		VERTICAL			
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-amplif	Correction		
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	ier	Factor		
(1711 12)	(dBu	V/m)	(abav/iii)	(GD)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4880	60.64	PK	74	13.36	64.52	32.6	5.34	41.82	-3.88		
4880	43.41	AV	54	10.59	47.29	32.6	5.34	41.82	-3.88		
7320	51.24	PK	74	22.76	51.35	36.8	6.81	43.72	-0.11		
7320	41.22	AV	54	12.78	41.33	36.8	6.81	43.72	-0.11		

Freque	Frequency(MHz):			80	Pola	arity:	HORIZONTAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-amplif	Correction
(MHz)		vel	(dBuV/m)	(dB)	Value	Factor	Factor	ier	Factor
(1411 12)	(dBu	ıV/m)	(aBa v/iii)	(42)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960	61.32	PK	74	12.68	64.40	32.73	5.66	41.47	-3.08
4960	44.32	AV	54	9.68	47.40	32.73	5.66	41.47	-3.08
7440	51.89	PK	74	22.11	51.44	37.04	7.25	43.84	0.45
7440	41.42	[◯] AV	54	12.58	40.97	37.04	7.25	43.84	0.45

	Frequency(MHz):			24	80	Pola	arity:		VERTICAL	
	Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)
	4960	60.58	PK	74	13.42	63.66	32.73	5.66	41.47	-3.08
	4960	45.26	AV	54	8.74	48.34	32.73	5.66	41.47	-3.08
	7440	52.84	PK	74	21.16	52.39	37.04	7.25	43.84	0.45
	7440	41.10	ΑV	54	12.90	40.65	37.04	7.25	43.84	0.45
CTATE	STING			STING						

Report No.: CTA231102005W01 Page 28 of 65

- REMARKS: 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 4. -- Mean the PK detector measured value is below average limit.

 5. The other emission levels
- 5. The other emission levels were very low against the limit.

3.2.6 TEST RESULTS(BAND EDGE REQUIREMENTS)

Freque	ncy(MHz	:):	24	02	Pola	arity:	Н	HORIZONTAL		
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)	
2390	60.77	PK	74	13.23	71.19	27.42	4.31	42.15	-10.42	
2390	44.81	AV	54	9.19	55.23	27.42	4.31	42.15	-10.42	
Freque	ncy(MHz	:):	24	02	Pola	arity:		VERTICAL	-	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplif ier (dB)	Correction Factor (dB/m)	
2390.00	60.73	PK	74	13.27	71.15	27.42	4.31	42.15	-10.42	
2390.00	44.35	AV	54	9.65	54.77	27.42	4.31	42.15	-10.42	
Frequency(MHz):			24	80	Pola	arity:	Н	ORIZONTA	Pre-amplif Correction ier Factor (dB) (dB/m) 42.15 -10.42 42.15 -10.42 Pre-amplif Correction ier Factor (dB) (dB/m) 42.15 -10.42 Pre-amplif Correction ier Factor (dB) (dB/m) 42.15 -10.42 Pre-amplif Correction ier Factor (dB) (dB/m) 42.28 -10.11 Pre-amplif Correction ier Factor (dB) (dB/m) 42.28 -10.11 42.28 -10.11 42.28 -10.11 42.28 -10.11	
Frequency (MHz) Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)				
2483.50	60.80	PK	74	13.20	70.91	27.7	4.47	42.28	-10.11	
2483.50	43.74	O AV	54	10.26	53.85	27.7	4.47	42.28	-10.11	
Freque	ncy(MHz	:):	24	80	Pola	arity:		VERTICAL	amplif Correction Factor (dB/m) 2.15 -10.42 2.15 -10.42 TICAL amplif Correction Factor (dB/m) 2.15 -10.42 2.15 -10.42 2.15 -10.42 2.15 -10.42 2.15 -10.42 3.15 -10	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	ier	Factor	
2483.50	61.23	PK	74	12.77	71.34	27.7	4.47	42.28	-10.11	
2483.50	44.51	AV	54	9.49	54.62	27.7	4.47		-10.11	
	n level (di		=Raw Value = Antenna Fa					ier	CTA	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit. CTA TESTING
- 5. The other emission levels were very low against the limit.

Page 30 of 65 Report No.: CTA231102005W01

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz CTATES bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting					
Detector	Peak					
Start/Stop Frequency	Lower Band Edge: 2300 to 2432 MHz Upper Band Edge: 2442 to 2500 MHz					
Start/Stop Frequency						
RB / VB (emission in restricted band)	100 KHz/300 KHz					
Trace-Mode:	Max hold					

For Hopping Band edge

	er riepping Band eage						
	Spectrum Parameter	Setting					
	Detector	Peak					
	Ctort/Cton Fraguency	Lower Band Edge: 2300– 2403 MHz					
CTATEST	Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz					
	RB / VB (emission in restricted band)	100 KHz/300 KHz					
	Trace-Mode:	Max hold					
		CTATESTING CTATESTING					

Page 31 of 65 Report No.: CTA231102005W01

4.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In CTATEST order to make an accurate measurement, set the span greater than RBW.

4.4 EUT OPERATION CONDITIONS

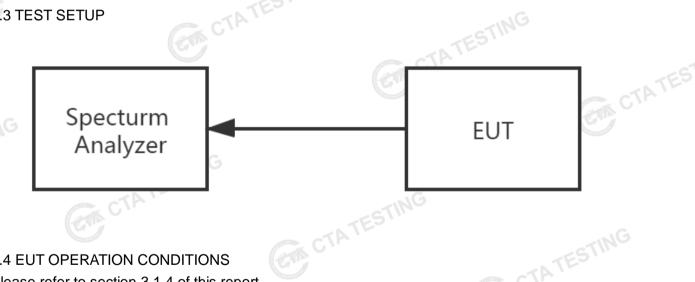
Please refer to section 3.1.4 of this report.

4.5 TEST RESULTS

CTA TESTING Note: The test data please refer to APPENDIX 1.

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT


5.	NUMBER OF HO	PPING CHANNEL				
	5.1 LIMIT					
) U		CTA		LING		
		FCC Pa	art 15.247,Subpa	rt C		
	Section	Test Item	Limit	FrequencyRange (MHz)	Result	TATES
	15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS	O 11

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	300KHz
VB	300KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.5 TEST RESULTS

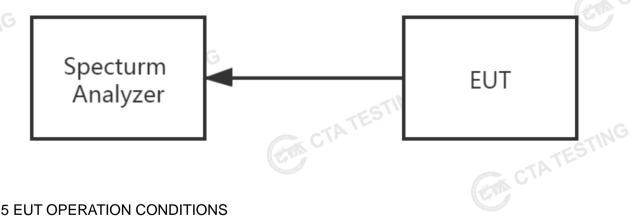
Page 33 of 65 Report No.: CTA231102005W01

6. BANDWIDTH TEST

6.1 LIMIT

6. BANDWIDTH T	EST				
6.1 LIMIT		CATESTING			
	F	CC Part15.247,Subpa	art C		
Section	Test Item	Limit	Frequency Range (MHz)	Result	TATES
15.247(a)(1)	Bandwidth	N/A	2400-2483.5	PASS	

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> Measurement Bandwidth or Channel Separation			
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)			
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			


6.2 TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show a. in the block diagram below.

b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

6.3 DEVIATION FROM STANDARD No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

6.6 TEST RESULTS

Page 34 of 65

Report No.: CTA231102005W01

7. PEAK OUTPUT POWER TEST

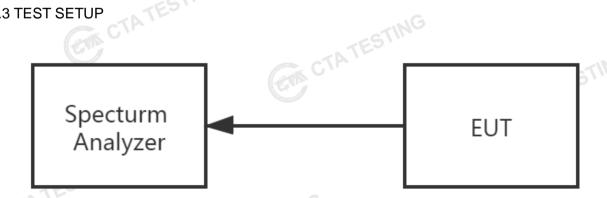
7.1 LIMIT

FCC PART 15.247, SUBPART C

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)&(b)(1)	Output Power	1 W or 0.125W if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater	2400-2483.5	PASS
		than125 mW(20.97dBm)	2 J 3 G 100 S	

7.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:


- a) Use the following spectrum analyzer settings:
- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW \geq RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- e) A plot of the test results and setup description shall be included in the test report.

NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

7.5 TEST RESULTS

Page 35 of 65 Report No.: CTA231102005W01

8. ANTENNA REQUIREMENT

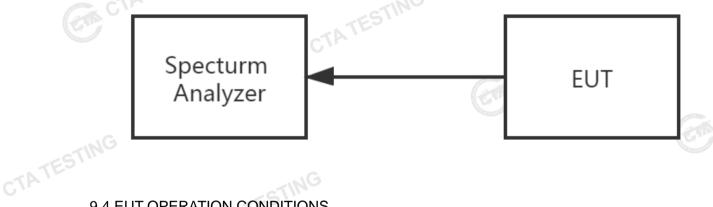
8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

8.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

9. AVERAGE TIME OF OCCUPANCY


9.1 LIMIT

9. AVERAGE TIM	IE OF OCCUPA	NCY			
9.1 LIMIT		TATESTING	ATESTING		
	F	CC Part 15.247,Subpar	t C		
Section	Test Item	Limit	FrequencyRange (MHz)	Result	CTATES
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

9.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to
- f Measure the maximum time duration of one single pulse.
- g. Set the EUT packet transmitting.

9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS

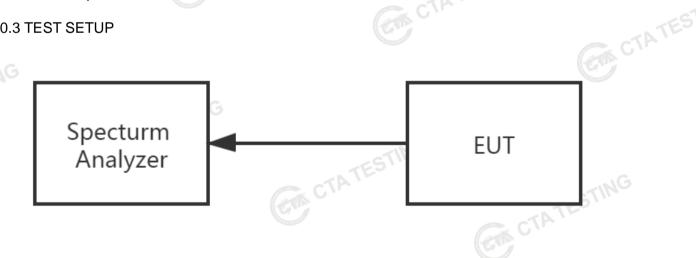
Please refer to section 3.1.4 of this report.

9.5 TEST RESULTS

Page 37 of 65 Report No.: CTA231102005W01

10. HOPPING CHANNEL SEPARATION MEASUREMEN

10.1 LIMIT


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

-551	Spectrum Parameter	Setting
CTATES	Attenuation	Auto
	Span Frequency	> 20 dB Bandwidth or Channel Separation
	RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
	VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
	Detector	Peak
	Trace	Max Hold
G	Sweep Time	Auto

10.2 TEST PROCEDURE

- a The transmitter output (antenna port) was connected to the spectrum analyser in peak hold
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

10.3 TEST SETUP

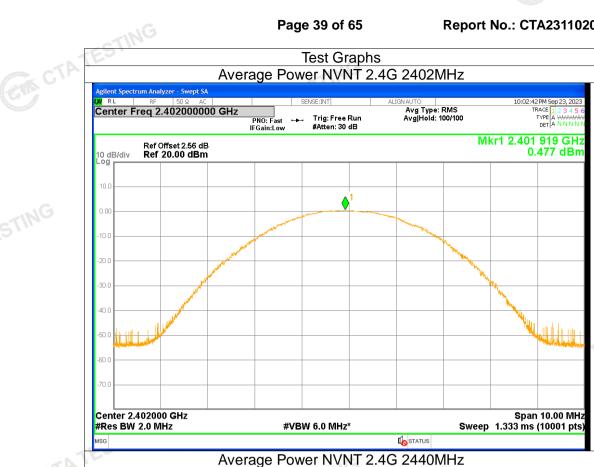
10.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Page 38 of 65 Report No.: CTA231102005W01


APPENDIX 1-TEST DATA

1. Maximum Average Conducted Output Power

				. 4 113					
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Total Power (dBm)	Limit (dBm)	Verdict			
NVNT	2.4G	2402	0.48	0.48	<=20.97	Pass			
NVNT	2.4G	2440	0.13	0.13	<=20.97	Pass			
NVNT	2.4G	2480	-0.01	-0.01	<=20.97	Pass			

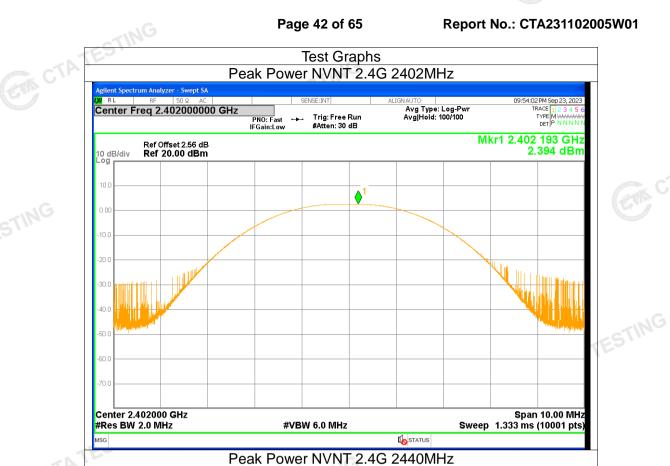
Page 39 of 65 Report No.: CTA231102005W01

ESTING

Page 40 of 65 Report No.: CTA231102005W01

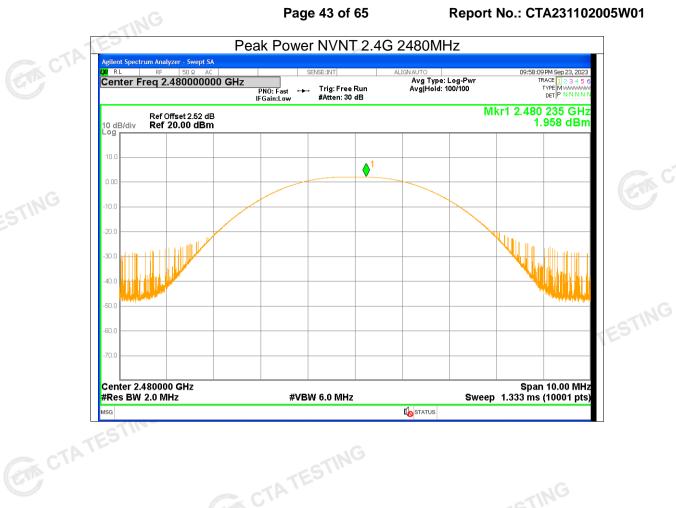
Page 41 of 65

Report No.: CTA231102005W01

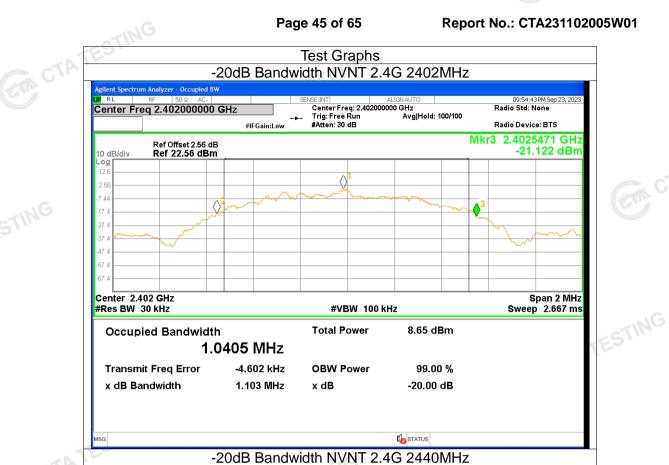

Page 41 of 65 R

2. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2.4G	2402	2.39	<=20.97	Pass
NVNT	2.4G	2440	2.35	<=20.97	Pass
NVNT	2.4G	2480	1.96	<=20.97	Pass


Page 42 of 65 Report No.: CTA231102005W01

Page 43 of 65 Report No.: CTA231102005W01


Report No.: CTA231102005W01 Page 44 of 65


TING 3. -20dB Bandwidth

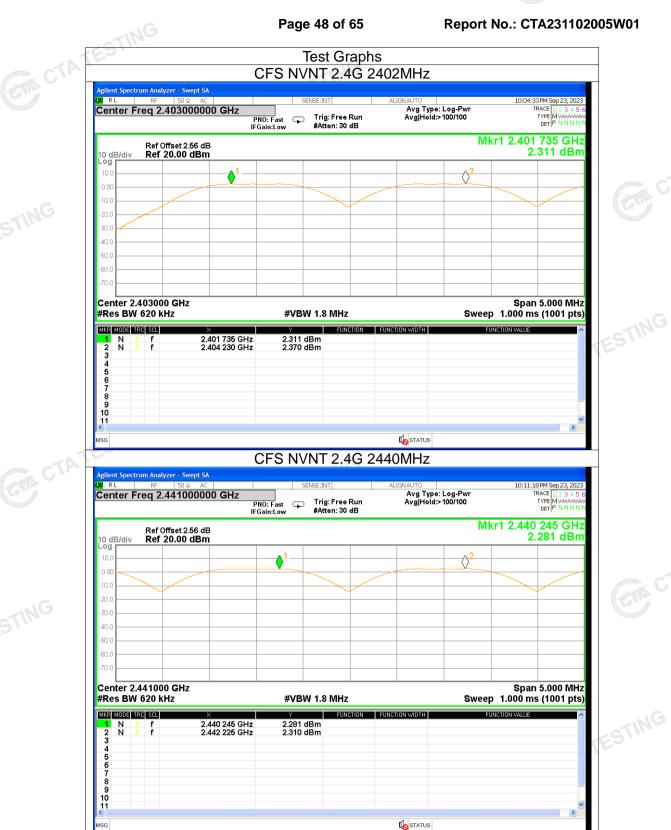
Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	2.4G	2402	1.1034	Pass
NVNT	2.4G	2440	1.1133	Pass
NVNT	2.4G	2480	1.1196	Pass

CTATES:

Page 45 of 65 Report No.: CTA231102005W01

CTA TESTING

Page 46 of 65 Report No.: CTA231102005W01


Page 47 of 65 Report No.: CTA231102005W01

Page 47 of 65

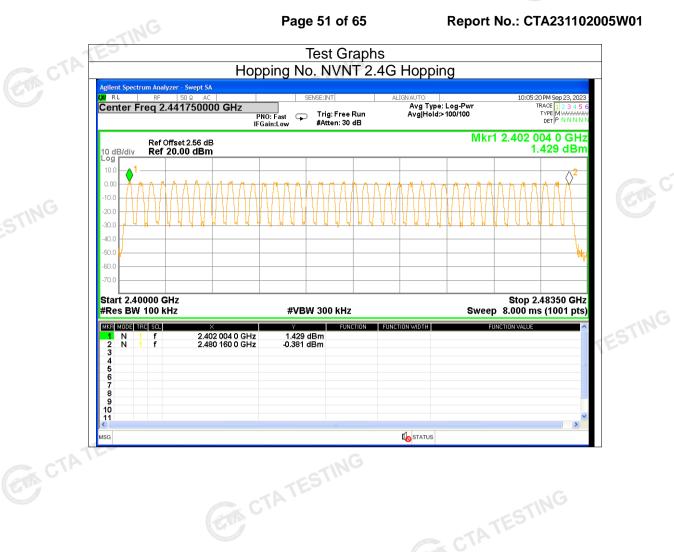
4. Carrier Frequencies Separation

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	2.4G	2401.735	2404.23	2.495	>=0.736	Pass
NVNT	2.4G	2440.245	2442.225	1.98	>=0.742	Pass
NVNT	2.4G	2477.725	2479.72	1.995	>=0.746	Pass

CTA TESTING

CTATES

Report No.: CTA231102005W01 Page 49 of 65

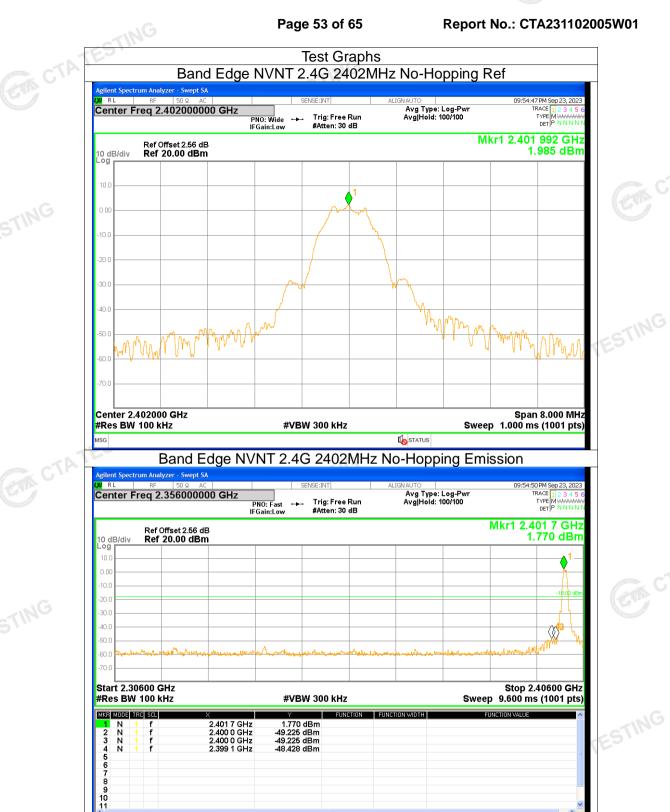

Page 50 of 65

Report No.: CTA231102005W01

5. Number of Hopping Channel

Condition	Mode	Hopping	Number	Limit	Verdict
NVNT	2.4G	40		>=15	Pass
					C

Page 51 of 65 Report No.: CTA231102005W01



Page 52 of 65 Report No.: CTA231102005W01

6. Band Edge

U - U		g ·				
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2.4G	2402	No-Hopping	-50.41	<=-20	Pass
NVNT	2.4G	2480	No-Hopping	-53.51	<=-20	Pass

STATUS

CTA TESTING

CTATES

Page 55 of 65

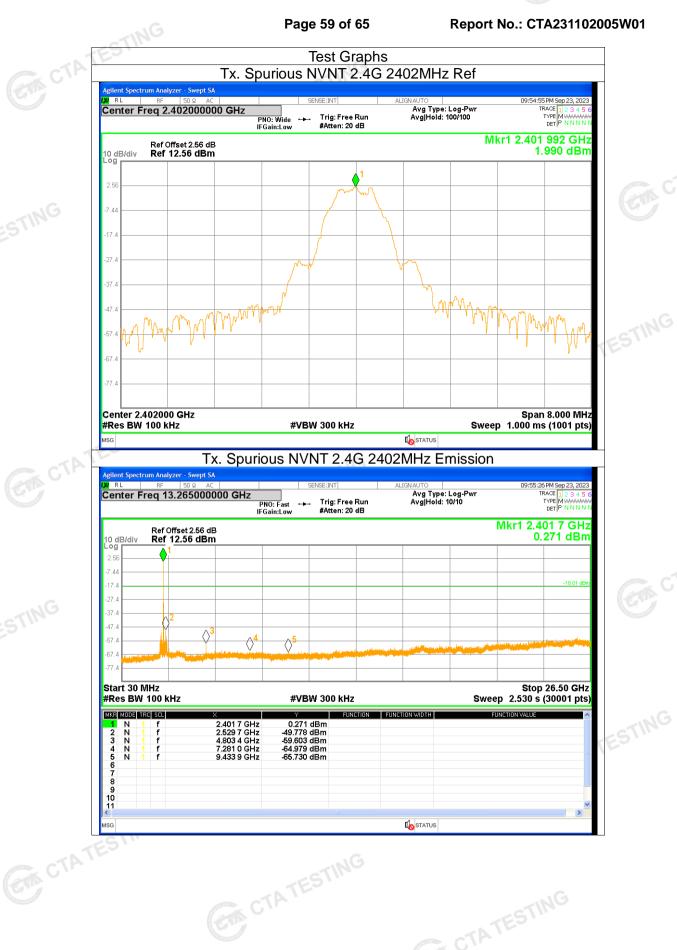
Report No.: CTA231102005W01

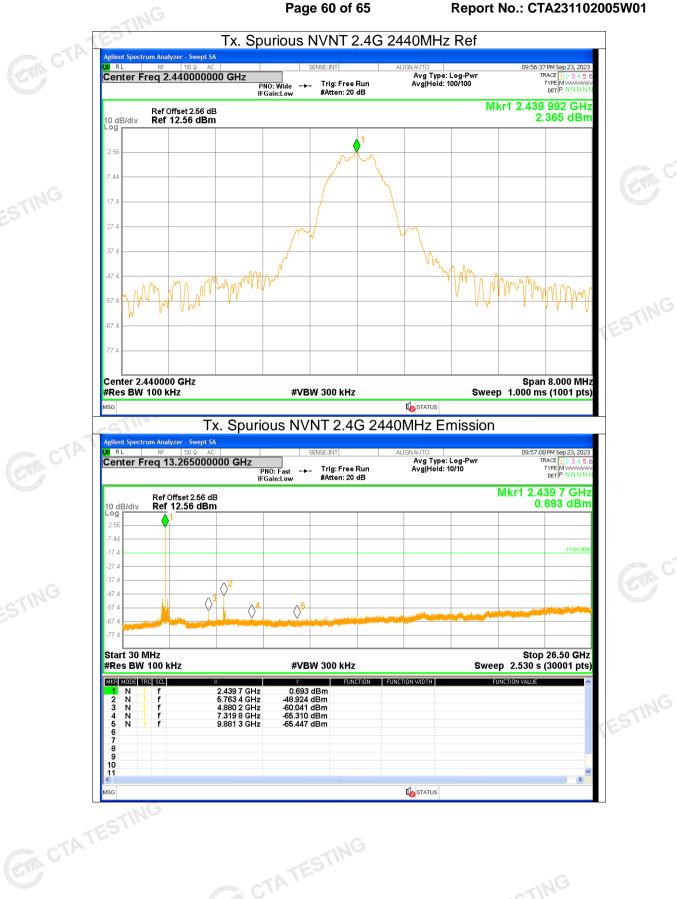
7. Band Edge(Hopping)

Condition	n Mode Frequency (MHz		Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2.4G	2402	Hopping	-49.87	<=-20	Pass
NVNT	2.4G	2480	Hopping	-51.45	<=-20	Pass

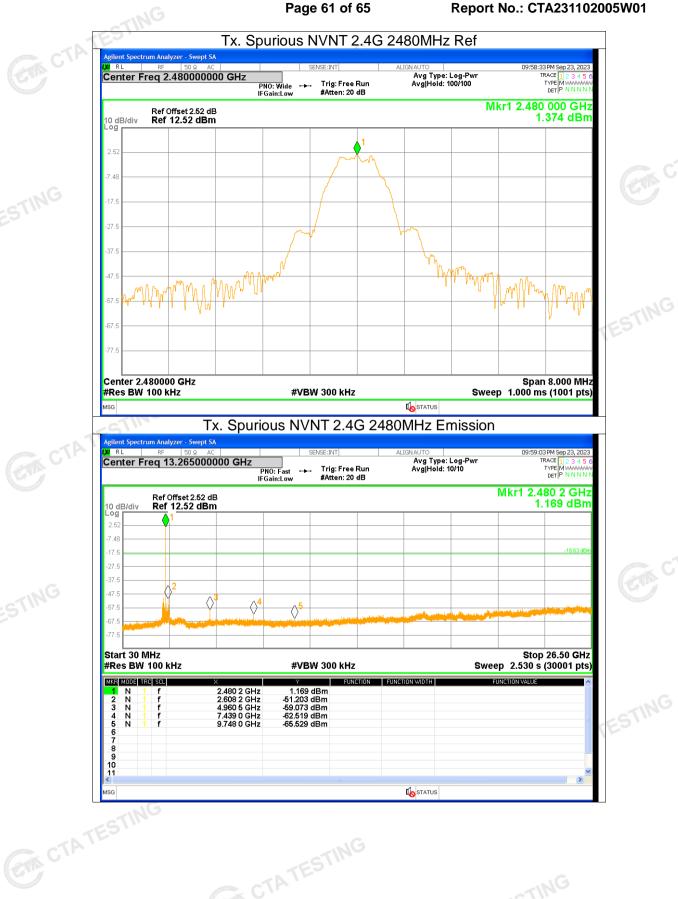
ESTING

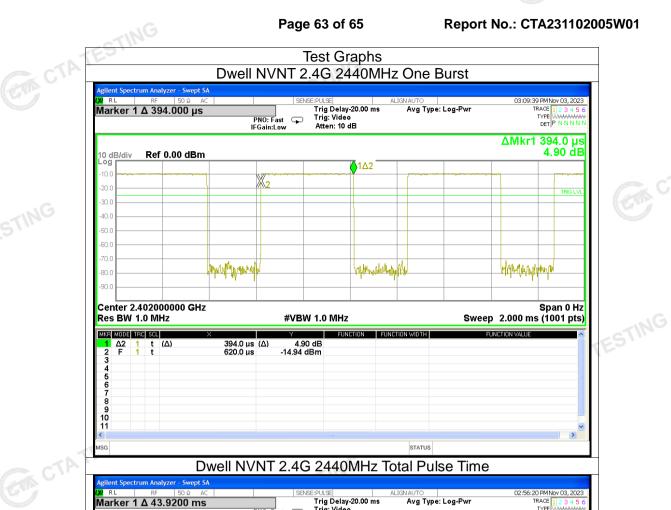
ESTING


Page 58 of 65


Report No.: CTA231102005W01

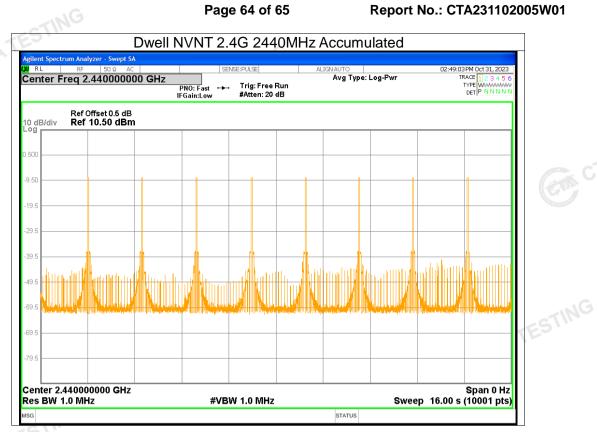
Page 58 of 65
8. Conducted RF Spurious Emission


		Max Value (dBc)	Frequency (MHz)	Mode	Condition
Pass	<=-20	-51.76	2402	2.4G	NVNT
Pass	<=-20	-51.29	2440	2.4G	NVNT
Pass	<=-20	-52.57	2480	2.4G	NVNT
_		A STATE OF THE PROPERTY OF THE	11 2412		


Page 62 of 65

Report No.: CTA231102005W01

9. Dwell Time


Condition	Mode	Frequency (MHz)	One Pulse Time (ms)	Pulse Time Number	Total Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	2.4G	2440	0.394	70	27.58	220.64	8	16000	<=400	Pass

CTATES

Page 64 of 65

Note:

Figure 1 is the time of a single pulse Figure 3 is number of cycles Accumulated

single pulse* complete cycle(number)* cycles
Accumulated(number)=0.304*70*0

Report No.: CTA231102005W01 Page 65 of 65 APPENDIX 2-PHOTOS OF TEST SETUP Note: See test photos in setup photo document for the actual connections between Product and support equipment. * * * * * END OF THE REPORT * * * * *