FCC RF Exposure Evaluation

1. Product Information

FCC ID	2A53H-WSD500A
Product Name	Temperature&Humidity sensor
Test Model	WSD500A, WSD400B, WSD400C, WSD400D, WSD500B, WSA500C, WSD600A
Power Supply	DC3V power supplyInput: 5V
Modulation Type	802.11b: DSSS
	802.11g/802.11n(H20)/802.11n(H40): OFDM
Antenna Type	PCB Antenna
Antenna Gain	1.3dBi
Frequency Range	2412-2462MHz
Exposure Category	General population/uncontrolled environment
EUT Type	Production Unit
Device Type	Mobile Device

2. Evaluation Method and Limit

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0 . The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

3. Limit

3.1 Refer Evaluation Method

<u>ANSI C95.1–1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

<u>FCC KDB publication 447498 D01 General RF Exposure Guidance v06:</u> Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: Mobile Device

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

-							
	Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time		
	Range(MHz)	Strength(V/m)	Strength(A/m) (mW/cm²)		(minute)		
	Limits for Occupational/Controlled Exposure						
	0.3 - 3.0	614	1.63	(100) *	6		
	3.0 - 30	1842/f	4.89/f	(900/f ²)*	6		
	30 – 300 61.4		0.163	1.0	6		
	300 - 1500	/	/	f/300	6		
	1500 - 100,000	/	/	5	6		

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time			
Range(MHz)	Strength(V/m)	Strength(A/m)	Strength(A/m) (mW/cm²) (
	Limits for Occupational/Controlled Exposure						
0.3 - 3.0	614	1.63	(100)_*	30			
3.0 - 30	824/f	2.19/f	(180/f ²)*	30			
30 – 300	27.5	0.073	0.2	30			
300 – 1500	/	/	f/1500	30			
1500 - 100,000	/	/	1.0	30			

F=frequency in MHz

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4\pi R^2$

Where: S=power density P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator R=distance to the center of radiation of the antenna

5. Antenna Information

WSD500A can only use antennas certificated as follows provided by manufacturer;

Antenna type and antenna number	Operate frequency band	Maximum antenna gain	Note
PCB Antenna	2412 MHz – 2462 MHz	1.3dBi	WLAN Antenna

^{*=}Plane-wave equivalent power density

6.Conducted Power Results

[2.4GWIFI Max Conducted Power]

Mode	Channel	Frequency(MHz)	Max Conducted Power(dBm)
	1	2412	19.27
IEEE 802.11b	6	2437	19.16
	11	2462	18.74
IEEE 802.11g	1	2412	21.11
	6	2437	20.85
	11	2462	21.64
	1	2412	19.61
IEEE 802.11n HT20	6	2437	19.47
	11	2462	20.33
	3	2422	18.23
IEEE 802.11n HT40	6	2437	17.76
	9	2452	18.13

7. Manufacturing Tolerance

<2.4GWLAN >

	IEEE 802.11b (Peak)						
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	19.0	19.0	19.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	IEEE 802	2.11g (Peak)					
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	21.0	21.0	21.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	IEEE 802.11n HT20 (Peak)						
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	19.0	19.0	20.0				
Tolerance ±(dB)	1.0	1.0	1.0				
IEEE 802.11n HT40 (Peak)							
Channel	Channel 3	Channel 6	Channel 19				
Target (dBm)	18.0	18.0	18.0				
Tolerance ±(dB)	1.0	1.0	1.0				

Report No.: CTL2202172062-WF

8. Evaluation Results

8.1 Standalone MPE

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r = 20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

2.4G

	Output power		Antenna	Antenna	ntenna Duty	MPE	MPE
Modulation Type	dBm	mW	Gain (dBi)	Gain (linear)	Cycle	(mW/cm ²)	Limits (mW/cm ²)
IEEE 802.11b	20.0	100.00	1.3	1.35	100%	0.0268	1.0000
IEEE 802.11g	22.0	158.49	1.3	1.35	100%	0.0425	1.0000
IEEE 802.11n HT20	21.0	125.89	1.3	1.35	100%	0.0338	1.0000
IEEE 802.11n HT40	19.0	79.43	1.3	1.35	100%	0.0213	1.0000

Remark:

- 1. Output power including tune-up tolerance;
- 2. MPE evaluate distance is 20cm from user manual provide by manufacturer;

8.2 Simultaneous Transmission MPE

The sample support one modularand antenna, 2.4G WLAN can be active at the same time, but only with interleaving of packages switched on board level. That means that they don't transmit at the same time. No need consider simultaneous transmission;

9.Conclusion

The measurement results comply with the FCC Limit	per 47 CFR 2.1091 for the uncontrolled RF
Exposure of mobile device.	

THE END OF REPORT	