Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.231

Report Reference No...... CTA22030300901

FCC ID.....: 2A4V4-916

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Mar. 03, 2022

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTATESTIN

Applicant's name...... Shenzhen shi min zhi sheng mao yi you xian gong si

Shenzhen Guangdong, 518000, China

Test specification:

Standard FCC Part 15.231

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Wireless Dog Fence

Trade Mark YQJ

Manufacturer Shenzhen Yingqiji Electronics Co., Ltd.

Model/Type reference...... 916

Listed Models N/A

Ratings 5V===1A

Modulation: ASK

Hardware version PT04-CONTROL-V100

Software version V1.0

Result..... PASS

Page 2 of 24 Report No.: CTA22030300901

TEST REPORT

Wireless Dog Fence **Equipment under Test**

Model /Type 916

Listed Models N/A

Applicant Shenzhen shi min zhi sheng mao yi you xian gong si

1101, East of Yihai Square, Chuangye road, Yuehai Street, Address

Shenzhen Guangdong, 518000, China

Manufacturer Shenzhen Yingqiji Electronics Co., Ltd.

Address Room 402, Building A, Xixiang Oyster Industrial Park, No. 162,

Fengtang Avenue, Heping Community, Fuhai Street, Baoan District,

Shenzhen, China

Test Result:	PASS
E CTA	ING

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 24 Report No.: CTA22030300901

Contents

		Contents	
	1	TEST STANDARDS	4
	The state of the s	CTA	-ING
	2	SUMMARY	5
	_		CTA
	2.1	General Remarks	
	2.1		5 5 5 5 5
	2.2	Product Description Equipment Under Test	5
	2.3		3
	2.4	Short description of the Equipment under Test (EUT)	5
		Block Diagram of Test Setup	6
	2.6 2.7	Special Accessories Related Submittal(s) / Grant (s)	6
	2.7	Modifications	6
	2.0	Modifications	G
	<u>3</u>	TEST ENVIRONMENT	
	3.1	Address of the test laboratory	CTATESTING 7
	3.1	Address of the test laboratory	
		Test Facility	7
	3.3 3.4	Environmental conditions Summary of measurement results	
			8 8
	3.5	Statement of the measurement uncertainty	
	3.6	Equipments Used during the Test	8
		TES	
	4	TEST CONDITIONS AND RESULTS	
	311	ESI"	
	4.1	AC Dawer Canducted Emission	.51G 40
	4.1	AC Power Conducted Emission	-STING 10
	4.2 4.3	Radiated Emission	13 17
	4.3 4.4	20dB Bandwidth Deactivation Time	CTA 17
		Antonna Paguirement	CTATESTING 10 13 17 18 19
	4.5	Antenna Requirement	19
	<u>5</u> N	TEST SETUP PHOTOS OF THE EUT	
	STIME		
TATE	6	PHOTOS OF THE EUT	21
	_		
		CTATESTIN'	
		CIN	

Page 4 of 24 Report No.: CTA22030300901

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.231: Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 24 Report No.: CTA22030300901

SUMMARY

2.1 General Remarks

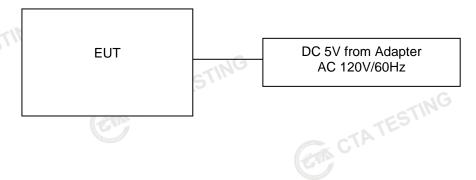
2.1 General Remarks		
Date of receipt of test sample	are to	Feb. 17, 2022
	(FALL)	
Testing commenced on		Feb. 18, 2022
Testing concluded on	:	Mar. 01, 2022

2.2 Product Description

Testing commenced on	: Feb. 18, 2022	
Testing concluded on	: Mar. 01, 2022	
2.2 Product Description	on	
Product Name:	Wireless Dog Fence	
Model/Type reference:	916	
Power supply:	DC 5V from adapter	
Adapter information:	Model: SY-1029 Input: 100-240V~, 50/60Hz, 0.1A Output: 5V==-1000mA	ESTING
Modulation:	ASK	
Operation frequency:	433.92MHz	
Channel number:	1	
Antenna type:	External antenna	
Antenna gain:	2.0dBi	
Test Sample ID:	CTA220303009-1# (Engineer sample) CTA220303009-2# (Normal sample)	
Note:Antenna gain is provide b		
2.3 Equipment Under	Test	
Power supply system u	itilised	
Power supply voltage	. ○ 230V / 50 Hz ○ 120V / 60Hz	G V

2.3 Equipment Under Test

2.3 Equipment Under	Test				CTA	
Power supply system u	ıtilised					CTATE
Power supply voltage	:	0	230V / 50 Hz	С	120V / 60Hz	AN CAN
ING		0	12 V DC	С	24 V DC	
5/,,,		•	Other (specified in	blank below	<u>')</u>	


DC 5V from adapter

Short description of the Equipment under Test (EUT)

This is a Wireless Dog Fence.

For more details, refer to the user's manual of the EUT.

Block Diagram of Test Setup

Page 6 of 24 Report No.: CTA22030300901

Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
1	/	L CIP	/	TING	/
/	/	(-1)	/	ES 1	/
/	/	1	/ GTA	/	/
/	/	/	1	/	1

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.231 of the FCC Part 15, Subpart C Rules.

No modifications were implemented to meet testing criteria.

Page 7 of 24 Report No.: CTA22030300901

TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions 3.3

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

tadiated Elillocioni	
Temperature:	24 ° C
	C.T.A.
Humidity:	46 %
	23.000
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

to i ewer conducted Emission:	
Temperature:	25 ° C
(lb)	
Humidity:	47 %
TIN	
Atmospheric pressure:	950-1050mbar

Conducted testina:

Atmospheric pressure:	950-1050mbar	
Sandinated testification CTA		
Conducted testing:		4E2,
Temperature:	24 ° C	CATT
Humidity:	46 %	
	75 are	
Atmospheric pressure:	950-1050mbar	

Page 8 of 24 Report No.: CTA22030300901

3.4 Summary of measurement results

FCC and IC Requirements		
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.231(e)	Transmission Time	PASS
FCC Part 15.231(e)	Electric Field Strength of Fundamental Emission	PASS
FCC Part 15.205 &15.209& 15.231(e)	Electric Field Strength of Spurious Emission	PASS
FCC Part 15.231(c)	-20dB bandwidth	PASS

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

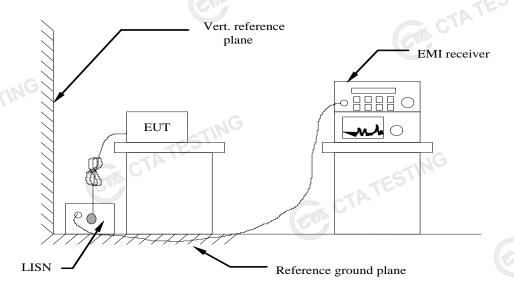
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
'G	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
	Spectrum Analyzer	G Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
	Temperature and	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
CTATE	Room 106, Buildir Tel:+8	ng 1, Yibaolai Industrial	n CTA Testing Technol Park, Qiaotou Commu E-mail:cta@cta-test.c	nity, Fuhai Street,	Bao'an District, Sl ww.cta-test.cn	nenzhen, China
CTATE	Temperature and	Shenzhei ng 1, Yibaolai Industrial	n CTA Testing Techno Park, Qiaotou Commu	ology Co., Ltd. nity, Fuhai Street,	Bao'an District, Sh	l

Page 9 of 24 Report No.: CTA22030300901


	humidity meter	G				
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
CTATE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
C	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
					2021/08/06	ATEST

Page 10 of 24 Report No.: CTA22030300901

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

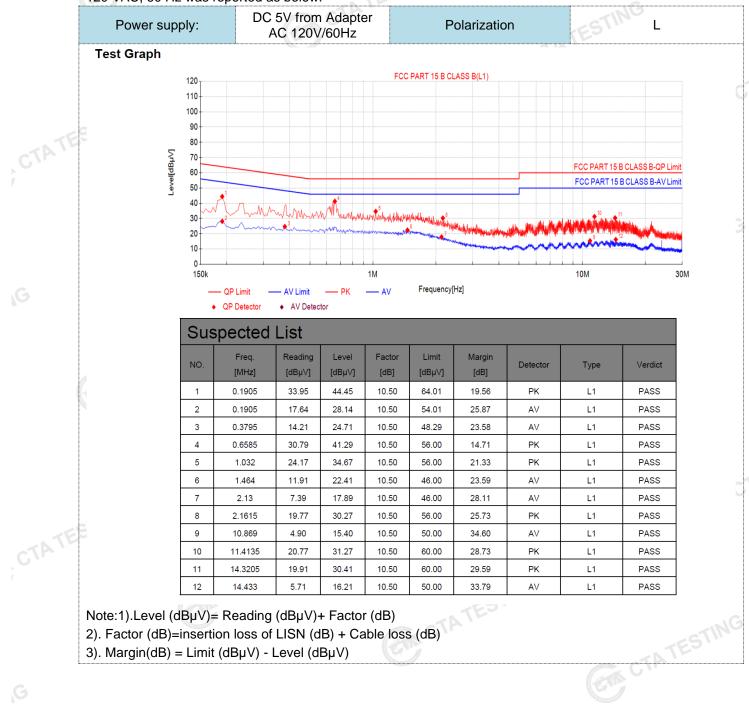
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

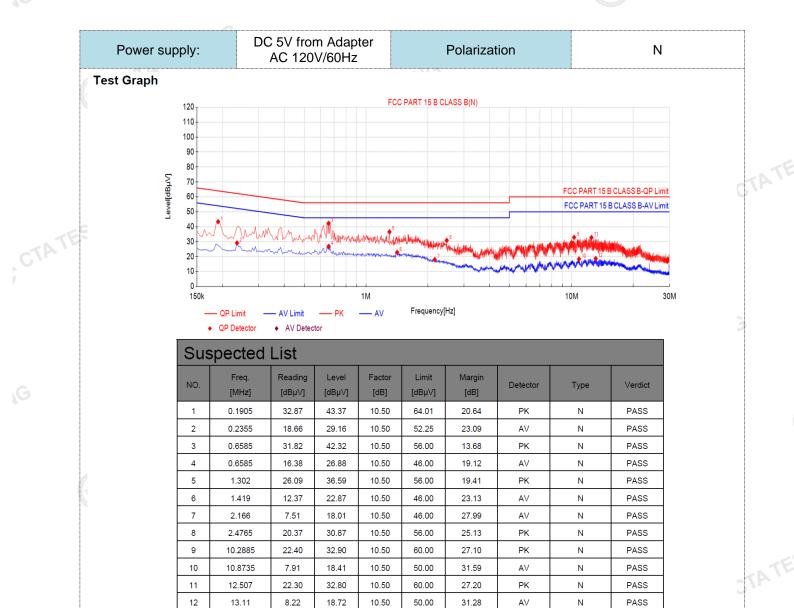

Fraguenov rongo (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the freque	ency.	·			
Em CT		TATESTING			

Page 11 of 24 Report No.: CTA22030300901

TEST RESULTS

Remark:

1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Note:1).Level ($dB\mu V$)= Reading ($dB\mu V$)+ Factor (dB)

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

Page 12 of 24 Report No.: CTA22030300901

Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dBµV) Level (dBµV)

CTATESTING

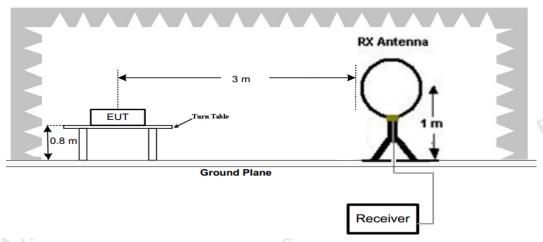
Page 13 of 24 Report No.: CTA22030300901

Radiated Emission

Limit

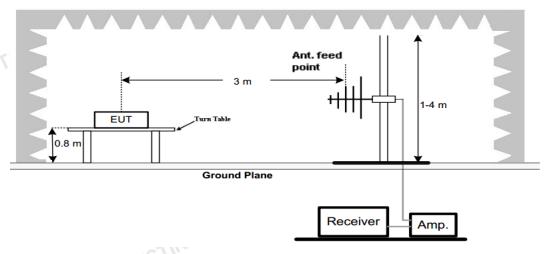
For intentional device, according to 15.209(a) the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table.

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
TE	88-216	3	43.5	150
CTA	216-960	3///6	46.0	200
Ì	Above 960	3	54.0	500

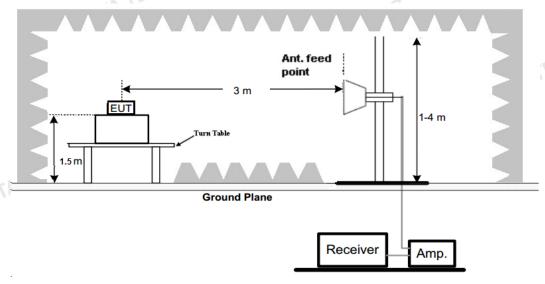

In addition to the provisions of 15.231(e) and RSS 210-A.1.4, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, μ V/m at 3 meters = (16.67 x f)-2833.33. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]


TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Page 14 of 24 Report No.: CTA22030300901

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.

Page 15 of 24 Report No.: CTA22030300901

TEST RESULTS

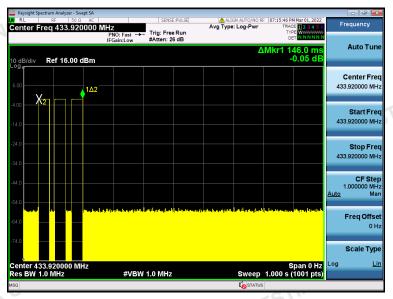
The emissions from 30MHz to 5GHz are measured peak and average level, below 1 GHz measured QP level, detailed test data please see below. Besides, we tested 3 directions and recorded the worst data.

	Emission Styles	Frequency (MHz)	PK Emission Level	Factor (dB)	Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Direction (H/V)
	Fundamental	433.92	70.20	-10.65	80.85	92.87	22.67	PK	Н
	Spurious	434.50	44.50	-10.27	54.77	72.87	28.37	PK	Н
	Harmonics	867.84	52.48	-6.35	58.83	72.87	20.39	PK	H
TE.	Harmonics	1301.76	50.51	-12.25	62.76	72.87	22.36	PK	H
CTATES			TING						
	Fundamental	433.92	71.10	-10.65	81.75	92.87	21.77	PK	V
	Spurious	434.50	45.50	-10.27	55.77	72.87	27.37	PK	V
	Harmonics	867.84	53.57	-6.35	59.92	72.87	19.30	PK	V
	Harmonics	1301.76	51.88	-12.25	64.13	72.87	20.99	PK ,	V
				-			Jan tie	L GTA	

Note:

- Emission level = Reading + Factor
- Factor = Antenna Factor + Cable Factor-Pre-amplifier Factor
- Margin= Limit-Emission level

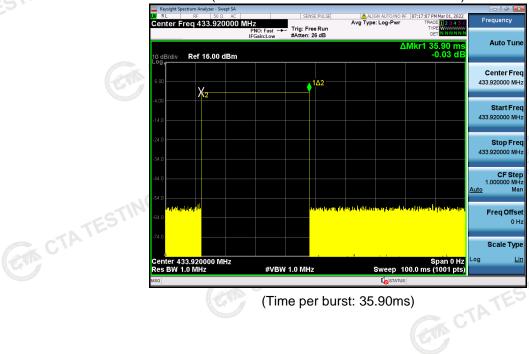
	Emission Styles	Frequency (MHz)	PK Emission Level (dBuV/m)	AV Factor (dB/m)	AV Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Direction (H/V)
	Fundamental	433.92	70.20	-2.88	67.32	72.87	5.55	Н
	Spurious	434.50	44.50	-2.88	41.62	52.87	11.25	Н
	Harmonics	867.84	52.48	-2.88	49.60	52.87	3.27	Н
	Harmonics	1301.76	50.51	-2.88	47.63	52.87	5.24	H
				1				
CTATES	Fundamental	433.92	71.10	-2.88	68.22	72.87	4.65	V
	Spurious	434.50	45.50	-2.88	42.62	52.87	10.25	V
	Harmonics	867.84	53.57	-2.88	50.69	52.87	2.18	V
	Harmonics	1301.76	51.88	-2.88	49.00	52.87	3.87	V
				(-44)				TES!"


Note:

- AV Emission level (dBuV/m)= PK Emission Level (dBuV/m)+ AV Factor(dB)
- 2. Margin= Limit-AV Emission level
- For AV factor, The device transmit cycle is 146ms, and in a 100ms period found 2 burst, the TX on time is 35.90ms per burst, the Duty Cycle and AV Factor can calculate as below:

Duty Cycle= (35.90 *2)/100=0.718

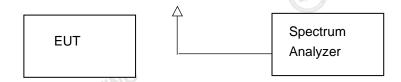
AV Factor=20*log(Duty Cycle)=20*log(0.418)=-2.88


(The plot of Duty Cycle See the follow page)

(Transmit cycle 146ms)

(2 Bursts found in 100ms observation time)

(Time per burst: 35.90ms)


Page 17 of 24 Report No.: CTA22030300901

4.3 20dB Bandwidth

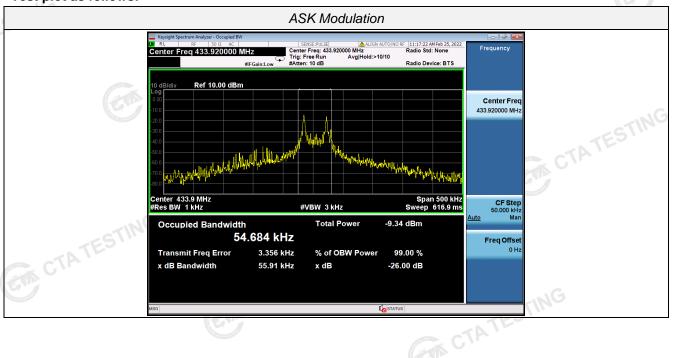
Limit

According to 47 CFR 15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

Test Configuration

CTATESTING **Test Procedure**

The 20dB bandwidth and 99% bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

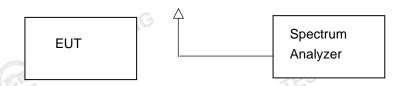

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Test Results

est Results		TE	STING			7
Modulation	Channel Frequency (MHz)	99% OBW (KHz)	20dB bandwidth (KHz)	Limit (KHz)	Result	
ASK	433.92	54.684	55.91	0.25%*433.92=1084.8	Pass	KA

Test plot as follows:


Page 18 of 24 Report No.: CTA22030300901

Deactivation Time

Limit

According to FCC §15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Test Configuration CTATESTING

Test Procedure

- The EUT was placed on a wooded table which is 0.8m height and close to receiver antenna of spectrum analyzer.
- 2. The spectrum analyzer resolution bandwidth was set to 1 MHz and video bandwidth was set to 1 MHz to encompass all significant spectral components during the test. The spectrum analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency.

TEST RESULTS

To market				-,NG	
Frequency (MHz)	Transmission time (S)	Limit (S)	Silent time (S)	Limit (S)	Result
433.92	0.146	1	10.71	30 times Transmission time; no less than 10s	Pass
Keysight Spectrum Analyzer - Sweet SA	SENSE PULSE	Frequency Auto Tune	Reysight Spectrum Analyzer - Swept SA Rt		TRACE 12345 OF THE CONTROL OF THE CO
1Δ2		Center Freq 433.920000 MHz Start Freq	600 X2		Center Fr 433.920000 M Start Fr
24.0		433.920000 MHz Stop Freq	-240		433.920000 M Stop Fro
40		433.920000 MHz CF Step 1.000000 MHz Auto Man	440		433,920000 M CF St 1,000000 M Auto
and the state of t	atherital demonstration of the atherital demonstration	Freq Offset	and the state of t	Interior and an interior security of the second	Freq Offs

Page 19 of 24 Report No.: CTA22030300901

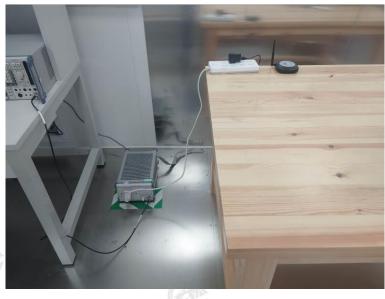
4.5 **Antenna Requirement**

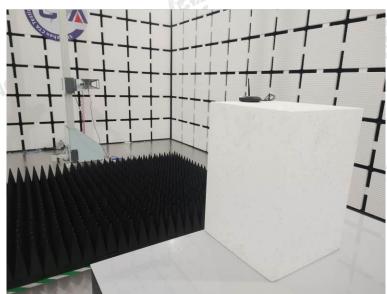
Standard Applicable

According to FCC Part 15C 15.203

- An intentional radiator shall be de-signed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
- The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use b) of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.


The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.


Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 0

Page 20 of 24 Report No.: CTA22030300901

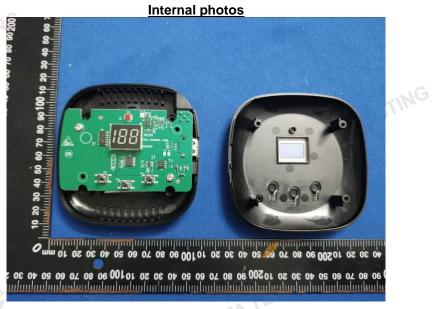
Test Setup Photos of the EUT

Page 21 of 24 Report No.: CTA22030300901

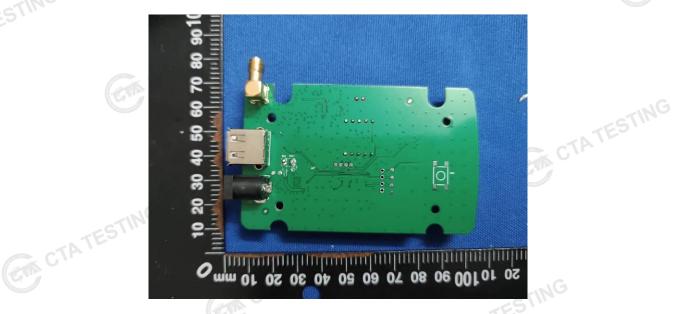
Photos of the EUT

External photos

Page 22 of 24 Report No.: CTA22030300901



Page 23 of 24 Report No.: CTA22030300901



Page 24 of 24 Report No.: CTA22030300901

