

PM3 Easy3.0 Quick start guide	3
I . Hardware description	4
1. Installation of equipment :	4
A. Install the copper pillar first :	4
B. Install the upper plate :	5
C. Install low frequency antenna :	5
D. Attach a protective film :	
2. IC high frequency card placement location :	6
3. ID low frequency card placement location :	7
4. Other parameters :	8
II . Driver Installation	9
Reasons for unsuccessful driver installation and solutions :	12
III . Quickly test basic functions	13
1. Antenna voltage test :	13
2. Read high frequency card test :	14
3. Read low frequency card test :	14
IV . Card basics	16
Common cards are :	16
M1 S50 card introduction	16
M1 UID card introduction	18
M1 FUID, CUID card introduction	19
ID, HID, card introduction	19
T5577 card introduction	19
V . Card security test (whether it can be copied)	23

Overall process	23
IC card ideas :	24
1. Try to get any key in the 16 sectors of the card	24
2. Obtain all sector keys through known keys.....	32
3. Read the card data to the computer.....	34
4. Read the card data in the computer and write it to the UID card	34
5. Check the data and complete the clone	35
VI . Low frequency card operation :	35
1. Read ID, HID, INDALA and other cards :	35
2. Write different types to T5577 card to clone the card : 36	
Clone into ID card :	36
Clone into HID card :	37
Clone into INDALA card :	37
VII . Software introduction :	38
VIII . Matters needing attention :	38
1. Hardware matters :	38
2. Software matters :	39
a) PC software.....	39
b) Device firmware.....	40
IX . Instruction introduction.....	40

PM3 Easy3.0 quick start guide

— . Hardware description

1.1. Installation of equipment :

A. Install the copper pillar first :

B. And then install the upper plate :

Screw the screws and lead copper posts on the upper plate

C. Install low frequency antenna :

Tip: The low-frequency antenna can also be installed in four symmetrical positions on the top, bottom, left, and right, and you can choose according to your preferences. In the recommended way, the two antennas have the least influence on each other.

2.

IC HF card placement location :

The IC card is recommended to be placed on the back of the device and aligned with the device, which is the most stable.

Place the card as shown in the picture above. Normally, there is no problem. In addition, please keep away from metal objects and metal tabletops. Individual keychains or small cards with poor signals can easily interrupt the reading and writing. At this time, you can read the card as shown in the figure below and put the low-frequency antenna under the high-frequency antenna to solve the problem.

3.ID low frequency card placement location :

Just stick the card on the circular antenna

Some ID cards have poor signal, you can install the circular antenna on the left side, the sensitivity of the card reading will be improved

4. Other parameters :

(When the low-frequency antenna is installed on the right side)

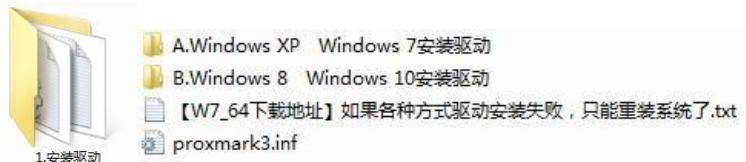
LF antenna: **29.84 V** @ 125.00 kHz
LF antenna: **32.31V** @ 134.00 kHz
HF antenna: **28.43V** @ 13.56 MHz

(When the low-frequency antenna is installed on the left side)

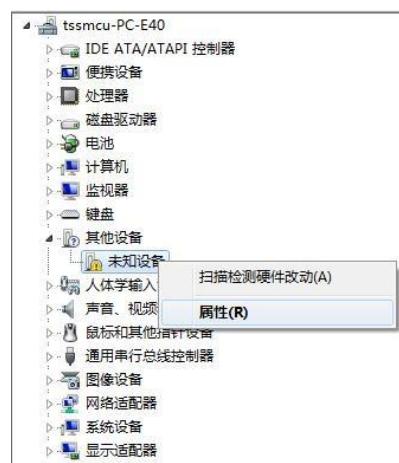
LF antenna: **43.86 V** @ 125.00 kHz
LF antenna: **24.48 V** @ 134.00 kHz
HF antenna: **25.13 V** @ 13.56 MHz

Factory firmware version : 2.5

Operating Voltage


3.5-5.5V

Working current :


50-130Ma

二 . Driver Installation

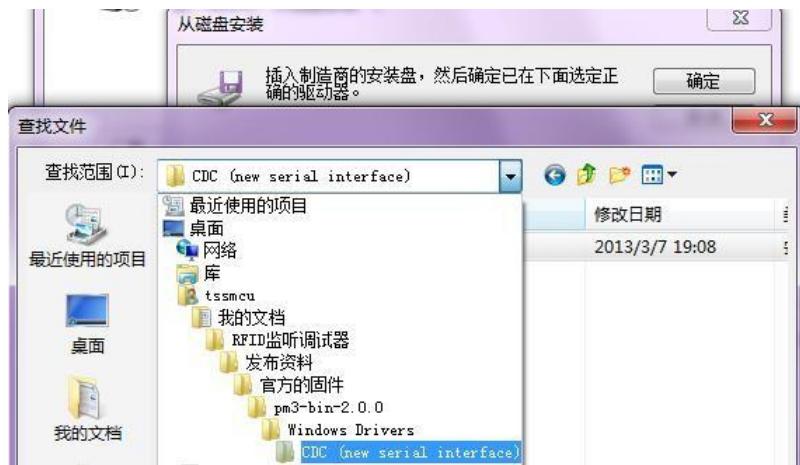
The following is an example process of W7 64 installation. The installation of different systems is slightly different, please refer to the under this folder

Guide to operate :

1. Connect PM3 to the computer, right-click the properties of the unknown device in the device manager

2. Click Update Driver

2. Click below-- Browse the computer to find the driver software (R)


3. Click below--Select from the computer's device driver list (L)

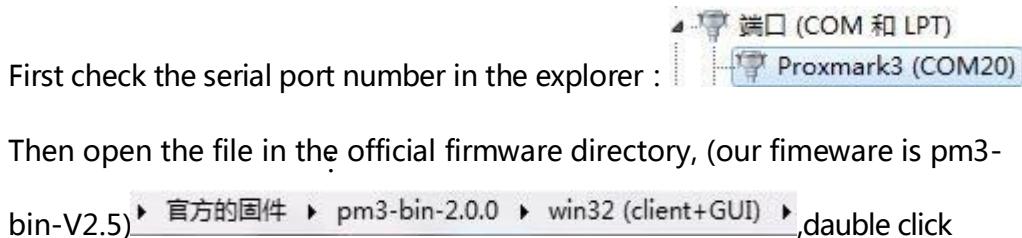
4. After the next step, install from disk

5. Select the drive directory, select the drive file

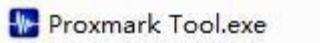
6. Next step

7. Click below-- Always install this driver software (I) , finish drive install.

If everything is normal, a virtual serial port will appear. As shown below :


COM5 can be any number, and the driver installation is now complete.

Reasons for unsuccessful driver installation and solutions :


1. The driver signature verification is not turned off, just turn off the driver signature verification.
2. WINDOWS may be a simplified version of GHOST.
3. Use a virtual machine to connect to the device.
4. The system lacks dependent files.
5. Try another computer or another USB port for a try

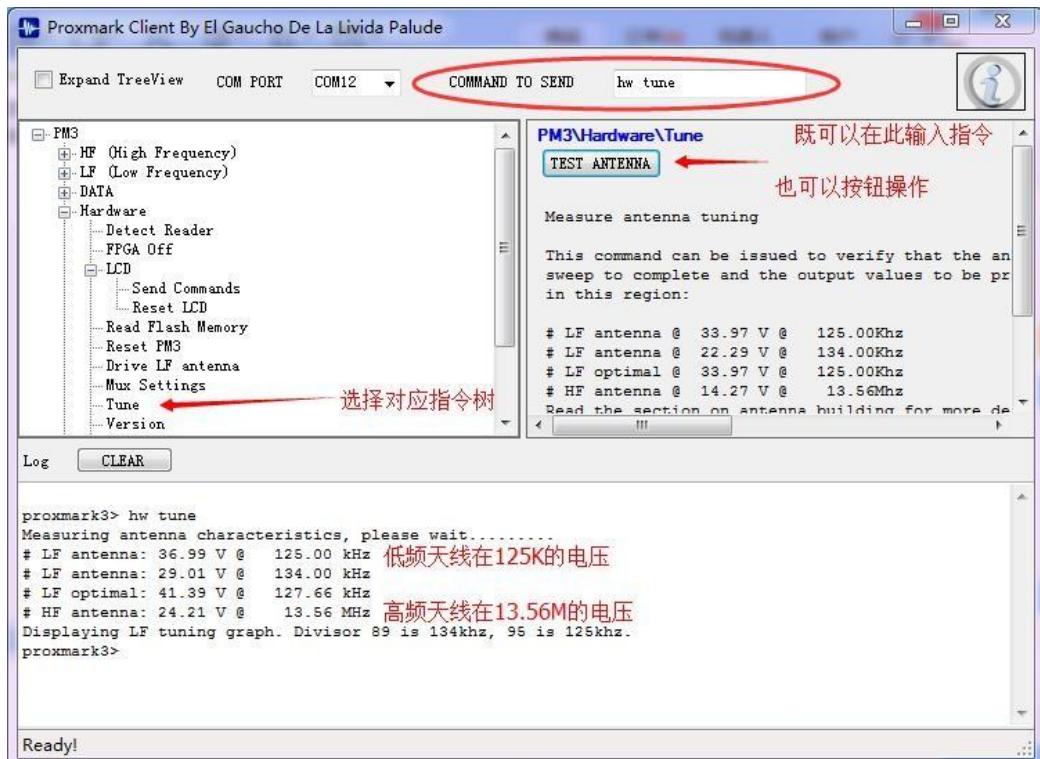
**PM3 compatible system: XP/W7/W7 64/W8/W10/LINUX/Android
(requires relevant knowledge)**

三 . Quickly test basic functions

Then open the file in the official firmware directory, (our firmware is pm3-bin-V2.5) → 官方的固件 → pm3-bin-2.0.0 → win32 (client+GUI) →,dauble click

Select the corresponding serial port after

opening If the

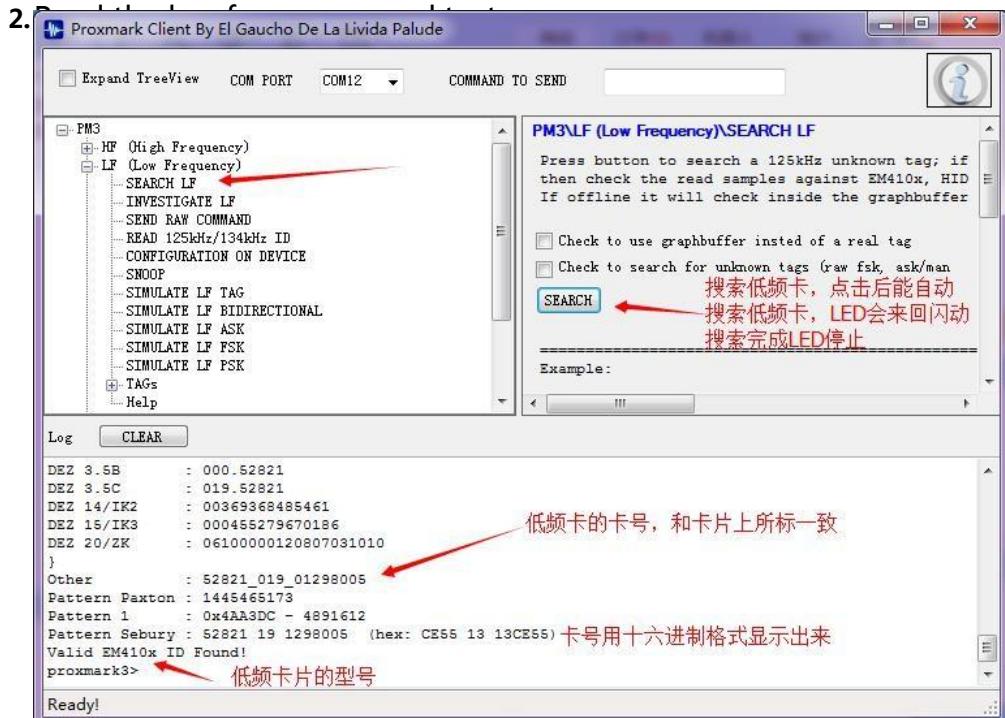

bottom is blank, the connection is normal.

If display `ERROR: invalid serial port` Indicates that the connection is not normal.

Try to plug and unplug the USB again, first select another serial port number, and then plug in the USB, and then select the correct serial port after the ding-dong sound.

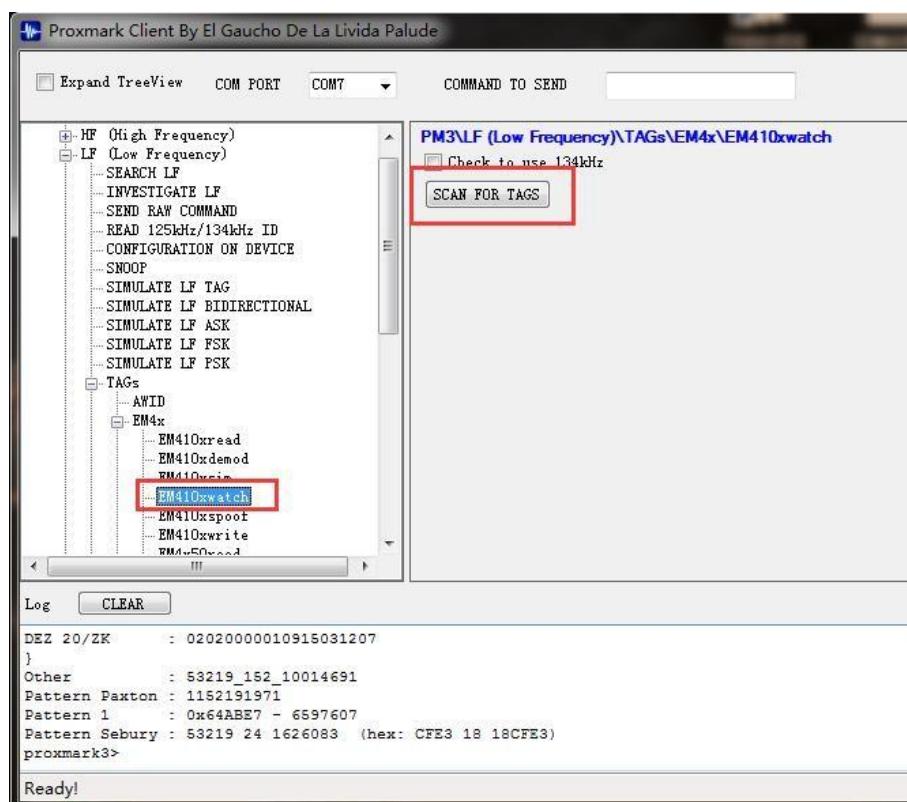

Note that if you cannot open the serial port several times in a row, you need to close the "Proxmark3.exe" process in the task management

1.Antenna voltage test:

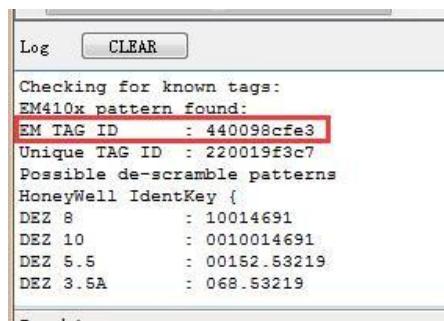


When testing the resonant voltage of the antenna, do not place cards or metals around the antenna, otherwise the measurement result will be low

1. Read the high frequency card test :



You can try to test the cards by putting different cards "M1 S50" and "M1 UID" on the antenna.



You can try to test the card type by putting different cards "HID" and "T5577" on the antenna.

The sensitivity of this command to read the ID card is not good. When some cards cannot be read, you need to use another command to read, as shown in the figure below.

Page up after reading, as shown in the figure below, the red box is the ID card number :

The screenshot shows a software interface with a 'Log' button and a 'CLEAR' button. The log window displays the following text:

```
Checking for known tags:  
EM410x pattern found:  
EM TAG ID : 440098cfe3  
Unique TAG ID : 220019f3c7  
Possible de-scramble patterns  
HoneyWell IdentKey {  
DEZ 8 : 10014691  
DEZ 10 : 0010014691  
DEZ 5.5 : 00152.53219  
DEZ 3.5A : 068.53219
```

The line 'EM TAG ID : 440098cfe3' is highlighted with a red box.

Note: Some T5577 empty cards cannot be read before they are initialized. We need to write the ID once to read them. Some cards have an ID number by default.

四 . Four. Card basics

Common cards are:

Type	Frequency	Characteristic
Mifare S50(M1)	high frequency	The most common card, each card has a unique UID number, which can be stored Store modified data (student card, meal card, bus card, access card)
Mifare UltraLight(M0)	high frequency	Low-cost card, factory-cured UID, can store modified data (Metro card, bus card)
Mifare UID(Chinese magic card) (UID card)	high frequency	Variant version of M1 card, UID can be modified, called China abroad Magic card, can be used to clone the data of M1 S50 completely
EM4XX(ID card)	high frequency	Commonly used solidified ID card, factory solidified ID, can only read but not write (Low-cost access card, community access card, parking lot access card)
T5577 (Modifiable ID card)	Low frequency	It can be used to clone ID card, the factory is empty card, it can also have sectors inside Store data, and passwords can be set for individual sectors.
HID Prox II (HID)	Low frequency	Low-frequency card commonly used in the United States, rewritable, not used with other cartons

M1 S50 card introduction.M1 S50 is the most commonly used card in China, also known as IC card.Developed by NXP, a subsidiary of Philips, domestically produced compatible cards are also available, but the card information cannot be determined. The card information is as follows:

```
proxmark3> hf 14a reader
ATQA : 00 04
UID : b2 a6 de 1d
SAK : 08 [2]
TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1
proprietary non iso14443-4 card found, RATS not supported
Answers to chinese magic backdoor commands: NO
proxmark3> |
```

When you see **TYPE: NXP MIFARE CLASSIC 1k | Plus 2k SL1**

It means this is an M1 S50 card.

This kind of card is like a small-capacity U-disk, which is inherently mandatory to encrypt. The password cannot be cancelled.

The factory will set the password to the default password that everyone knows, FFFFFFFFFF. easy to use

扇区	块	数据
0	0	BC59FC0F160804000138E31F63B2971D
0	1	00000000000000000000000000000000
0	2	00000000000000000000000000000000
0	3	FFFFFFFFFFFFF078069FFFFFFFFFFFF
1	4	00000000000000000000000000000000
1	5	00000000000000000000000000000000
1	6	00000000000000000000000000000000
1	7	FFFFFFFFFFFFF078069FFFFFFFFFFFF
2	8	00000000000000000000000000000000
2	9	00000000000000000000000000000000
2	10	00000000000000000000000000000000
2	11	FFFFFFFFFFFFF078069FFFFFFFFFFFF
3	12	00000000000000000000000000000000
3	13	00000000000000000000000000000000
3	14	00000000000000000000000000000000
3	15	FFFFFFFFFFFFF078069FFFFFFFFFFFF

As shown in the figure above, it is the data structure of a card. There are 16 sectors in total, and each sector is composed of 4 blocks. The first three blocks of the 4 blocks are used to store data, and the last block is used to store passwords. Just like an encrypted small U disk, each sector has two passwords for common management.

Screenshot of single sector data:

00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ff	07	80	69	ff	ff	ff	ff	ff	ff						

It can be seen that there are four rows in this sector, each row is a block, and the first three blocks store data. The fourth block is to store the password. The two yellow circles are the A password and the B password. The middle four bytes are the control word, which is used to manage the password authority,

just like the password setting option of the safe, which is used to set A and B Password function. When it is not modified by default, you can use the A password to read and write all data. Password A cannot be read out, password B can be read out with password A.

Although the password is stored there, the password is not necessarily readable. This is determined by the control word. Please refer to the [Card Information] folder for the detailed comparison table setting table. Except for the first sector in the M1 card, the structure of the other 15 sectors is exactly the same. The following figure shows the structure of the first sector:

ca	a1	fc	e5	72	08	04	00	62	63	64	65	66	67	68	69
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ff	07	80	69	ff	ff	ff	ff	ff							

The red circle is not only the UID number of the card, but also a unique and unmodifiable ID sequence for each card. It can be read without a password. The rest of the data in block 0 of the first sector is factory built-in, including manufacturer and card information. Can not be modified. Can only read.

M1 UID card introduction

The M1 UID card is a variant card specially made by the Chinese for the M1 S50 card. It is used exactly the same as the M1 S50 card, except that it has one more function, that is, the data of the 0 sector block can be modified at will. Therefore, the UID number can also be modified at will, and the manufacturer information can also be modified at will, hence the name of the UID card.

```
proxmark3> hf 14a reader
ATQA : 00 04
UID : a2 f7 90 76
SAK : 08 [2]
TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1
proprietary non iso14443-4 card found, RATS not supported
Answers to chinese magic backdoor commands: YES
proxmark3> |
```

As shown in the figure, "YES" means it is a UID card. But some UID cards with poor

compatibility will display NO , Cards with poor compatibility can be written with both software, but when reading data, the Chinese GUI cannot read the data, and the English GUI can read the incomplete data of the last block.

The advantage of this modification is that the M1 S50 card can be copied perfectly and the UID number is exactly the same. In this way, if the card reader has a verification UID number, there is no problem.

UID card modification 0 sector 0 block data is to enter the factory mode by instructions, you can directly edit any data of the whole card, you can read and write the card without a password, and you are not afraid of writing bad cards, even if you write wrong 0 blocks, write bad sectors The control word can also be repaired at any time without affecting the subsequent use, so it is widely used and won the hearts of the people.

But the disadvantage is that the new card reading system can detect the UID card by detecting the card's response to the special command, so it can deny the UID card's access to achieve the function of shielding the copy card. But after all, it is still a minority.

M1 FUID, CUID card introduction

The FUID card is optimized by the Chinese for the UID card. As mentioned above, the UID card will be detected and therefore blocked. The FUID card is a UID modifiable card without a backdoor. Its sector 0 data can only be modified once in a lifetime. Besides, it is exactly the same as the M1 standard card, so it is difficult to detect and block.

The CUID card is optimized for the FUID card. As mentioned above, because the block 0 can only be written once, it is difficult to write it wrong or it is difficult to reuse it.

Therefore, the CUID card can modify the block 0 repeatedly, but it and UID The difference of the card is that it does not have a backdoor, and can write 0 blocks by using conventional password verification. The other sectors are the same as the standard M1 card. The disadvantage is that there is still the possibility of being detected. At the same time, if the check digit of the UID number is accidentally written incorrectly, the card cannot be read. At this time, the card cannot be repaired, and the card can only be scrapped. Note that PM3 can write the above two types of cards, but the official English software can only write the cards one block at a time. Our Chinese GUI software can directly write the entire data file into the card, which is convenient to use.

ID, HID, card introduction

ID card is our common name. The full name of the internal chip is called EM4100 or EM41XX. It is a low-frequency card. Each card has a unique ID number when it leaves the factory and cannot be rewritten. HID Proxcard card is similar.

T5577 card introduction

The T5577 card is a low-frequency card that can write data and can be encrypted. The most special thing is that writing an ID number can transform it into an ID card, writing an HID number can transform it into an HID card, and writing an Indala card number can transform it into an Indala card.

We first write the 5577 card into ID:1111111111, at this time 5577 has been transformed into an ID card, and then use the read 5577 full card data command to see the full card data

```
proxmark3> lf t55xx detect
Modulation : ASK
Bit Rate   : 5 - RF/64
Inverted   : No
Offset     : 1
Block0    : 0x00148040
proxmark3>
proxmark3> lf t55xx dump
0x00148040  000000000000101001000000001000000 [0]
0xFF8C6318  1111111100011000110001100011000 [1]
0xC6318C60  11000110001100011000110001100000 [2]
0x00000000  00000000000000000000000000000000 [3]
0x00000000  00000000000000000000000000000000 [4]
0x00000000  00000000000000000000000000000000 [5]
0x00000000  00000000000000000000000000000000 [6]
0x00000000  00000000000000000000000000000000 [7]
```

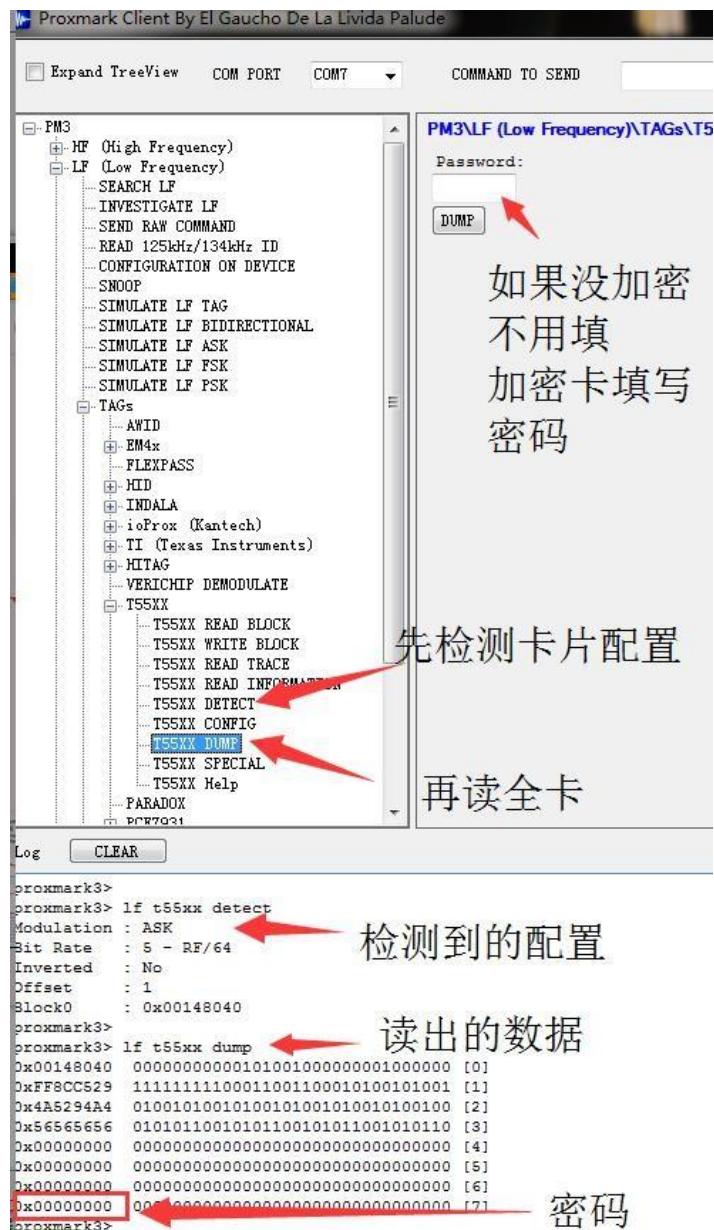
As shown in the figure above, the first 3 blocks of the card will be automatically calculated by PM3 after ID is written, and the data will be written to achieve the transformation effect. Don't look at the 0 and 1 at the back, just look at the data at the front. There are 8 blocks in 5577, and each block can only store 8 digits. Block 0 is used to set the card type and modulation method, which determines whether the card is an ID card or an HID card. If you modify it at will, you will not be able to read the card. The last block of the seventh block is the data area when it is not encrypted. After encryption, its data becomes a password.

Note: Sometimes the 5577 card with the ID written into it does not respond after swiping, and the ID number cannot be read on the PM3 again. Explain that the card reader has a firewall, which is specially designed to prevent ID duplication of the card. In this case, you need to encrypt the 5577 before you can go through the firewall.

ID card: 0 block write: 00148040 no secret

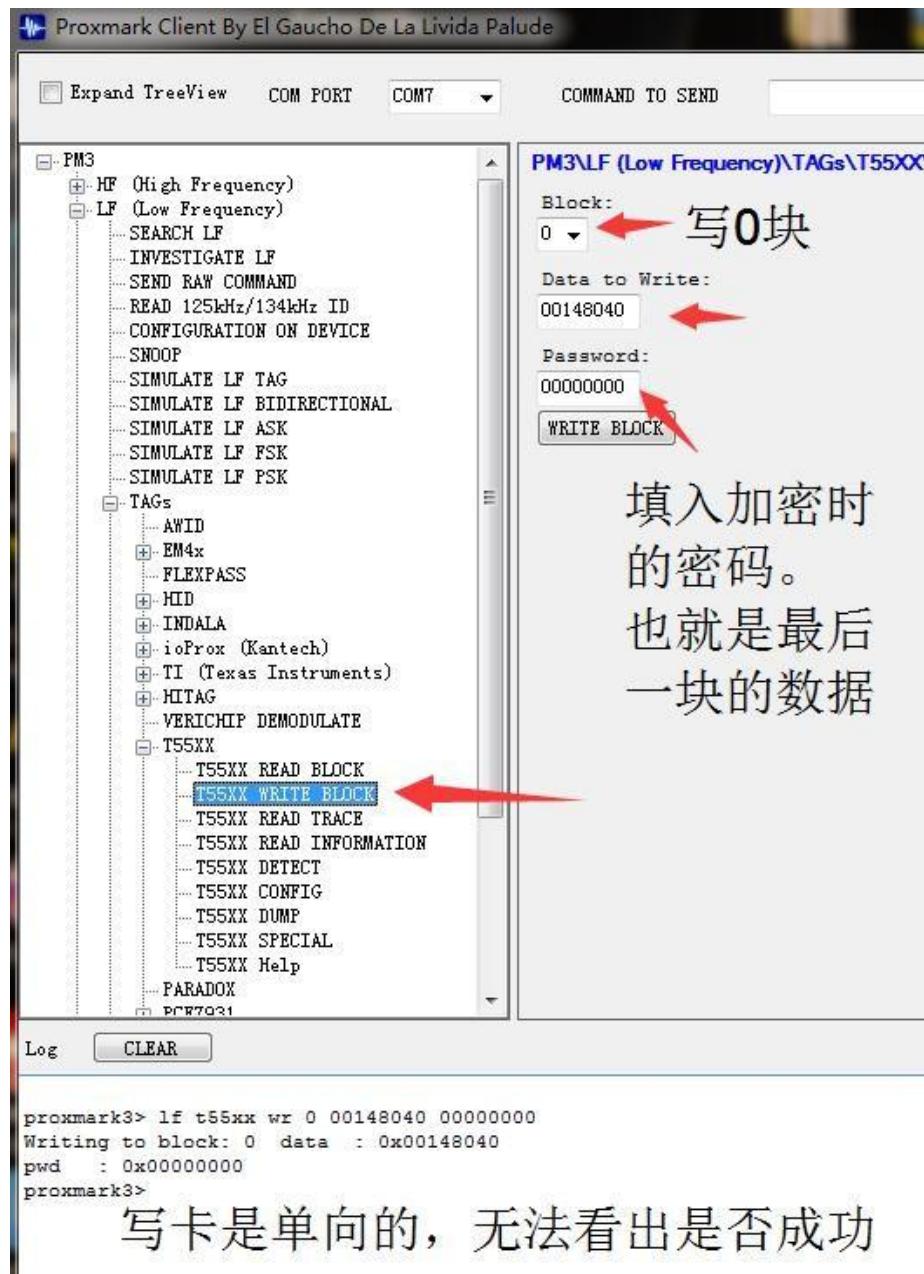
00148050 encryption

HID card: 0 block write: 00107060 no secret


00107070 encryption

Steps to encrypt the ID card:

Write ID number → read 57 full card data (see password) → write 0 block data


→Read the full card data again (verification)→Complete

PM3 read unencrypted 5577 full card data method :

Note that if it is encrypted 5577, the configuration cannot be detected, or the read blocks are all the same data.

Write 5577 card when encryption is canceled:

The following table is from RADIOWAR and clearly shows PM3's support for cards

名称	识别	读/写	高级操作						备注
			离线解密	在线监听	默认密钥	数据导出	模拟	复制	
MIFARE CLASSIC	✓	✓	✓	✓	✓	✗	✓	✓	
MIFARE CLASSIC(Chinese Magic Card/UID)	✓	✓	✗	✓	✓	✓	✗	✓	
MIFARE Ultralight	✓	✓	✗	✗	✗	✓	✗	✗	
HID	✓	✓	✗	✗	✗	✗	✓	✓	
HID iClass	✓	✓	✓	✓	✗	✓	✓	✓	
iso14443a	✓	✓	✗	✓	✗	✓	✓	✓	
iso14443b	✓	✓	✗	✓	✗	✗	✓	✓	
iso15693	✓	✓	✗	✓	✗	✓	✓	✓	
SRI512	✓	✓	✗	✗	✗	✗	✓	✗	
SRIX4K	✓	✓	✗	✗	✗	✗	✓	✗	
Logic	✓	✓	✗	✗	✗	✓	✓	✗	
epa	✓	✓	✗	✗	✗	✗	✗	✗	
em410x	✓	✓	✗	✗	✗	✗	✓	✓	
em4x50	✓	✓	✗	✗	✗	✓	✓	✓	
Ti	✓	✓	✗	✗	✗	✗	✗	✗	
Hitag/Hitag2	✓	✓	✗	✓	✗	✗	✓	✗	
indala	✓	✓	✗	✗	✗	✗	✗	✓	
T55xx	✓	✓	✗	✗	✗	✗	✗	✓	
FlexPass	✓	✓	✗	✗	✗	✗	✗	✗	
VeriChip	✓	✓	✗	✗	✗	✗	✗	✗	
PCF7931	✓	✓	✗	✗	✗	✗	✗	✗	
Kantech ioProx	✓	✓	✗	✗	✗	✗	✗	✗	

Proxmark3功能在开源社区的不断维护下，几乎每一年都会增加一到两项RFID的操作功能，现在列出来的只是功能当中显示存在的，复制整卡数据和复制UID有本质上区别，所以“高级操作”当中的“复制”不可作为其类型RFID不可被其他兼容类RFID复制或模拟。

RADIOWAR
Invasion Of Your Heart Using Radio

This table is for reference only, most of the cards are rarely seen in China, so they have not been tested.

五 . Card security test (whether it can be copied)

Overall process

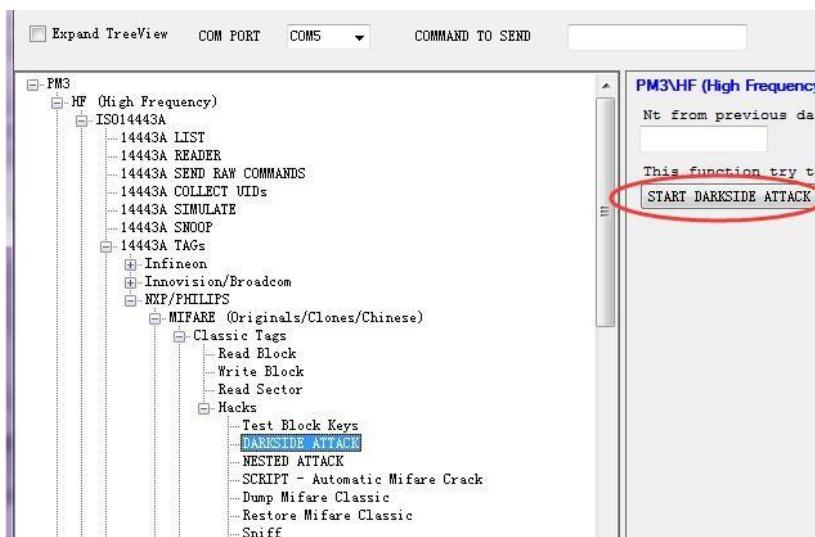
First read the card to determine the card type, whether it is an ID card or an IC card.

Note that the shape of the card has nothing to do with the model, the same chip can be packaged into a completely different shape

ID card: read the card ID number → replace the T5577 card → write the ID number into the card → complete

IC card: vulnerability decryption → read the entire card data → replace the UID card → write the data into the card → complete

Idea of IC card:

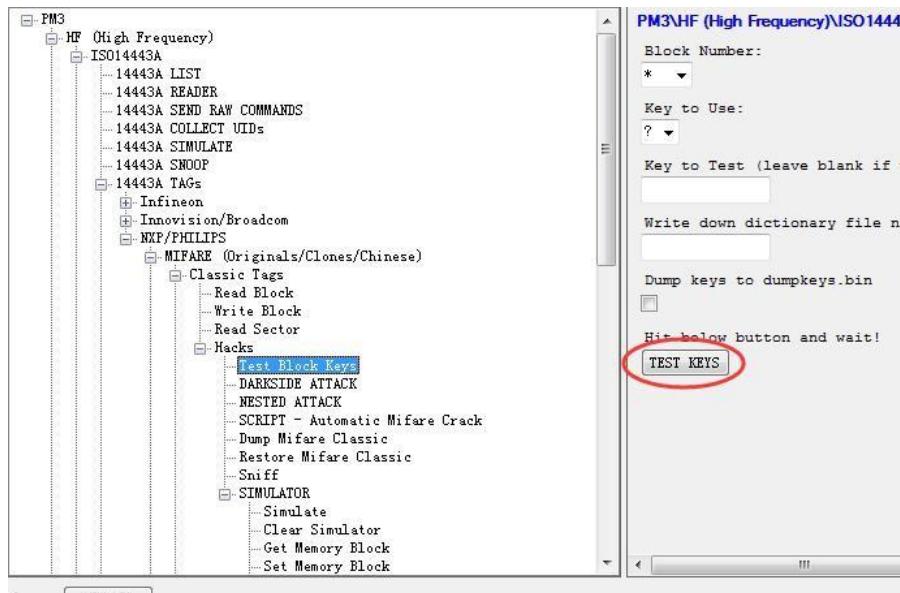

1. Obtain the key of any sector (any of the following can be used)
 - a. 0 sector key for PRNG vulnerability attack
 - b. Scan the default password to get the key
 - c. Sniff the card reader and card interactive data to obtain the key
 - d. Simulate as M1 card and capture the key after swiping the card (picking the card reader, the compatibility is not good)
2. Using the MFOC vulnerability, use the known sector key to find all the sector keys
3. Use the cracked key to read out the card data and import it into the computer
4. Put the empty UID card and write the data in the computer into the card

1. Try to obtain any key in the 16 sectors of the card

There are four ways, any one of which has obtained the key, you can proceed to the next step.

a) (Only the card is required) Through the PRNG vulnerability attack, the 0 sector key can be obtained unconditionally.

i. Send the command hf mf mifare, or click DARKSIDE ATTACK in the command tree


After clicking to start the attack, the card cannot be pasted in the middle of the antenna. You need to move to the edge until ABCD flashes, indicating that the card can be cracked, keep the position unchanged, and just wait.

```
p1:2c465 p2:2924 p3:a key:2980113670af
p1:33746 p2:2fc3 p3:b key:06be1e44e553
key_count:12
-----
Key found:ffffffffffff
Found valid key ffffffffffff
proxmark3>
```

- i. After completion, the result as shown in the figure will be displayed, and the 0 sector key is in the red frame.
- ii. If the card is not supported, or if the card is not put in, it will freeze after ten seconds, just reconnect PM3. You can use the complimentary M1 S50 to practice first.
- iii. **Matters needing attention:**
- iv. **Not all cards can be cracked smoothly, and sometimes it takes a chance.**
- v. **The UID card does not support cracking, nor does it need to be cracked, and the data can be read directly without a password**

b) Use the default passwords commonly used by the card manufacturers to test the card, and scan the sectors to see if there is a default key.

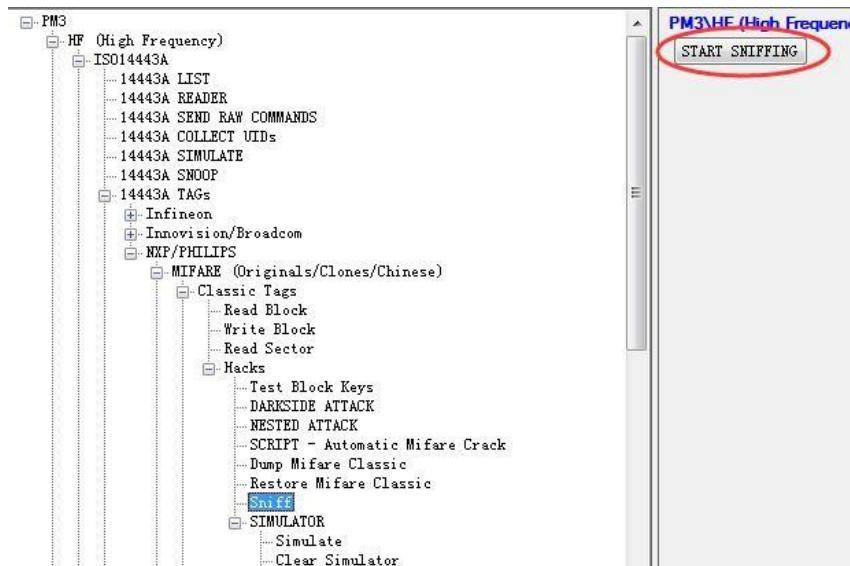
i. Send command: hf mf chk *?, or click in the command treeTest Block Keys

Put the card first, and scan the default password

```
No key specified, trying default keys
chk default key[ 0] ffffffffffffff
chk default key[ 1] 000000000000
chk default key[ 2] a0a1a2a3a4a5
chk default key[ 3] b0b1b2b3b4b5
chk default key[ 4] aabbccddeeff
chk default key[ 5] 4d3a99c351dd
chk default key[ 6] 1a982c7e459a
chk default key[ 7] d3f7d3f7d3f7
chk default key[ 8] 714c5c886e97
chk default key[ 9] 587ee5f9350f
chk default key[10] a0478cc39091
chk default key[11] 533cb6c723f6
chk default key[12] 8fd0a4f256e9
--sector: 0 block: 3, key type:A, key count:13
Found valid key:[ffffffffffff]
--sector: 1, block: 7, key type:A, key count:13
Found valid key:[ffffffffffff]
--sector: 2, block: 11, key type:A, key count:13
Found valid key:[ffffffffffff]
```

- ii.** As shown in the figure, the top 12 common default passwords recorded in the dictionary will be used to verify the card in turn. If the red box "Found valid key:[ffffffffffff]" appears, it means that the corresponding key is found. The content of the key is "ffffffffffff", and the box above is the sector number corresponding to the key.
- iii.** If the card does not have a default key, there will be no such prompt.
- iv. Matters needing attention :**

Sometimes there may be minor bugs in scanning the default key, so the results must be verified .


Principle

Pre-stored 12 sets of world-wide, factory default keys for the card, and test them one by one. The factory default of domestic cards is generally "ffffffffffff".

c) (Need to go to the scene) Put the antenna between the card and the card reader to sniff the communication data and extract a sector key.

i. Send command: hf mf sniff, or click Sniff or SNOOP in the command tree

The password obtained by sniffing cannot be specified. It is the sector of the card that the card reader has accessed to obtain which code. When other codes cannot be obtained, only the data of these sectors can be used, and no copying is required. The data of the entire card.

After clicking to start sniffing, the PM3 high-frequency card reading area is sandwiched between the card and the card reader, and then the card is swiped. None of the three should be placed too close, and there should be no metal shielding on both sides.

卡片

PM3

读卡机

In general, you can first stick PM3 on the card reader very close to the position of PM3 and the card reader, and then swipe the card on top of PM3 several times to obtain the most stable data, but the card reading distance will be very close, if you read the card If the card cannot be recognized by the machine, you can gradually increase the distance between the PM3 and the card reader until the card can be swiped normally, the effect is the best. When sniffing, make adjustments according to the actual situation.

```
received trace len: 135 packages: 1
tag select uid:b2 a6 de 1d atqa:0x0004 sak:0x08
RDR(0):60 21 7e 4b
TAG(1):f8 0e ee 3c ← tag challenge
RDR(2):4e c8 84 03|d2 dd 51 80 ← reader challenge response
TAG(3):2b b1 7b 5e ← tag response
RDR(4):c2 12 47 a4
TAG(5):d1 d9 0a 56 e4 ef 4e e0 f6 76 ca bb 98 a2 a6 72 46 da
RDR(6):4f 0d 44 46
```

As shown above, after swiping the card once, take it away and wait for a few seconds, the computer will return the sniffed data.

Pay attention to looking for the data starting with 60 or 61, 60 means to use A password to access, 61 means to use B password. At the beginning, RDR is the instruction issued by the card reader, and TAG is the instruction issued by the card. The red circle indicates that the card reader has accessed the 21st block. 21 is hexadecimal, converted to decimal is 33. The first box "b2a6de1d" is the UID of the card. The second box "f80eee3c" is the tag challenge (number of card challenges). The third box "4ec88403" is the reader challenge (the number of reader challenges), the

fourth box "d2dd5180" is the reader responses (the number of reader responses), and the fifth box "2bb17b5e" is the tag responses (card response) number)

Fill in the "cryptoui.exe" software one by one. (In the "Gadgets" folder)

Click crak key to calculate the key. The conclusion is: the card reader uses A to access the 33rd block and the password used is FFFFFFFFFFFF

v. Matters needing attention

When sniffing, the antenna must be between the card and the card reader. If the sequence is wrong, complete data will not be obtained.

The card reader must be the one that usually reads this card, not necessarily a card issuer. If the key is not available, it may be that the card reader did not use the password to access the card sector, or it may be due to the poor signal of the card reader.

If it is not allowed to bring computers on site. When you want to sniff offline, you need to flash the firmware to version 816.

The command used under 816 is SNOOP instead of Sniff. After sending the command, turn on the power switch, unplug the USB, approach the card reader with the card, and swipe back and forth a few times until the A light goes out. Plug it back into the computer and use hf 14a list to view it. You may reset it first, but the data is still there. After waiting for a few seconds, send hf 14a list again to view the data. Never turn off the PM3 power switch, otherwise data will be lost. The following figure is a comparison of the difference between the two instruction

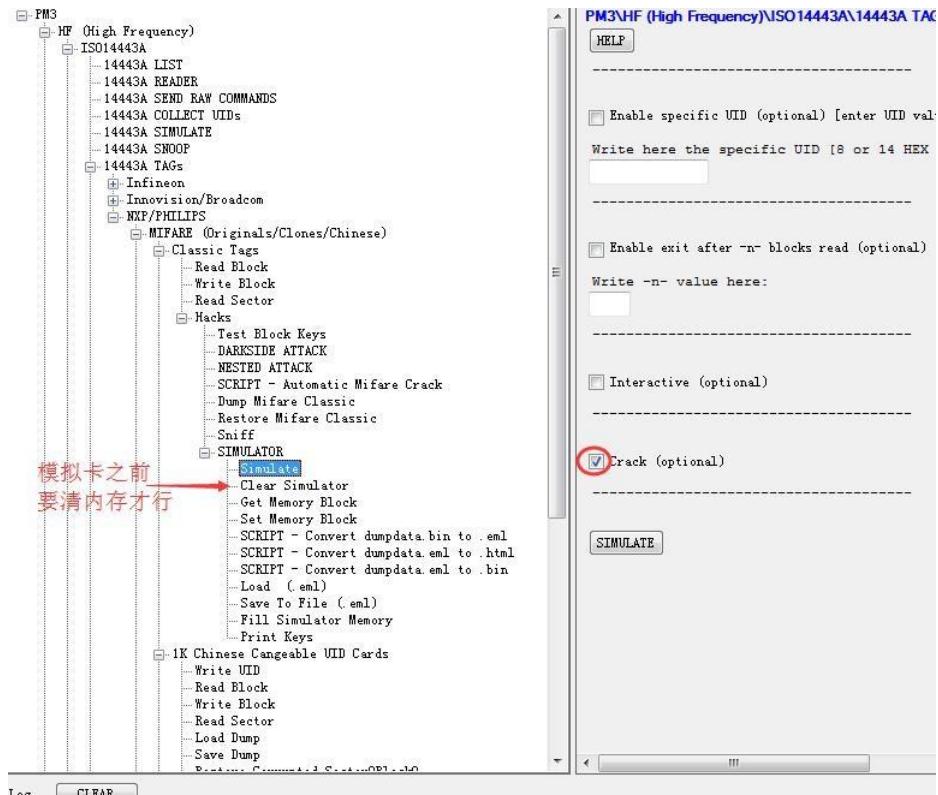
	848 firmware (old)		2.X.0 under firmware (new)	
	SNOOP order	Sniff order	SNOOP order	Sniff order
Features	Sniffing card readers and card integrity Interactive data	no	Sniffing card readers and card integrity Interactive data	Only show the key to decrypt the M1 card data
usage	Pre-stored in PM3, use hf 14a list Check	no	Pre-stored in PM3, use hf list 14a Check	Display the decrypted key data on the computer in real time
Record length	very short	no	very long	unlimited
Data integrity	Incomplete, easy Lost packets, pick the machine	no	Data is complete and clear Clear and clearly annotated	Data is complete and clear Clear and clearly annotated
Offline recording	support	no	Don't support	Don't support
Record object	Support 14443A Any card	no	Support 14443A Any card	Withdraw only M1 card Decrypt data

Need to pay attention to SNOOP, it will not pick automatically. Need to manually find out

the valid data segment. Generally judged by similar data length and form.

As shown in the figure above, the beginning of 93 70 means that the card with the UID of b2 a6 de 1d is selected, and there will often be valid data behind. After the card reader selects the card, it is ready to access the card.

481660 | 492124 | Rdr | 93 70 b2 a6 de 1d d7 f8 60


principle

The M1 card uses the crypto1 algorithm when the card reader and the card exchange data and passwords.

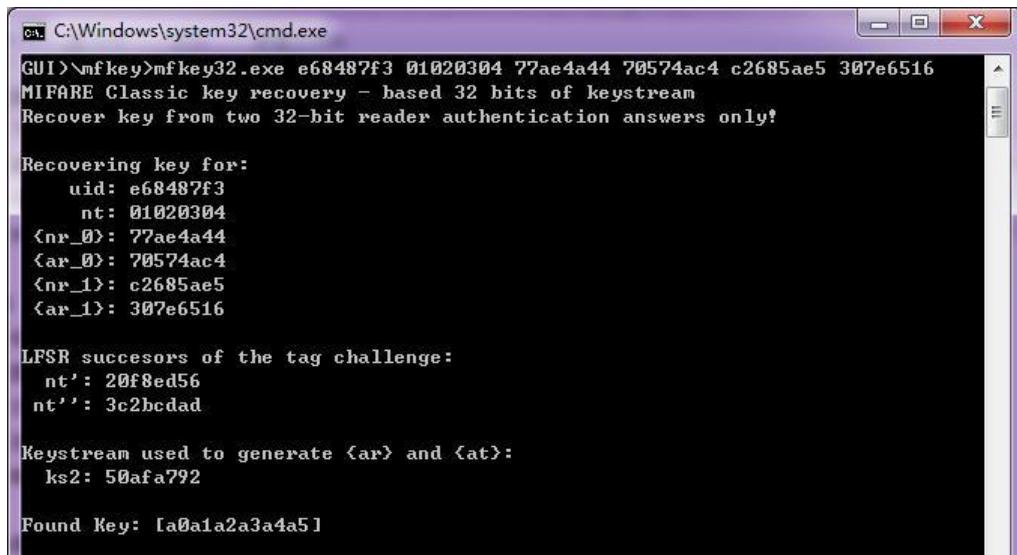
Even if the same card and the same password, the interaction data obtained by sniffing is random, but as long as the four sets of random arrays and UID mentioned above are obtained, the key can be reversed.

(Need to go to the scene) Simulate the antenna as an M1 card, induce the card reader to read the card, capture the data, and solve a sector key.

i. **Send command: hf mf sim x, or click SIMULATOR in the command tree**

You can leave out the UID to be simulated on the right, PM3 will automatically select a default UID, as shown in the figure below

```
proxmark3> hf mf sim      x
      uid:N/A, numreads:0, flags:8 (0x08)
proxmark3>
proxmark3> #db# 4B UID: e68487f3
```


Then swipe the card near the card reader. After finishing press the button

to exit, it will automatically return to the data. Such as :

```
'mfkey32 e68487f3 01020304 91641e54 0b7b4cd4 94199bb6 b7de6d8b
First open the following batch file, modify the data in it and replace it with your own data.
```


After the replacement is complete, double-click to open the batch and get the result:


```
GUI>\mfkey>mfkey32.exe e68487f3 01020304 77ae4a44 70574ac4 c2685ae5 307e6516
MIFARE Classic key recovery - based 32 bits of keystream
Recover key from two 32-bit reader authentication answers only!

Recovering key for:
uid: e68487f3
nt: 01020304
{nr_0}: 77ae4a44
{ar_0}: 70574ac4
{nr_1}: c2685ae5
{ar_1}: 307e6516

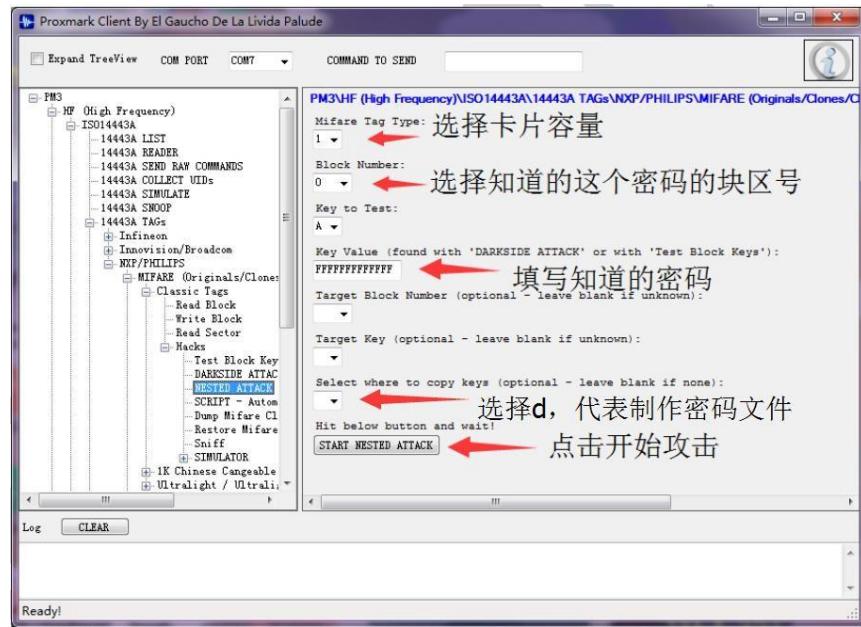
LFSR successors of the tag challenge:
nt': 20f8ed56
nt'': 3c2bcdad

Keystream used to generate {ar} and {at}:
ks2: 50afa792

Found Key: 1a0a1a2a3a4a51
```

v. Matters needing attention

Note that this function is not 100%, and it is not compatible with some card readers and cannot be returned correctly.

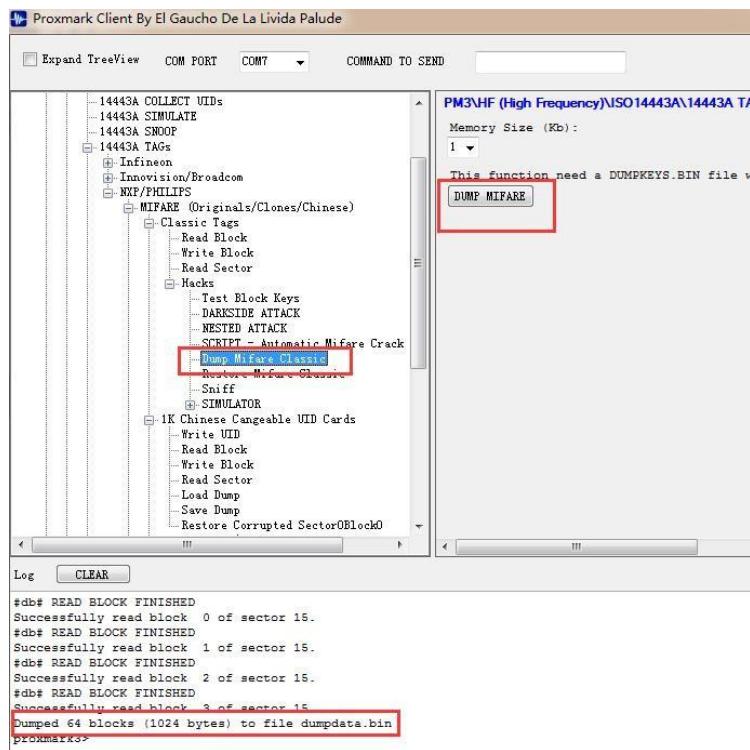

1 Obtain all sector keys through known keys

Use the command, [hf mf nested 1 0 A ffffffff d] one password and more

passwords

This is to use the nested authentication vulnerability to use the known key of any sector to obtain the keys of all sectors. This vulnerability has a higher success rate. In the example, it represents the A key ff of sector 0. You can see that a "d" has been added to the tail cone,

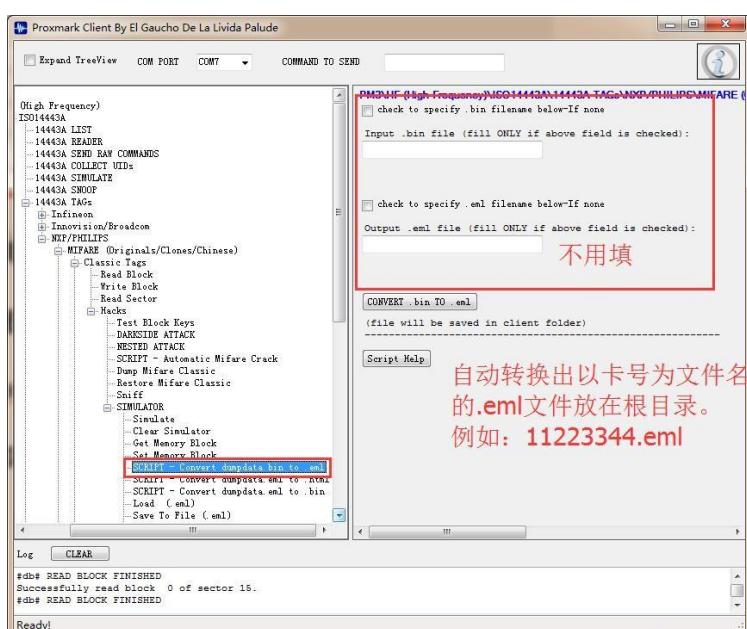
If d is not added, the key file will not be output. If d is added, the key will be saved to the file dumpkeys.BIN. When using nested, pay attention to choosing the correct card capacity. 1-4K.

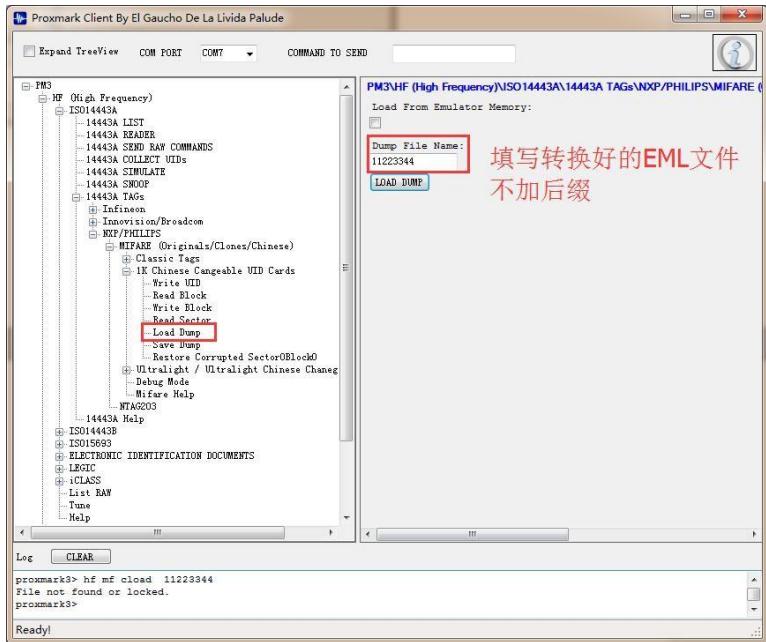


The picture below is a screenshot of a successful attack :

```
proxmark3> hf mf nested 1 0 A FFFFFFFFFFFF
Testing known keys. Sector count=16
nested...
Time in nested: 4.010 (inf sec per key)
-----
Iterations count: 0
|---|-----|-----|-----|-----|-----|-----|
|sec|key A |res|key B |res|-----|-----|
|---|-----|-----|-----|-----|-----|-----|
|000| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|001| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|002| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|003| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|004| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|005| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|006| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|007| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|008| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|009| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|010| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|011| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|012| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|013| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|014| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|015| ffffffff | 1 | ffffffff | 1 | ffffffff | 1 |
|---|-----|-----|-----|-----|-----|-----|
proxmark3>
```

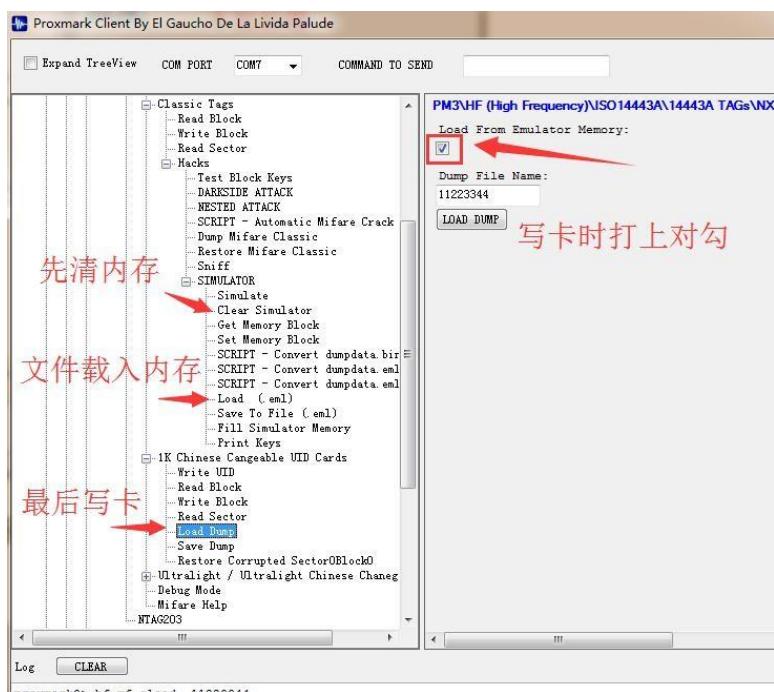
RES代表结果
如果是1，代表密码正确
如果是0，代表密码无效


1. Read the card data to the computer


Just use the instructions above. The read card data file is saved in the root directory , dumpdata.bin

2. Read the card data in the computer and write it into the UID card

First, we need to convert the dumpdata.bin file to the xxxx.eml format. This format can be opened and viewed with Notepad before it can be retrieved and written into the UID card by PM3..


As shown in the figure below, retrieve the .eml file and write it to the UID card, and the cloning is complete.

If the card cannot be read after writing, or the

data is disordered , You can use the following

methods to reliably write :

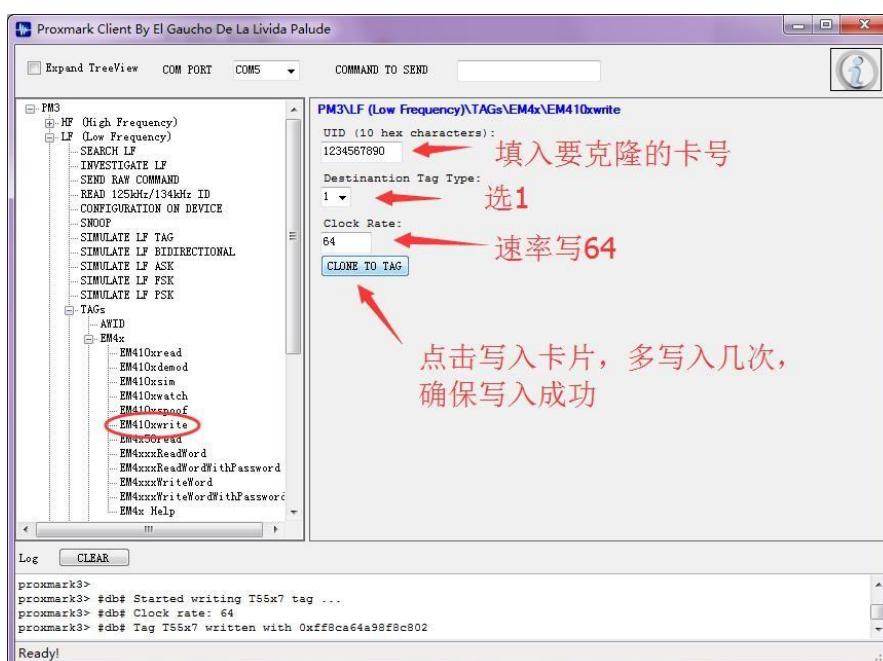
Check the data and complete the clone

Low frequency card operation:

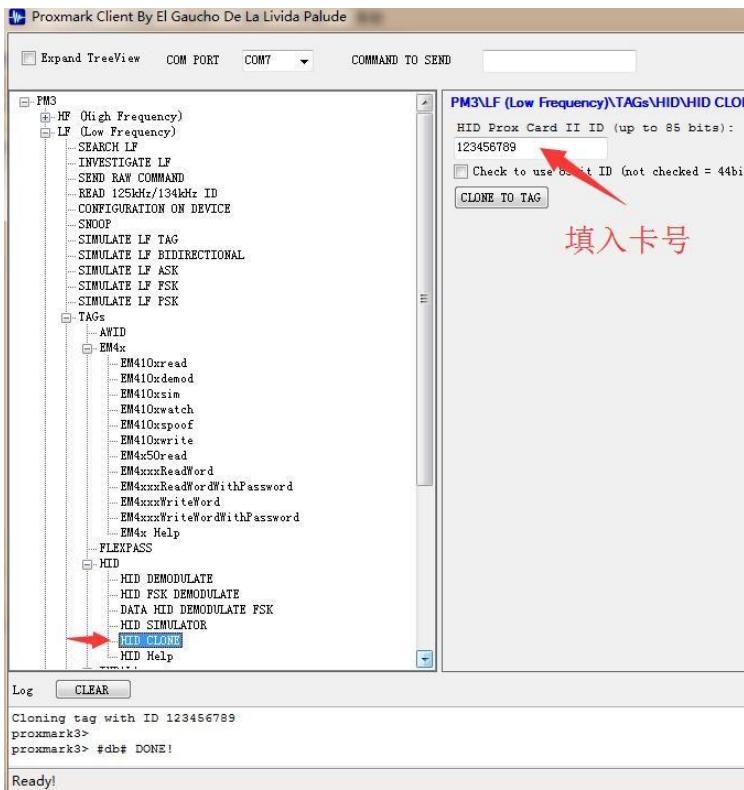
1. Read ID, HID, INDALA and other cards:

First, EM4X is the chip of the ID card we often say. It is a low-frequency card and needs to be read by a circular antenna.

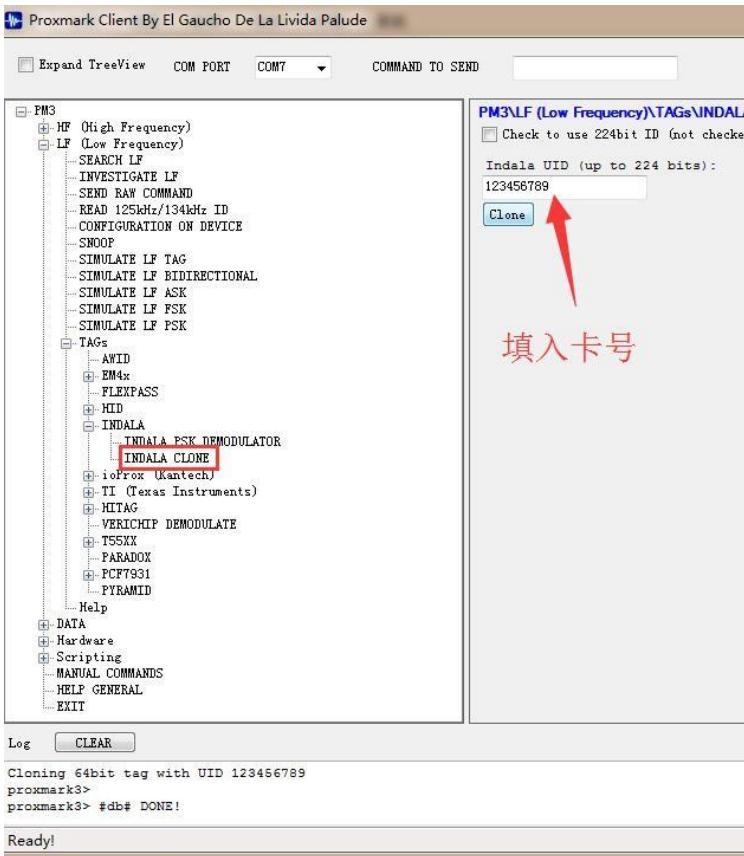
After reading the card, the following data will be displayed, "Valid EM410X ID Found!" means that the serial number of the ID card has been read..

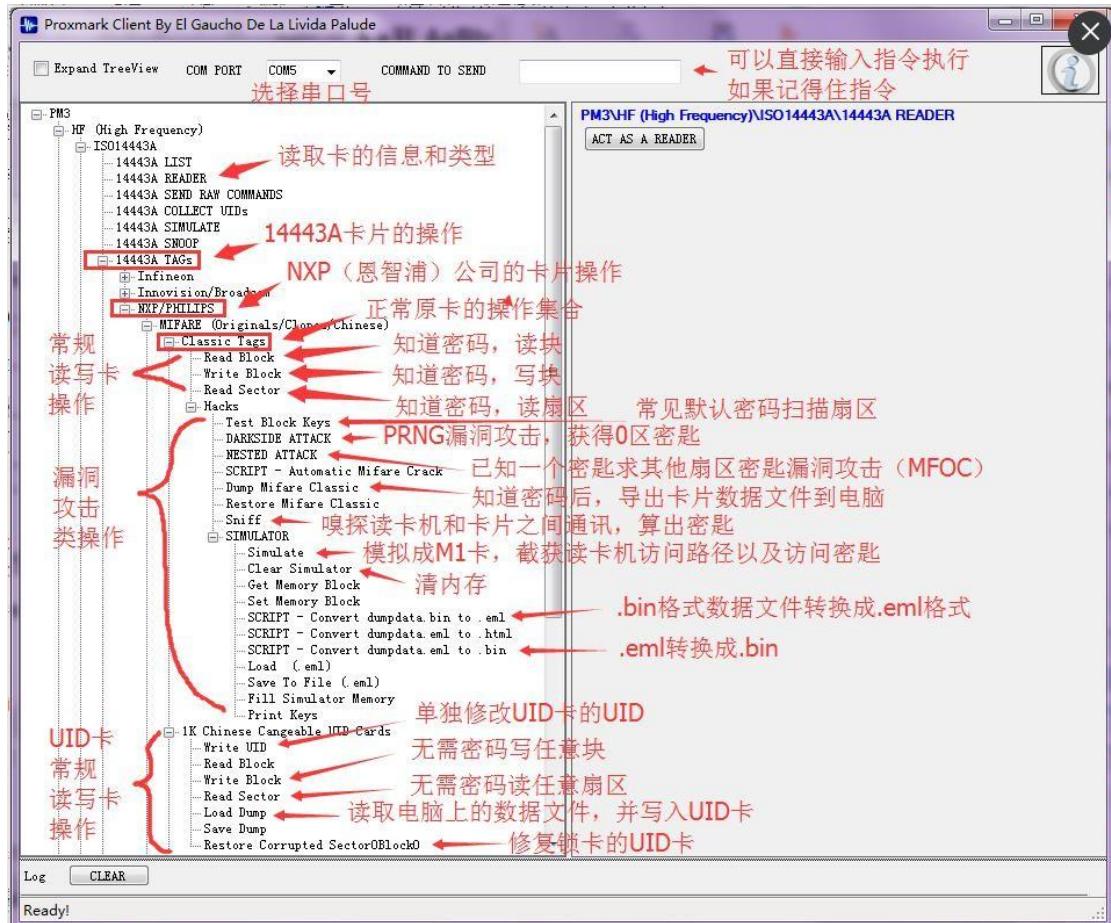

```
proxmark3> lf search
#db$ Sampling config:
#db$  [g] divisor:      95
#db$  [b] bps:          8
#db$  [d] decimation:    1
#db$  [a] averaging:    1
#db$  [t] trigger threshold: 0
#db$ Done, saved 40000 out of 40000 seen samples at 8 bits
#db$ buffer samples: b9 b5 b1 ad aa a7 a4 a0 ...
Reading 20000 bytes from device memory
Data fetched
Samples @ 8 bits/smpl, decimation 1:1
NOTE: some demods output possible binary
if it finds something that looks like a tag
False Positives ARE possible
Checking for known tags:
EM410x pattern found: 克隆时需要用的
EM TAG ID : 1234567890 卡号
Unique TAG ID : 482cc41e09
Possible de-scramble patterns
HoneyWell IdentKey {
DEZ 8 : 05666960
DEZ 10 : 0878082192
DEZ 5.5 : 13398.30864
DEZ 3.5A : 018.30864
DEZ 3.5B : 052.30864
DEZ 3.5C : 086.30864
DEZ 14/IK2 : 00078187493520
DEZ 15/IK3 : 000309982797321
DEZ 20/ZK : 04080212061001140009
}
Other : 30864_086_05666960
Pattern Paxton : 308983440
Pattern 1 : 0xC9D049 - 13226057
Pattern Sebury : 30864 86 5666960 (hex: 7890 56 567890)
Valid EM410x ID Found!
proxmark3>
```

Record the serial number behind the EM TAG ID in the figure above, and that's it.


If it is an HID card, it will display [HID]. If it is INDALA, it will display [INDALA].

1. Write different types to T5577 card


to clone the card : Clone into ID card :


Clone into HID card :

Clone into INDALA card :

七 . Software introduction :

The figure is a preliminary translation and description of the software interface to help understand the meaning of the software instruction tree.

How to avoid the trouble of restarting the software multiple times: PM3 often crashes when running some commands and needs to reconnect to the USB. Often the software also needs to be reopened. If you disconnect the USB, select the serial port to another number, plug in PM3, and then select the serial port to the correct number after the ding-dong sound. This can avoid the trouble of restarting the software every time.

八 . Note :

1. Hardware matters :

As PM3 is developed by hackers amateurs, it does not consider too much in terms of ease of use and humanization, so it often crashes, some commands do not have a clear success and failure response, and some details are not handled well.

Therefore, when the device is running the attack command, if the card does not support or does not put the card, it will directly crash. After the crash, the device needs to be plugged and unplugged at any time to force the computer's serial port to connect normally. During the decryption operation, the ABCD four LEDs on the device should be used as the operating basis. If the LED is flashing, it means it is in progress. If it is completely off or always on, it means the attack has failed. Waiting for all to be off means it has stopped running. Unplug and plug the device again.

2. Software matters :

Computer software

The software can use the CMD command line, the English GUI with the blue icon, or the Chinese GUI we opened.

	Official CMD command line (PM3 command console.bat)	GUI (Proxmark Tool.exe)	GUI (Proxmark3_EASY_GUI.exe)
principle	调用Proxmark3.exe	调用Proxmark3.exe	调用 Proxmark3.exe
Report poison	no	no	Will misidentify and report poison
Read and write UID card	Read and write, compatible with display "NO" UID card	Read and write, compatible with display "NO" UID card	Read and write, only compatible with reading and writing Good UID card
Read and write FUID/CUID	Read and write, need manual order Solo block	Read and write, need manual order Solo block	Read and write, after loading the file Write full card
Ease of use	Not easy to use, need to recite English Text instruction	Generally easy to use, need to watch English Text operation, comprehensive functions	Easy to use, extract frequently used functions Later, a small function was added
compatibility	High compatibility, cross-platform	Windows Good platform compatibility	Sometimes it will flash back when open, open Can be solved twice
Keychain card DUMP data	There is no automatic reread mechanism, Easy to interrupt and not smooth.	There is no automatic reread mechanism, Easy to interrupt and not smooth.	Added an automatic reread mechanism, The small card is also smoothly read

Device firmware

The firmware is arranged from the old to the new:

r486→756→816→848→852→1.0.0→2.0.0→2.5.0 old firmware before entering hw version to directly see the version number.

After 1.0.0, only the date will be returned, and the version number will be judged by the date.

2.0.0 : #db# bootrom: /-suspect 2015-04-02 15:12:04

#db# os: /-suspect 2015-04-02 15:12:11

#db# HF FPGA image built on 2015/03/09 at 08:41:42

2.5.0 : bootrom: /-suspect 2015-11-19 10:08:02

os: /-suspect 2015-11-19 10:08:09

LF FPGA image built for 2s30vq100 on 2015/03/06 at 07:38:04

HF FPGA image built for 2s30vq100 on 2015/11/ 2 at 9: 8: 8

九 . Instruction introduction

【Hw tune】Antenna tuning voltage test

The command is used to test the antenna resonance voltage.

When testing, the antenna should be upright, away from metal and away from the card, in order to obtain an accurate voltage. Sometimes the voltage may be lower than the nominal value. The voltage of the antenna does not affect any operation and function. In fact, it can be used normally if the high frequency exceeds 5V and the low frequency exceeds 10V. It's just that the higher the voltage, the farther the card reading distance will be.

【Hf 14a reader】 Type of card reader

As a card reader, read the high-frequency card ID, test the type of the high-frequency card, put the card first, and then execute the command.

[Hf mf chk 0 A ffffffff] Check password

For M1 card, check whether the A password of sector 0 is ff....

[Hf mf chk *1? T] Check the default password

For M1 cards, check whether there are default passwords in all sectors, that is, automatically use the default passwords in the dictionary to verify 16 sectors. (Most of the cards are used to modify the password of the used sector, the unused is the factory default password, the default password of individual manufacturers will be different, PM3 built-in more than ten common default passwords)

[Hf mf mifare] PRNG attack

This is a test for a PRNG vulnerability. The password of the first sector can be calculated directly through the vulnerability, which is also called blasting. Not all cards support this vulnerability. Sometimes the English "Can't select card" will be prompted during the process. This is a BUG prompt, please ignore it. If ABCD keeps flashing during operation, it means it can be cracked, just wait for the result.

For unsupported cards, no matter how you adjust the card position, the LED will not change, and PM3 will eventually reset and drop.

(PRNG vulnerability introduction:

<http://radiowar.org/security/%e4%bb%8e%e4%b9%8c%e4%ba%91%e7%9a%84%e9%94%99%e8%af%af%e6%bc%8f%e6%b4%9e%e5%88%86%e6%9e%90%e7%9c%8bmifare-classic%e5%ae%89%e5%85%a8.html>

[Hf mf nested 1 0 A ffffffff d] One password has more passwords

This is to use the nested authentication vulnerability to use the known key of any sector to obtain the keys of all sectors. This vulnerability has a higher success rate. In the example, it represents the A key ff of sector 0. You can see that a "d" has been added to the tail cone, If d is not added, the key file will not be output. If d is added, the key will be saved to the file dumpkeys.BIN. When using nested, pay attention to choosing the correct card capacity. 1-4K.

[Hf mf dump] Read card data and save it in dumpdata.BIN

This command reads and saves the data of all sectors of the card in the binary file dumpdata.BIN on the premise of obtaining all the keys. Then you can use "UltraEdit" to open the file and cross-compare with other data. The UltraEdit installation package is in "Gadgets".

[Hf mf cload e dumpdata.eml] Clone data to UID card

Write dump data to UID card. Followed by the data file name "dumpdata.eml". The dumpdata.bin generated earlier cannot be imported directly, it needs to be converted to eml and then imported. The card data in Eml format must contain complete 64 rows of data. After the conversion is completed, the integrity of the dumpdata file needs to be confirmed. (The conversion format can be converted with its own script)

After cloning is completed, we can DUMP the UID card data again in the same way for comparison. Or read some sectors individually for comparison.

[Hf mf csetuid 1234bcdf] Modify the UID of the UID card

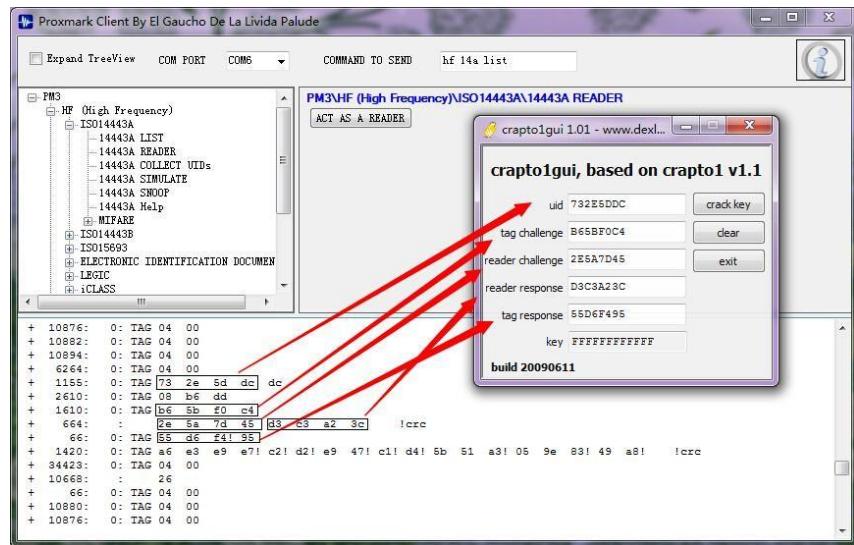
Modify the UID of the UID card to 1234bcdf, and the UID is four bytes.

[hf mf eclr] Clear the cache

Before monitoring the card reader without a card, be sure to clear the cache.

[Hf mf sim x] No card monitor card reader

The antenna of PM3 is simulated as a card, which induces the card reader to read the card, and captures the verification key issued by the card reader.


Cannot operate offline, press the button to exit after monitoring.

[Hf 14a snoop] There is a card to monitor the card reader to get a secret

2.0.0 Firmware online monitoring:

Click SNOOP or enter the command directly to enter the monitoring mode.

The antenna and the card are close to the card reader. The card reader can operate the card. The four LEDs will change. After the monitoring is completed, press the button to exit. The four LEDs will go out. Then send the command hf list 14a to view the monitoring results.

Find the data structure group as shown in the figure above, and that's it. If there is no structure group as shown in the figure above, there may be the following reasons:

1. The card reader only reads the UID of the card without performing password verification operations.
2. The signal of individual card readers is poor and no signal can be recorded.

3.The distance between the card and the PM3 antenna should be a certain distance, not too far nor too close, about one centimeter. The password can be calculated by entering the corresponding data into the gadget.

[Lf em4x em410xwatch] Read low frequency card ID

This command is to read the ID of the low-frequency card. A low-frequency antenna is required. The command is executed first and then the card is released. Colleagues who record the ID need to pay attention to the value of the clock rate, which is generally 64.

(Small knowledge: em4x is the chip model of most fixed ID low-frequency cards. Generally, the fixed ID card is printed with a string of numbers on the card. The unique ID number is fixed at the factory and cannot be modified.)

[Lf em4x em410xwrite 12345bcdef 1 64] Write ID to T5577 card

Write the ID number into the T5577 card. The length is 10-bit hex. In the example, 12345bcdef is the ID, the following "1" is the card type of T55X7, and 64 is the clock rate.

All the above instructions can be found in the instruction tree on the left side of the host computer software. Move the mouse on the right side to the corresponding box, there are English prompts and user guides, and translations are not listed one by one.

Question collection:

<http://wiki.radiowar.org/%E9%97%AE%E9%A2%98%E6%B1%87%E9%9B%86#.>

[E4.B8.BA.E4.BB.80.E4.B9.88.E4.BD.BF.E7.94.A8cload.E5.AF.BC.E5.85.A5.E6.95.B0.E](#)

[6.8D.AE.E7.9A.84.E6.97.B6.E5.80.99.EF.BC.8C.E6.8F.90.E7.A4.BA.E6.89.BE.E4.B8.8](#)

[D.E5.88.B0.E6.96.87.E4.BB.B6](#)

Instruction set reference:

<http://wiki.radiowar.org/Proxmark3%E5%91%BD%E4%BB%A4%E5%B8%AE%E5%8A%A9>

Use case reference:

<http://wiki.radiowar.org/Proxmark3%E4%BD%BF%E7%94%A8%E6%A1%88%E4%BE%8B>

FCC WARNING

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception,

which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

To maintain compliance with FCC's RF Exposure guidelines, This equipment should be installed and operated with minimum 20cm distance between the radiator and your body: Use only the supplied antenna.