



# **TEST REPORT**

Applicant Name: ZHENGZHOU DEWENWILS NETWORK TECHNOLOGY CO., LTD.

Address: No.2602,26th Floor, Block B, Dongfang Building No.198-19, Songshan

South Road, Ergi District, Zhengzhou, China

Report Number: 2504V71150E-RF-00B

FCC ID: 2A4G9-021

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: WIFI+BLE module

Model No.: UAM057

Date Received: 2025-07-31

Date of Test: 2025-08-02 to 2025-08-14

Report Date: 2025-08-14

Test Result: The EUT complied with the standards above.

Prepared and Checked By:

Roger ling

Roger.Ling

**EMC Engineer** 

Approved By:

Bob. Liao

Bob.Liao

**EMC Engineer** 

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included but no need marked.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

Tel: +86 755-26503290

Web: www.atc-lab.com

# **TABLE OF CONTENTS**

| DOCUMENT REVISION HISTORY                                       | 4  |
|-----------------------------------------------------------------|----|
| GENERAL INFORMATION                                             | 5  |
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)              |    |
| OBJECTIVE                                                       |    |
| TEST METHODOLOGY TEST FACILITY                                  |    |
| MEASUREMENT UNCERTAINTY                                         |    |
| SYSTEM TEST CONFIGURATION                                       |    |
| DESCRIPTION OF TEST CONFIGURATION                               |    |
| EUT EXERCISE SOFTWARE AND POWER LEVEL#                          |    |
| Special Accessories                                             |    |
| EQUIPMENT MODIFICATIONS                                         |    |
| DUTY CYCLESUPPORT EQUIPMENT LIST AND DETAILS                    |    |
| EXTERNAL I/O CABLE                                              |    |
| BLOCK DIAGRAM OF TEST SETUP                                     |    |
| SUMMARY OF TEST RESULTS                                         | 12 |
| TEST EQUIPMENT LIST                                             |    |
| FCC §15.203 - ANTENNA REQUIREMENT                               |    |
| APPLICABLE STANDARD                                             |    |
| APPLICABLE STANDARD                                             |    |
| FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS                   | _  |
| APPLICABLE STANDARD                                             |    |
| EUT SETUP                                                       |    |
| EMI Test Receiver Setup                                         |    |
| TEST PROCEDURE                                                  |    |
| CALCULATION                                                     |    |
|                                                                 |    |
| FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS          |    |
| APPLICABLE STANDARDEUT SETUP                                    |    |
| EMI TEST RECEIVER& SPECTRUM ANALYZER SETUP                      |    |
| Test Procedure                                                  | 24 |
| CALCULATION                                                     |    |
| TEST DATA                                                       |    |
| FCC §15.247(a) (2)-6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH |    |
| APPLICABLE STANDARD                                             |    |
| TEST PROCEDURE TEST DATA                                        |    |
|                                                                 |    |
| FCC §15.247(b) (3)-MAXIMUM CONDUCTED OUTPUT POWER               |    |
| APPLICABLE STANDARDTEST PROCEDURE                               |    |
| TEST DATA                                                       |    |
| FCC §15.247(d)-100 kHz BANDWIDTH OF FREQUENCY BAND EDGE         | 36 |
| APPLICABLE STANDARD                                             |    |
| TEST PROCEDURE                                                  |    |
| TEST DATA                                                       |    |

| FCC §15.247(e)-POWER SPECTRAL DENSITY    | 37  |
|------------------------------------------|-----|
| APPLICABLE STANDARDTEST PROCEDURE        | 37  |
| TEST DATA                                | 38  |
| APPENDIX A                               |     |
| RF TEST RESULT                           |     |
| 6DB EMISSION BANDWIDTH                   | 40  |
| 99% OCCUPIED BANDWIDTH                   | 44  |
| MAXIMUM CONDUCTED OUTPUT POWER           |     |
| Power Spectral Density                   |     |
| 100 kHz Bandwidth of Frequency Band Edge |     |
| DUTY CYCLE                               | 55  |
| CONDUCTED SPURIOUS EMISSION              | 57  |
| APPENDIX B                               | 60  |
| RADIATED SPURIOUS EMISSIONS (1GHz-25GHz) | 60  |
| EXHIBIT A-EUT PHOTOGRAPHS                | 258 |
| EXHIBIT B-TEST SETUP PHOTOGRAPHS         | 259 |

# **DOCUMENT REVISION HISTORY**

| Revision Number | Report Number      | Description of Revision | Date of Revision |  |
|-----------------|--------------------|-------------------------|------------------|--|
| Rev.00          | 2504V71150E-RF-00B | Original Report         | 2025-08-14       |  |

Report No.: 2504V71150E-RF-00B

# **GENERAL INFORMATION**

# **Product Description for Equipment under Test (EUT)**

| Product                    | WIFI+BLE module               |
|----------------------------|-------------------------------|
| Tested Model               | UAM057                        |
| Voltage Range <sup>#</sup> | DC 3.0~3.6V( typical DC 3.3V) |

Report No.: 2504V71150E-RF-00B

Note: The module has two types of antenna configuration, one use PCB antenna, another use external I-PEX antenna, the two version share the same antenna path, the antenna path was selected by component jump, only one antenna would be active on each device.

| Frequency Range                        | 2.4G Wi-Fi: 2412-2472MHz, 2422-2462MHz                                                                                                       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Model                                  | 802.11b/g/n20/n40/ax20/ax40                                                                                                                  |
| Maximum Conducted<br>Peak Output Power | 15.74 dBm                                                                                                                                    |
| Modulation Technique                   | DSSS, OFDM, OFDMA                                                                                                                            |
| Antenna Specification#                 | PCB Antenna: -1.3dBi<br>External I-PEX Antenna: 2.0dBi<br>(It is provided by the applicant.)                                                 |
| Sample Serial Number                   | PCB antenna version: 37BS-2 (CE&RSE), 37BS-3 (RF Conducted Test) External I-PEX antenna version: 37BS-4 (CE&RSE) (Assigned by ATC, Shenzhen) |
| Sample/EUT Status                      | Good condition                                                                                                                               |

# **Objective**

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.207, 15.209 and 15.247 rules.

Report No.: 2504V71150E-RF-00B

# **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices, and KDB 558074 D01 15.247 Meas Guidance v05r02.

Unless otherwise stated there are no any additions to, deviations, or exclusions from the method.

# **Test Facility**

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01.

# **Measurement Uncertainty**

| Р             | arameter              | Uncertainty            |
|---------------|-----------------------|------------------------|
| Occupied (    | Channel Bandwidth     | 5 %                    |
| RF            | Frequency             | 0.064*10 <sup>-7</sup> |
| RF output     | power, conducted      | 0.3 dB                 |
| Unwanted E    | Emission, conducted   | 1.2 dB                 |
| AC Power Line | s Conducted Emissions | 2.7 dB                 |
|               | 9kHz - 30MHz          | 2.1 dB                 |
| Emissions,    | 30MHz - 1GHz          | 4.3 dB                 |
| Radiated      | 1GHz - 18GHz          | 4.9 dB                 |
|               | 18GHz - 26.5GHz       | 5.2 dB                 |
| Temperature   |                       | 1 ℃                    |
| Humidity      |                       | 7 %                    |
| Sup           | ply voltages          | 0.4 %                  |

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

## SYSTEM TEST CONFIGURATION

## **Description of Test Configuration**

The system was configured for testing in an engineering mode, which was provided by manufacturer.

Report No.: 2504V71150E-RF-00B

For 2.4G Wi-Fi, total 11 channels are provided to testing:

| Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) |
|---------|----------------|---------|----------------|---------|----------------|---------|----------------|
| 1       | 2412           | 5       | 2432           | 9       | 2452           | 13      | 2472           |
| 2       | 2417           | 6       | 2437           | 10      | 2457           | /       | /              |
| 3       | 2422           | 7       | 2442           | 11      | 2462           | /       | /              |
| 4       | 2427           | 8       | 2447           | 12      | 2467           | /       | /              |

802.11b/g/n20/ax20 mode was tested with Channel 1, 7 and 13.

802.11n40/ax40 mode was tested with Channel 3, 7 and 11.

Note: For the two types of antenna configuration, AC power line conducted emission and radiated spurious emission were tested for each antenna, as the two configuration share same antenna path, only the PCB antenna version was selected for RF conducted test.

# **EUT Exercise Software and Power Level**#

| Exercise Software: | Wifi_Test_Tool_ | V1.7.5.     |                |              |
|--------------------|-----------------|-------------|----------------|--------------|
| Mode               | Data Rate       |             | Power Level    |              |
| Wiode              | Dala Rale       | Low Channel | Middle Channel | High Channel |
| 802.11 b           | 1Mbps           | 10          | 10             | 10           |
| 802.11 g           | 6Mbps           | 20          | 20             | 20           |
| 802.11 n20         | MCS0            | 0           | 0              | 0            |
| 802.11 n40         | MCS0            | 20          | 20             | 20           |
| 802.11 ax20        | MCS0            | 20          | 20             | 20           |
| 802.11 ax40        | MCS0            | 40          | 40             | 40           |

Note 1: The information in the above table is provided by the applicant.

Note 2: The worse-case data rates are determined to be as above for each mode based upon investigations by measuring the output power and PSD across all data rates, bandwidths and modulations.

Note 3: For 802.11ax mode, the device only support full RU mode, not support partial RU.

## **Special Accessories**

No special accessory.

## **Equipment Modifications**

No modification was made to the EUT tested.

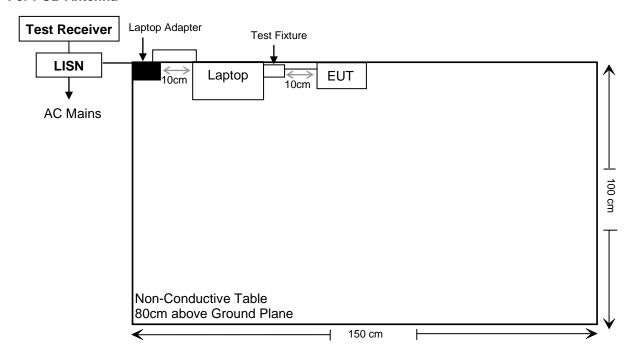
## **Duty Cycle**

Test result: Please refer to Appendix.

# **Support Equipment List and Details**

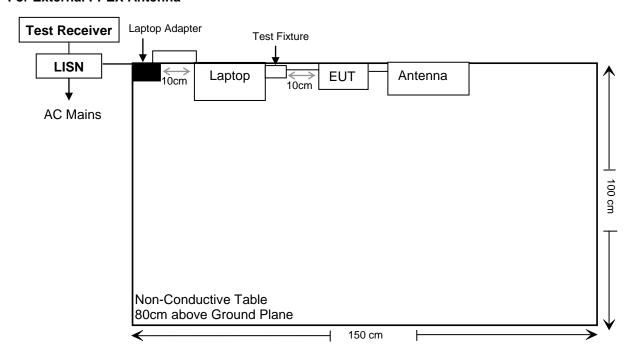
| Manufacturer | Description  | Model       | Serial Number          |
|--------------|--------------|-------------|------------------------|
| Lenovo       | Laptop       | T430        | 23447YC                |
| Lenovo       | Adapter      | ADLX65NLC3A | 11S45N0257Z1ZX1773ND2K |
| Unknown      | Test Fixture | Unknown     | Unknown                |
| Unknown      | Antenna      | Unknown     | Unknown                |

Report No.: 2504V71150E-RF-00B


# **External I/O Cable**

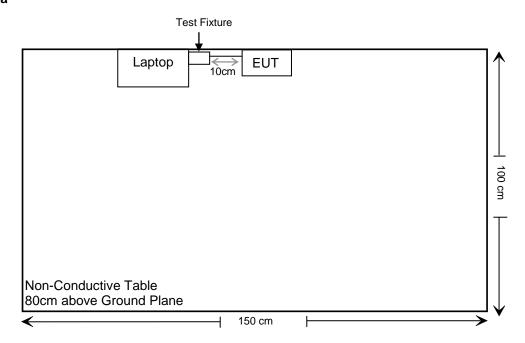
| Cable<br>Description | Shielding<br>Type | Length<br>(m) | From Port To   |         |
|----------------------|-------------------|---------------|----------------|---------|
| DC Cable             | NO                | 1.2           | Laptop Adapter | Laptop  |
| RF Cable             | YES               | 0.2           | EUT            | Antenna |
| Data Cable①          | NO                | 0.1           | Test Fixture   | EUT     |
| Data Cable2          | NO                | 2.0           | Test Fixture   | Laptop  |

# **Block Diagram of Test Setup**


#### For Conducted Emission:

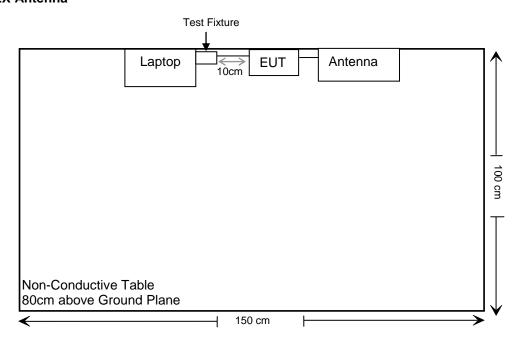
#### For PCB Antenna




#### Report No.: 2504V71150E-RF-00B

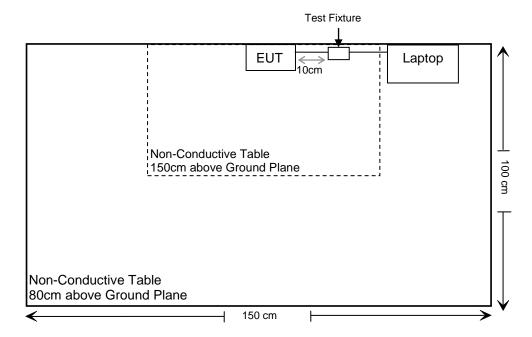
#### For External I-PEX Antenna



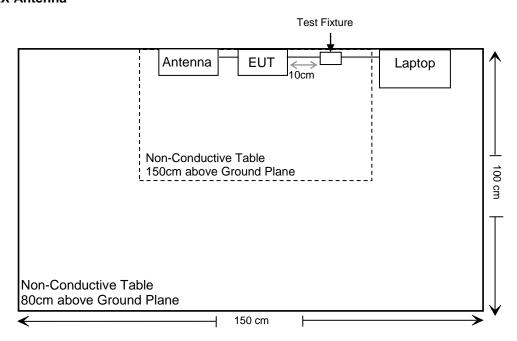

# For Radiated Emission(Below 1GHz):

#### For PCB Antenna




#### Report No.: 2504V71150E-RF-00B

#### For External I-PEX Antenna




## For Radiated Emission(Above 1GHz):

#### For PCB Antenna



# For External I-PEX Antenna



# **SUMMARY OF TEST RESULTS**

| FCC Rules                       | Description of Test                             | Result     |
|---------------------------------|-------------------------------------------------|------------|
| §15.203                         | Antenna Requirement                             | Compliance |
| §15.207(a)                      | AC Line Conducted Emissions                     | Compliance |
| §15.205, §15.209,<br>§15.247(d) | Radiated Spurious Emissions                     | Compliance |
| §15.247(a)(2)                   | 6 dB Emission Bandwidth<br>& Occupied Bandwidth | Compliance |
| §15.247(b)(1)                   | Maximum Conducted Output Power                  | Compliance |
| §15.247(d)                      | 100 kHz Bandwidth of Frequency Band Edge        | Compliance |
| §15.247(e)                      | Power Spectral Density                          | Compliance |

Report No.: 2504V71150E-RF-00B

Note 1: For AC line conducted emissions, the maximum output power mode and channel was tested.

Note 2: For Radiated Spurious Emissions 9kHz~1GHz/18GHz~25GHz, the maximum output power mode and channel was tested.

Note 3: For Radiated Spurious Emissions, after pre-scan in the X, Y and Z axes of orientation, the worst case as setup photos was recorded.

Note 4: The cable loss is 0.5dB, which was added into the all RF test results.

# **TEST EQUIPMENT LIST**

| Manufacturer                  | Description                          | Model                 | Serial Number  | Calibration<br>Date | Calibration<br>Due Date |  |  |
|-------------------------------|--------------------------------------|-----------------------|----------------|---------------------|-------------------------|--|--|
| Conducted Emissions Test      |                                      |                       |                |                     |                         |  |  |
| Rohde & Schwarz               | EMI Test Receiver                    | ESCI                  | 100784         | 2024/11/08          | 2025/11/07              |  |  |
| Rohde & Schwarz               | L.I.S.N.                             | ENV216                | 101314         | 2024/11/08          | 2025/11/07              |  |  |
| Anritsu Corp                  | 50 Coaxial Switch                    | MP59B                 | 6100237248     | 2024/10/08          | 2025/10/07              |  |  |
| Rohde & Schwarz               | Pulse Limiter                        | ESH3-Z2               | 100312         | 2025/05/30          | 2026/05/29              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.17                 | N0350          | 2025/05/30          | 2026/05/29              |  |  |
|                               | Te                                   | st Software: e3 19121 | 8 (V9)         |                     |                         |  |  |
|                               | Radiated Sp                          | ourious Emission Te   | st(Below 1GHz) |                     |                         |  |  |
| Rohde & Schwarz               | Test Receiver                        | ESR                   | 102725         | 2024/11/08          | 2025/11/07              |  |  |
| SONOMA<br>INSTRUMENT          | Amplifier                            | 310N                  | 186131         | 2025/03/26          | 2026/03/25              |  |  |
| Schwarzbeck                   | Bilog Antenna                        | VULB9163              | 9163-323       | 2024/08/08          | 2027/08/07              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.12                 | N040           | 2025/05/30          | 2026/05/29              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.13                 | N300           | 2025/05/30          | 2026/05/29              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.14                 | N800           | 2025/05/30          | 2026/05/29              |  |  |
| BACL                          | LOOP ANTENNA                         | 1313-1A               | 3110711        | 2024/01/16          | 2027/01/15              |  |  |
|                               | Te                                   | st Software: e3 19121 | 8 (V9)         |                     |                         |  |  |
|                               | Radiated Sp                          | ourious Emission Te   | st(Above 1GHz) |                     |                         |  |  |
| Rohde & Schwarz               | Spectrum Analyzer                    | FSV40                 | 101949         | 2024/10/08          | 2025/10/07              |  |  |
| Decentest                     | Filter Switch Unit                   | DT7220FSU             | DQ77927        | 2024/10/08          | 2025/10/07              |  |  |
| Decentest                     | Multiplex Switch<br>Test Control Set | DT7220CSU             | DQ77924        | 2024/10/08          | 2025/10/07              |  |  |
| A.H. Systems, inc.            | Preamplifier                         | PAM-0118              | 226            | 2025/03/20          | 2026/03/19              |  |  |
| Schwarzbeck                   | Horn Antenna                         | BBHA9120D             | 837            | 2023/02/22          | 2026/02/21              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.10                 | N050           | 2025/05/30          | 2026/05/29              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.11                 | N1000          | 2025/05/30          | 2026/05/29              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.19                 | N500           | 2025/05/30          | 2026/05/29              |  |  |
| Schwarzbeck                   | HORN ANTENNA                         | BBHA9170              | 9170-359       | 2023/12/12          | 2026/12/11              |  |  |
| BACL                          | Amplifier                            | BACL-1313-A1840       | 4012521        | 2025/05/30          | 2026/05/29              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.15                 | N600           | 2025/05/30          | 2026/05/29              |  |  |
| Unknown                       | RF Coaxial Cable                     | No.16                 | N650           | 2025/05/30          | 2026/05/29              |  |  |
| Test Software: e3 191218 (V9) |                                      |                       |                |                     |                         |  |  |

Report No.: 2504V71150E-RF-00B

| Manufacturer      | Description                            | Model    | Serial Number | Calibration<br>Date | Calibration<br>Due Date |  |  |
|-------------------|----------------------------------------|----------|---------------|---------------------|-------------------------|--|--|
| RF Conducted test |                                        |          |               |                     |                         |  |  |
| Rohde & Schwarz   | Spectrum Analyzer                      | FSV-40   | 101948        | 2024/10/08          | 2025/10/07              |  |  |
| Anritsu           | Microwave Peak<br>Power Sensor         | MA24418A | 12619         | 2025/03/26          | 2026/03/25              |  |  |
| WEINSCHEL         | 10dB Attenuator                        | 5324     | AU 3842       | 2025/03/26          | 2026/03/25              |  |  |
|                   | Test Software: JDAutoTestSystem V1.0.0 |          |               |                     |                         |  |  |

<sup>\*</sup> **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

# FCC §15.203 - ANTENNA REQUIREMENT

## **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: 2504V71150E-RF-00B

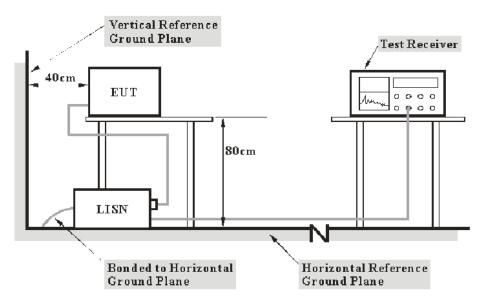
- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **Antenna Connector Construction**

The EUT has two types of antenna configuration, one use PCB antenna, another use external I-PEX antenna. PCB antenna is an internal antenna arrangement, which is permanently attached to the EUT. External I-PEX antenna is an external antenna arrangement, which used a unique coupling to the EUT. Two antennas meet fulfill the requirement of this section. Please refer to the EUT photos.

| Frequency Range | Antenna Type           | Antenna Gain |
|-----------------|------------------------|--------------|
| 2442 2472MU-    | PCB antenna            | -1.3dBi      |
| 2412-2472MHz    | External I-PEX antenna | 2.0dBi       |


Result: Compliance.

# FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

## **Applicable Standard**

FCC §15.207(a).

## **EUT Setup**



Report No.: 2504V71150E-RF-00B

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2020 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

## **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |  |  |
|------------------|--------|--|--|
| 150 kHz – 30 MHz | 9 kHz  |  |  |

#### **Test Procedure**

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

#### Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Report No.: 2504V71150E-RF-00B

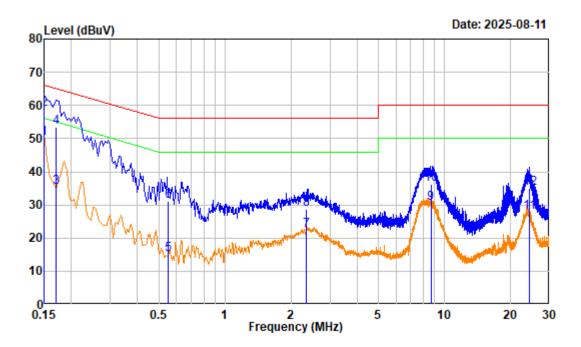
Factor = LISN VDF + Cable Loss+ 10dB Attenuation(Limiter)

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level - Limit Level = Read Level + Factor

#### **Test Data**

#### **Environmental Conditions**


| Temperature:        | 24.6 ℃                 |  |  |
|---------------------|------------------------|--|--|
| Relative Humidity:  | 43 %                   |  |  |
| ATM Pressure:       | 99.3 kPa               |  |  |
| Test Engineer:      | Jason Fan              |  |  |
| Test Date:          | 2025-08-11             |  |  |
| EUT Operation Mode: | 2.4G Wifi Transmitting |  |  |

Test Result: Compliance, please refer to the below data.

Note: The maximum output power mode and channel: 802.11AX40 Middle Channel 2442MHz tested.

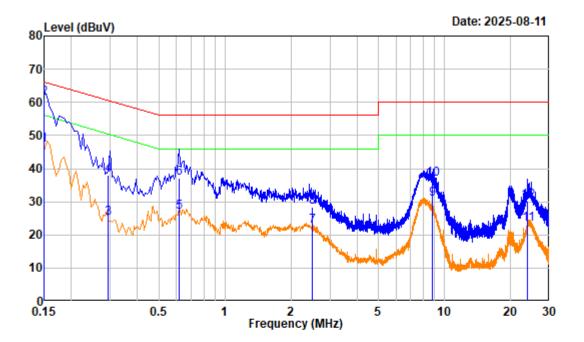
#### For PCB Antenna

#### AC 120V/60Hz, Line:



Site : Shielding Room

Condition: Line


Job No. : 2504V71150E-RF

Test Mode: 2.4G Wifi Transmitting

Note : PCB Ant Tester : Jason Fan

|    | Freq   | Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|--------|--------|---------------|-------|---------------|---------------|---------|
|    | MHz    | dB     | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.150  | 19.75  | 30.32         | 50.07 | 56.00         | -5.93         | Average |
| 2  | 0.150  | 19.75  | 39.06         | 58.81 | 66.00         | -7.19         | QP _    |
| 3  | 0.170  | 19.89  | 15.41         | 35.30 | 54.96         | -19.66        | Average |
| 4  | 0.170  | 19.89  | 33.46         | 53.35 | 64.96         | -11.61        | QP      |
| 5  | 0.552  | 19.88  | -4.87         | 15.01 | 46.00         | -30.99        | Average |
| 6  | 0.552  | 19.88  | 11.07         | 30.95 | 56.00         | -25.05        | QP      |
| 7  | 2.356  | 20.53  | 1.80          | 22.33 | 46.00         | -23.67        | Average |
| 8  | 2.356  | 20.53  | 8.19          | 28.72 | 56.00         | -27.28        | QP      |
| 9  | 8.653  | 21.04  | 9.40          | 30.44 | 50.00         | -19.56        | Average |
| 10 | 8.653  | 21.04  | 15.11         | 36.15 | 60.00         | -23.85        | QP      |
| 11 | 24.230 | 21.03  | 6.80          | 27.83 | 50.00         | -22.17        | Average |
| 12 | 24.230 | 21.03  | 13.97         | 35.00 | 60.00         | -25.00        | OP      |

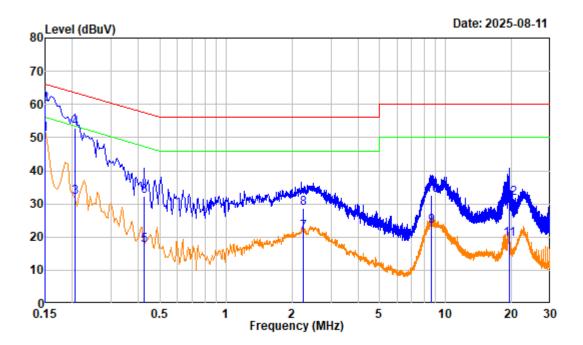
#### AC 120V/60Hz, Neutral:



Site : Shielding Room

Condition: neutral

Job No. : 2504V71150E-RF


Test Mode: 2.4G Wifi Transmitting

Note : PCB Ant Tester : Jason Fan

|    | Freq   | Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|--------|--------|---------------|-------|---------------|---------------|---------|
|    | MHz    | dB     | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.150  | 19.94  | 27.01         | 46.95 | 55.99         | -9.04         | Average |
| 2  | 0.150  | 19.94  | 41.41         | 61.35 | 65.99         | -4.64         | QP      |
| 3  | 0.293  | 19.87  | 5.15          | 25.02 | 50.43         | -25.41        | Average |
| 4  | 0.293  | 19.87  | 18.18         | 38.05 | 60.43         | -22.38        | QP      |
| 5  | 0.616  | 19.95  | 6.88          | 26.83 | 46.00         | -19.17        | Average |
| 6  | 0.616  | 19.95  | 17.05         | 37.00 | 56.00         | -19.00        | QP      |
| 7  | 2.497  | 20.59  | 1.98          | 22.57 | 46.00         | -23.43        | Average |
| 8  | 2.497  | 20.59  | 7.88          | 28.47 | 56.00         | -27.53        | QP      |
| 9  | 8.810  | 21.03  | 9.81          | 30.84 | 50.00         | -19.16        | Average |
| 10 | 8.810  | 21.03  | 15.83         | 36.86 | 60.00         | -23.14        | QP      |
| 11 | 23.900 | 20.93  | 2.32          | 23.25 | 50.00         | -26.75        | Average |
| 12 | 23.900 | 20.93  | 9.19          | 30.12 | 60.00         | -29.88        | QP      |

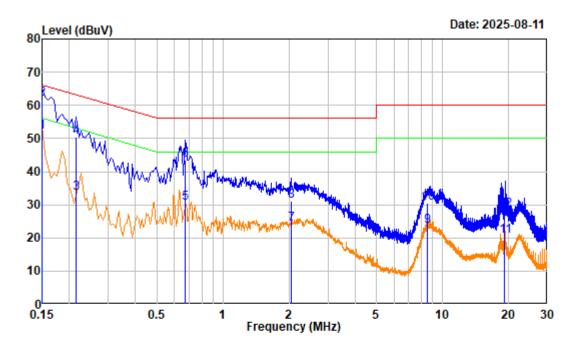
#### For External I-PEX Antenna

#### AC 120V/60Hz, Line:



Site : Shielding Room

Condition: Line


Job No. : 2504V71150E-RF

Test Mode: 2.4G Wifi Transmitting

Note : I-PEX Ant Tester : Jason Fan

|    | Freq   | Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|--------|--------|---------------|-------|---------------|---------------|---------|
|    | MHz    | dB     | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.150  | 19.75  | 31.41         | 51.16 | 56.00         | -4.84         | Average |
| 2  | 0.150  | 19.75  | 40.30         | 60.05 | 66.00         | -5.95         | QP _    |
| 3  | 0.205  | 19.84  | 12.09         | 31.93 | 53.41         | -21.48        | Average |
| 4  | 0.205  | 19.84  | 32.87         | 52.71 | 63.41         | -10.70        | QP      |
| 5  | 0.425  | 19.86  | -2.33         | 17.53 | 47.35         | -29.82        | Average |
| 6  | 0.425  | 19.86  | 12.38         | 32.24 | 57.35         | -25.11        | QP      |
| 7  | 2.247  | 20.47  | 0.87          | 21.34 | 46.00         | -24.66        | Average |
| 8  | 2.247  | 20.47  | 8.07          | 28.54 | 56.00         | -27.46        | QP      |
| 9  | 8.611  | 21.05  | 2.24          | 23.29 | 50.00         | -26.71        | Average |
| 10 | 8.611  | 21.05  | 11.66         | 32.71 | 60.00         | -27.29        | QP      |
| 11 | 19.460 | 20.78  | -1.38         | 19.40 | 50.00         | -30.60        | Average |
| 12 | 19.460 | 20.78  | 11.02         | 31.80 | 60.00         | -28.20        | OP      |

#### AC 120V/60Hz, Neutral:



Site : Shielding Room

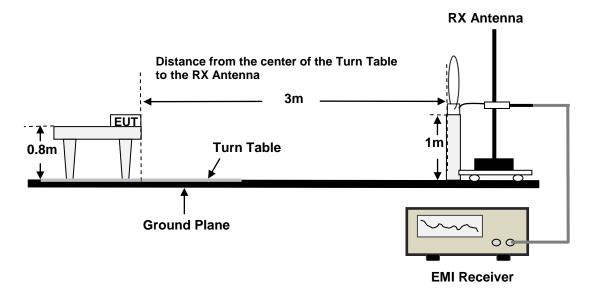
Condition: neutral

Job No. : 2504V71150E-RF

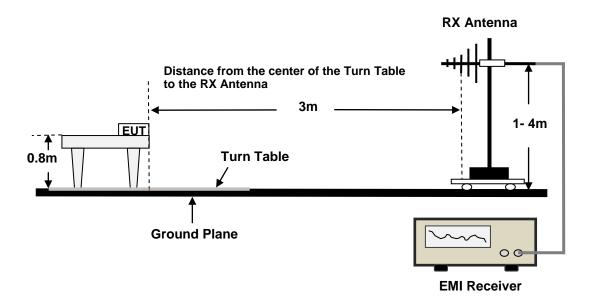
Test Mode: 2.4G Wifi Transmitting

Note : I-PEX Ant Tester : Jason Fan

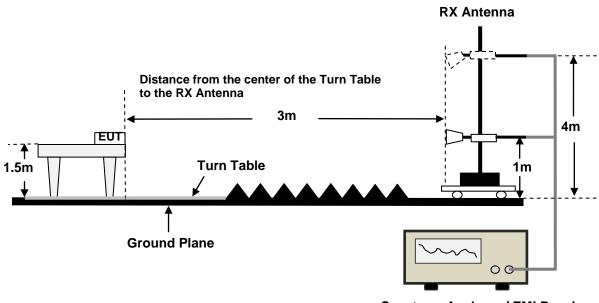
|    | Freq   | Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|--------|--------|---------------|-------|---------------|---------------|---------|
|    | MHz    | dB     | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.150  | 19.94  | 32.00         | 51.94 | 55.99         | -4.05         | Average |
| 2  | 0.150  | 19.94  | 41.81         | 61.75 | 65.99         | -4.24         | QP      |
| 3  | 0.215  | 19.93  | 13.54         | 33.47 | 53.01         | -19.54        | Average |
| 4  | 0.215  | 19.93  | 30.49         | 50.42 | 63.01         | -12.59        | QP      |
| 5  | 0.670  | 19.94  | 10.42         | 30.36 | 46.00         | -15.64        | Average |
| 6  | 0.670  | 19.94  | 23.52         | 43.46 | 56.00         | -12.54        | QP      |
| 7  | 2.039  | 20.36  | 3.77          | 24.13 | 46.00         | -21.87        | Average |
| 8  | 2.039  | 20.36  | 10.77         | 31.13 | 56.00         | -24.87        | QP      |
| 9  | 8.497  | 21.06  | 2.61          | 23.67 | 50.00         | -26.33        | Average |
| 10 | 8.497  | 21.06  | 9.46          | 30.52 | 60.00         | -29.48        | QP      |
| 11 | 19.163 | 20.72  | -0.23         | 20.49 | 50.00         | -29.51        | Average |
| 12 | 19.163 | 20.72  | 7.71          | 28.43 | 60.00         | -31.57        | QP      |


# FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

# **Applicable Standard**


FCC §15.205; §15.209; §15.247(d)

# **EUT Setup**


9kHz - 30MHz:



#### 30MHz - 1GHz:



#### **Above 1GHz:**



Spectrum Analyzer / EMI Receiver

Report No.: 2504V71150E-RF-00B

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2020. The specification used was the FCC 15.209, FCC 15.247 limits.

# **EMI Test Receiver& Spectrum Analyzer Setup**

The system was investigated from 9kHz to 25GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz -1000MHz:

| Frequency Range     | Measurement | RBW    | Video B/W | IF B/W | Detector |
|---------------------|-------------|--------|-----------|--------|----------|
| 9kHz - 150kHz       | PK          | 0.3kHz | 1kHz      | /      | PK       |
| 9KHZ - 150KHZ       | QP/AV       | /      | /         | 200Hz  | QP/AV    |
| 150kHz - 30MHz      | PK          | 10kHz  | 30kHz     | /      | PK       |
| 150kH2 - 30MH2      | QP/AV       | /      | /         | 9kHz   | QP/AV    |
| 30MHz - 1000MHz     | PK          | 100kHz | 300kHz    | /      | PK       |
| 30IVIH2 - 1000IVIH2 | QP          | /      | /         | 120kHz | QP       |

#### 1GHz-25GHz:

#### Pre-scan:

| Measurement | Detector | Duty cycle | RBW  | Video B/W               |
|-------------|----------|------------|------|-------------------------|
| PK          | Peak     | Any        | 1MHz | 3MHz                    |
| ۸۷۰         | Dook     | >98%       | 1MHz | 3kHz                    |
| Ave.        | Peak     | <98%       | 1MHz | ≥1/T, no less than 3kHz |

Final measurement for emission identified during the pre-scan:

| Measurement | Detector | Duty cycle | RBW  | Video B/W |
|-------------|----------|------------|------|-----------|
| PK          | Peak     | Any        | 1MHz | 3MHz      |
| ۸۷۵         | Dook     | >98%       | 1MHz | 10Hz      |
| Ave.        | Peak     | <98%       | 1MHz | ≥1/T      |

Note 1: T is minimum transmission duration

Note 2: The 1GHz-4GHz testing use the notch filter and the 4GHz-18GHz testing use high-pass filter.

Note 3: The band edge testing use 10dB attenuator.

Note 4: The filters and attenuators are all integrated within the filter switch unit.

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Report No.: 2504V71150E-RF-00B

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

According to ANSI C63.10-2020,9.2: For field strength measurements made at other than the distance specified by the limit, extrapolate the measured field strength to the field strength at the distance specified by the limit using an inverse distance correction factor (20 dB/decade of distance).

$$E_{\textit{SpecLimit}} = E_{\textit{Meas}} + 20 \log \left( \frac{D_{\textit{Meas}}}{D_{\textit{SpecLimit}}} \right)$$

where

 $E_{\text{SpecLimit}}$  is the field strength of the emission at the distance specified by the limit, in dBuV/m is the field strength of the emission at the measurement distance, in dBuV/m

 $D_{\text{Meas}}$  is the measurement distance, in m

 $D_{\text{SpecLimit}}$  is the distance specified by the limit, in m

Note 1: If the maximized peak measured value is under the QP/Average limit by more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Note 2: For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

#### Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

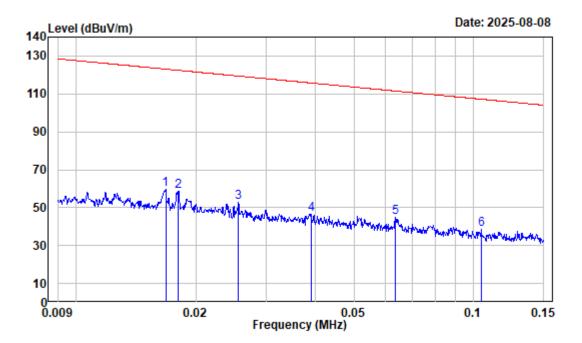
## **Test Data**

#### 9kHz-1GHz

#### **Environmental Conditions**

| Temperature:        | 24.3 ℃                 |  |
|---------------------|------------------------|--|
| Relative Humidity:  | 57 %                   |  |
| ATM Pressure:       | 99.3 kPa               |  |
| Test Engineer:      | Colin Lin              |  |
| Test Date:          | 2025-08-08             |  |
| EUT Operation Mode: | 2.4G WIFI Transmitting |  |

**Test Result:** Compliance, please refer to the below data.


Note 1: The Loop Antenna were tested in parallel, perpendicular, and ground-parallel. The worst orientation was parallel and the data was recorded in report.

Note 2: The maximum output power mode and channel: 802.11AX40 Middle Channel 2442MHz was tested.

Report No.: 2504V71150E-RF-00B

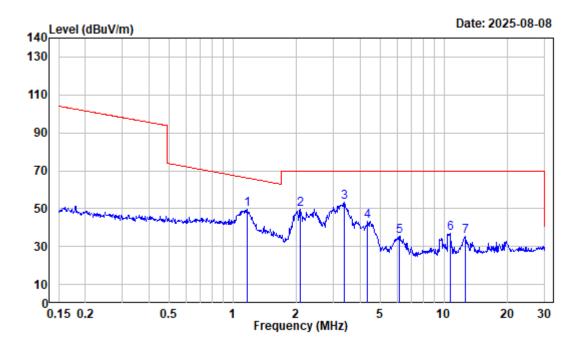
#### For PCB Antenna

#### 9kHz~30MHz:



Site : Chamber Condition : 3m

Job No. : 2504V71150E-RF


Polarization : Parallel Tester: Colin Lin

Test Mode : 2.4G WIFI Transmitting

Note : PCB Ant

Receiver Setting: RBW:300Hz VBW:1kHz

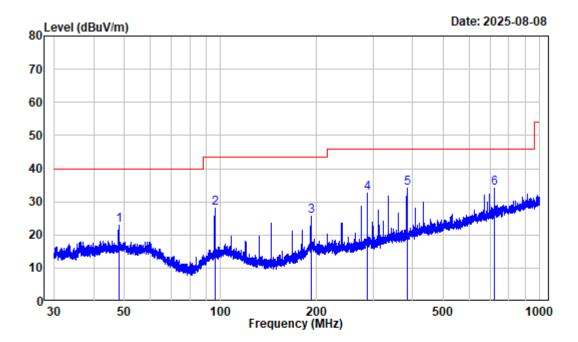
|   | Freq  | Factor |       |        | Limit<br>Line |        | Remark |
|---|-------|--------|-------|--------|---------------|--------|--------|
|   | MHz   | dB/m   | dBuV  | dBuV/m | dBuV/m        | dB     |        |
| 1 | 0.017 | 32.81  | 26.67 | 59.48  | 123.09        | -63.61 | Peak   |
| 2 | 0.018 | 32.24  | 26.55 | 58.79  | 122.46        | -63.67 | Peak   |
| 3 | 0.026 | 28.89  | 23.69 | 52.58  | 119.43        | -66.85 | Peak   |
| 4 | 0.039 | 25.09  | 21.59 | 46.68  | 115.79        | -69.11 | Peak   |
| 5 | 0.063 | 20.90  | 23.79 | 44.69  | 111.56        | -66.87 | Peak   |
| 6 | 0.104 | 16.24  | 22.30 | 38.54  | 107.23        | -68.69 | Peak   |



Site : Chamber Condition : 3m

Job No. : 2504V71150E-RF

Polarization : Parallel Tester: Colin Lin


Test Mode : 2.4G WIFI Transmitting

Note : PCB Ant

Receiver Setting: RBW:10kHz VBW:30kHz

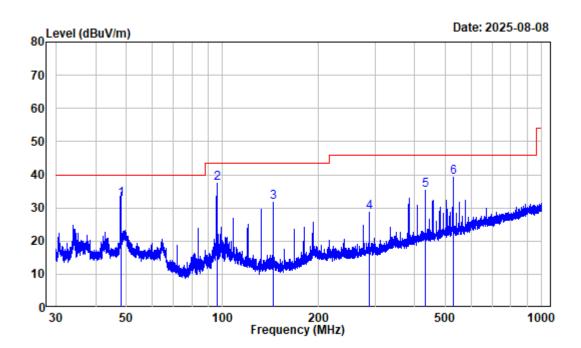
|   | Enoa   | Factor |       |        | Limit  |        | Romank   |
|---|--------|--------|-------|--------|--------|--------|----------|
|   | rreq   | ractor | Level | rever  | LINE   | LIMIL  | Kelliark |
|   | MHz    | dB/m   | dBuV  | dBuV/m | dBuV/m | dB     |          |
| 1 | 1.166  | -2.42  | 51.82 | 49.40  | 66.11  | -16.71 | Peak     |
| 2 | 2.077  | -5.42  | 54.84 | 49.42  | 69.54  | -20.12 | Peak     |
| 3 | 3.364  | -6.00  | 59.40 | 53.40  | 69.54  | -16.14 | Peak     |
| 4 | 4.338  | -6.30  | 49.39 | 43.09  | 69.54  | -26.45 | Peak     |
| 5 | 6.153  | -6.19  | 41.53 | 35.34  | 69.54  | -34.20 | Peak     |
| 6 | 10.676 | -5.18  | 42.30 | 37.12  | 69.54  | -32.42 | Peak     |
| 7 | 12.582 | -4.71  | 39.95 | 35.24  | 69.54  | -34.30 | Peak     |

#### 30MHz~1GHz:



Site : Chamber

Condition : 3m HORIZONTAL


Job No. : 2504V71150E-RF Tester: Colin Lin

Test Mode : 2.4G WIFI Transmitting

Note : PCB Ant

Receiver Setting: RBW:100kHz VBW:300kHz

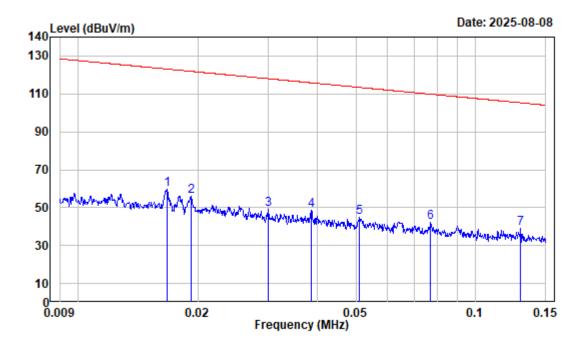
|   |         |        | Read  |        | Limit  | 0ver   |        |  |
|---|---------|--------|-------|--------|--------|--------|--------|--|
|   | Freq    | Factor | Level | Level  | Line   | Limit  | Remark |  |
|   |         |        |       |        |        |        |        |  |
|   | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m | dB     |        |  |
| 1 | 47.931  | -9.82  | 32.77 | 22.95  | 40.00  | -17.05 | Peak   |  |
| 2 | 95.972  | -12.15 | 40.24 | 28.09  | 43.50  | -15.41 | Peak   |  |
| 3 | 191.829 | -10.19 | 35.95 | 25.76  | 43.50  | -17.74 | Peak   |  |
| 4 | 287.864 | -9.05  | 41.59 | 32.54  | 46.00  | -13.46 | Peak   |  |
| 5 | 383.595 | -6.54  | 40.54 | 34.00  | 46.00  | -12.00 | Peak   |  |
| 6 | 719.515 | -0.72  | 34.95 | 34.23  | 46.00  | -11.77 | Peak   |  |



Site : Chamber Condition : 3m VERTICAL

Job No. : 2504V71150E-RF Tester: Colin Lin

Test Mode : 2.4G WIFI Transmitting


Note : PCB Ant

Receiver Setting: RBW:100kHz VBW:300kHz

|   |         |        | Read  |        | Limit  | 0ver   |        |
|---|---------|--------|-------|--------|--------|--------|--------|
|   | Freq    | Factor | Level | Level  | Line   | Limit  | Remark |
|   |         |        |       |        |        |        |        |
|   | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1 | 47.952  | -9.81  | 42.29 | 32.48  | 40.00  | -7.52  | QP     |
| 2 | 96.056  | -12.13 | 49.42 | 37.29  | 43.50  | -6.21  | Peak   |
| 3 | 143.830 | -14.96 | 46.57 | 31.61  | 43.50  | -11.89 | Peak   |
| 4 | 287.864 | -9.05  | 37.86 | 28.81  | 46.00  | -17.19 | Peak   |
| 5 | 431.599 | -4.89  | 40.35 | 35.46  | 46.00  | -10.54 | Peak   |
| 6 | 527.321 | -3.46  | 42.63 | 39.17  | 46.00  | -6.83  | Peak   |

#### For External I-PEX Antenna

#### 9kHz~30MHz:

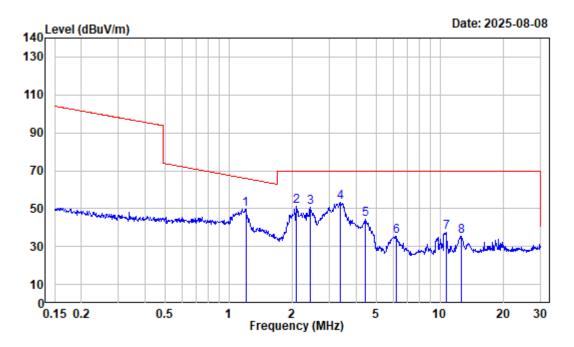


Report No.: 2504V71150E-RF-00B

Site : Chamber

Condition : 3m

Job No. : 2504V71150E-RF


Polarization : Parallel Tester: Colin Lin

Test Mode : 2.4G WIFI Transmitting

Note : I-PEX Ant

Receiver Setting: RBW:300Hz VBW:1kHz

|   |       |        | Read  |        | Limit  | Over   |        |
|---|-------|--------|-------|--------|--------|--------|--------|
|   | Freq  | Factor | Level | Level  | Line   | Limit  | Remark |
|   |       |        |       |        |        |        |        |
|   | MHz   | dB/m   | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1 | 0.017 | 32.83  | 26.64 | 59.47  | 123.12 | -63.65 | Peak   |
| 2 | 0.019 | 31.73  | 24.32 | 56.05  | 121.92 | -65.87 | Peak   |
| 3 | 0.030 | 26.93  | 22.41 | 49.34  | 118.04 | -68.70 | Peak   |
| 4 | 0.039 | 25.18  | 23.63 | 48.81  | 115.89 | -67.08 | Peak   |
| 5 | 0.051 | 22.66  | 22.36 | 45.02  | 113.44 | -68.42 | Peak   |
| 6 | 0.077 | 18.96  | 23.33 | 42.29  | 109.87 | -67.58 | Peak   |
| 7 | 0.130 | 15.10  | 24.06 | 39.16  | 105.35 | -66.19 | Peak   |



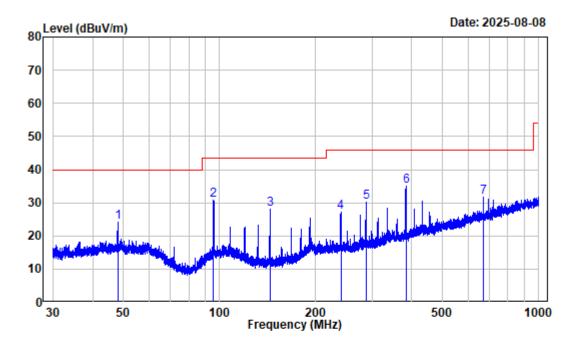
Site : Chamber

Condition : 3m

Job No. : 2504V71150E-RF

Polarization : Parallel Tester: Colin Lin

Test Mode : 2.4G WIFI Transmitting


Note : I-PEX Ant

Receiver Setting: RBW:10kHz VBW:30kHz

|   |        |        | Read  |        | Limit  | 0ver   |        |
|---|--------|--------|-------|--------|--------|--------|--------|
|   | Freq   | Factor | Level | Level  | Line   | Limit  | Remark |
|   |        |        |       |        |        |        |        |
|   | MHz    | dB/m   | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1 | 1.203  | -2.55  | 52.37 | 49.82  | 65.83  | -16.01 | Peak   |
| 2 | 2.077  | -5.42  | 56.72 | 51.30  | 69.54  | -18.24 | Peak   |
| 3 | 2.422  | -5.57  | 56.07 | 50.50  | 69.54  | -19.04 | Peak   |
| 4 | 3.364  | -6.00  | 59.38 | 53.38  | 69.54  | -16.16 | Peak   |
| 5 | 4.430  | -6.30  | 50.45 | 44.15  | 69.54  | -25.39 | Peak   |
| 6 | 6.186  | -6.17  | 41.78 | 35.61  | 69.54  | -33.93 | Peak   |
| 7 | 10.676 | -5.18  | 42.57 | 37.39  | 69.54  | -32.15 | Peak   |
| 8 | 12.649 | -4.69  | 40.14 | 35.45  | 69.54  | -34.09 | Peak   |

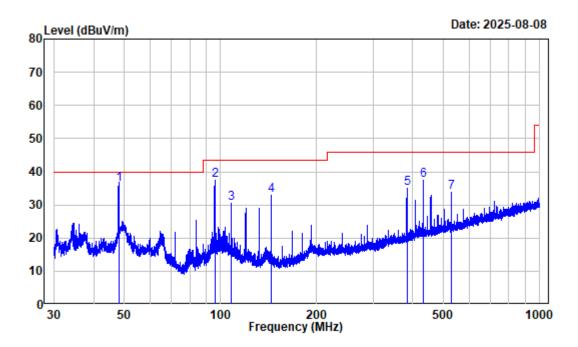
#### Report No.: 2504V71150E-RF-00B

#### 30MHz~1GHz:



Site : Chamber

Condition : 3m HORIZONTAL


Job No. : 2504V71150E-RF Tester: Colin Lin

Test Mode : 2.4G WIFI Transmitting

Note : I-PEX Ant

Receiver Setting: RBW:100kHz VBW:300kHz

|   |         |        | Read  |        | Limit  | 0ver   |        |
|---|---------|--------|-------|--------|--------|--------|--------|
|   | Freq    | Factor | Level | Level  | Line   | Limit  | Remark |
|   |         |        |       |        |        |        |        |
|   | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1 | 47.931  | -9.82  | 33.89 | 24.07  | 40.00  | -15.93 | Peak   |
| 2 | 95.804  | -12.19 | 42.84 | 30.65  | 43.50  | -12.85 | Peak   |
| 3 | 143.893 | -14.96 | 42.89 | 27.93  | 43.50  | -15.57 | Peak   |
| 4 | 239.777 | -10.07 | 37.14 | 27.07  | 46.00  | -18.93 | Peak   |
| 5 | 287.612 | -9.07  | 39.29 | 30.22  | 46.00  | -15.78 | Peak   |
| 6 | 383.595 | -6.54  | 41.52 | 34.98  | 46.00  | -11.02 | Peak   |
| 7 | 671.077 | -1.16  | 32.88 | 31.72  | 46.00  | -14.28 | Peak   |



Site : Chamber Condition : 3m VERTICAL

Job No. : 2504V71150E-RF Tester: Colin Lin

Test Mode : 2.4G WIFI Transmitting

Note : I-PEX Ant

Receiver Setting: RBW:100kHz VBW:300kHz

|   | Enea    | Factor |       |        | Limit  |        | Domank    |
|---|---------|--------|-------|--------|--------|--------|-----------|
|   | 11 64   | ractor | rever | rever  | LINE   | LIMIL  | Kelliai K |
|   | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m | dB     |           |
| 1 | 47.952  | -9.81  | 45.89 | 36.08  | 40.00  | -3.92  | QP        |
| 2 | 96.056  | -12.13 | 49.46 | 37.33  | 43.50  | -6.17  | Peak      |
| 3 | 107.888 | -11.30 | 41.73 | 30.43  | 43.50  | -13.07 | Peak      |
| 4 | 143.893 | -14.96 | 47.97 | 33.01  | 43.50  | -10.49 | Peak      |
| 5 | 383.764 | -6.53  | 41.66 | 35.13  | 46.00  | -10.87 | Peak      |
| 6 | 431.599 | -4.89  | 42.37 | 37.48  | 46.00  | -8.52  | Peak      |
| 7 | 527.552 | -3.46  | 37.12 | 33.66  | 46.00  | -12.34 | Peak      |

About 1GHz-25GHz Data, please refer to the Appendix B.

# FCC §15.247(a) (2)-6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

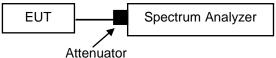
## **Applicable Standard**

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: 2504V71150E-RF-00B

#### **Test Procedure**

According to ANSI C63.10-2020, section 11.8 and section 6.9


The steps for the first option are as follows:

- a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
- b) Set the VBW  $\geq$  [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max-hold.
- e) Sweep = No faster than coupled (auto) time.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.

According to ANSI C63.10-2020, section 7.8.6 and section 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be at least three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max-hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing spectral plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).



#### **Test Data**

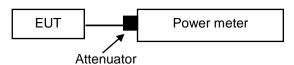
**Test Result:** Compliance. Please refer to the Appendix A.

# FCC §15.247(b) (3)-MAXIMUM CONDUCTED OUTPUT POWER

## **Applicable Standard**

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: 2504V71150E-RF-00B


#### **Test Procedure**

According to ANSI C63.10-2020, section 11.9.1.2

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast responding diode detector.

According to ANSI C63.10-2020, section 11.9.2.3

- Measurement using a power meter (PM)(Method AVGPM)
  - a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent, if all of the conditions listed below are satisfied:
    - 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
    - 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
    - 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
  - b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6.
  - c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
  - d) Correct the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle.



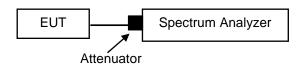
#### **Test Data**

Test Result: Compliance. Please refer to the Appendix A.

# FCC §15.247(d)-100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: 2504V71150E-RF-00B

## **Applicable Standard**


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### **Test Procedure**

According to ANSI C63.10-2020, section 11.11

- a) Set the center frequency and span to encompass frequency range to be measured. Note that the frequency range might need to be divided into multiple frequency ranges to retain frequency resolution. NOTE—the number of points can also be increased for large spans to retain frequency resolution
- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = No faster than coupled (auto) time.
- f) Trace mode = max-hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.



#### **Test Data**

**Test Result:** Compliance. Please refer to the Appendix A.

# FCC §15.247(e)-POWER SPECTRAL DENSITY

### **Applicable Standard**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: 2504V71150E-RF-00B

#### **Test Procedure**

According to ANSI C63.10-2020, section 11.10.2

• Method PKPSD (peak PSD)

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

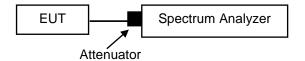
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span >1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz  $\leq$  RBW  $\leq$  100 kHz.
- d) Set the VBW ≥ [3 × RBW].
- e) Detector = peak.
- f) Sweep time = No faster than coupled (auto) time.
- g) Trace mode = max-hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

According to ANSI C63.10-2020, section 11.10.3

• Method AVGPSD-1: (for duty cycle ≥ 98%)

The following procedure may be used when the maximum (average) conducted output power was used to determine compliance to the fundamental output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has a power averaging (rms) detector, then it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (D  $\geq$  98%), or else sweep triggering/signal gating must be implemented to help ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter OFF time to be considered):

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to > 1.5 times the OBW.
- c) Set RBW to:  $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ .
- d) Set VBW ≥ [3 × RBW].
- e) Detector = power averaging (rms) or sample detector (when rms not available).
- f) Ensure that the number of measurement points in the sweep ≥ [2 × span / RBW].
- g) Sweep time = auto couple.
- h) Employ trace averaging (rms) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this might require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).


According to ANSI C63.10-2020, section 11.10.5

• Method AVGPSD-2: (for duty cycle < 98% and constant duty cycle)

The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., D < 98%), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than  $\pm 2\%$ ):

Report No.: 2504V71150E-RF-00B

- a) Measure the duty cycle (D) of the transmitter output signal as described in 11.6.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to > 1.5 times the OBW.
- d) Set RBW to:  $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ .
- e) Set VBW ≥ [3 × RBW].
- f) Detector = power averaging (rms) or sample detector (when rms not available).
- g) Ensure that the number of measurement points in the sweep ≥ [2 × span / RBW].
- h) Sweep time = auto couple.
- i) Do not use sweep triggering; allow sweep to "free run."
- j) Employ trace averaging (rms) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- I) Add [10 log (1 / D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time.
- m) If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this might require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).



#### **Test Data**

Test Result: Compliance. Please refer to the Appendix A.

# **APPENDIX A**

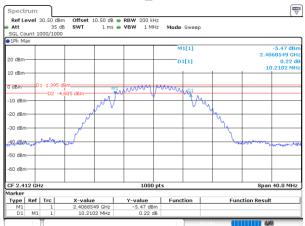
## **RF Test Result**

## **Test Information:**

| Sample No.: | 37BS-3    | Test Date:   | 2025/08/02~2025/08/14 |
|-------------|-----------|--------------|-----------------------|
| Test Site:  | RF        | Test Mode:   | Transmitting          |
| Tester:     | Cayde Hou | Test Result: | Pass                  |

Report No.: 2504V71150E-RF-00B

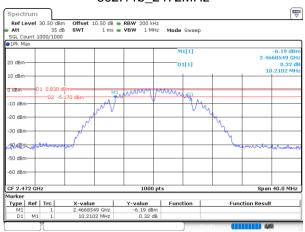
## **Environmental Conditions:**


| Temperature: (°C) 25.7~26 | Relative<br>Humidity:<br>(%) | 48~56 | ATM Pressure: (kPa) | 99.3 |
|---------------------------|------------------------------|-------|---------------------|------|
|---------------------------|------------------------------|-------|---------------------|------|

## **6dB Emission Bandwidth**

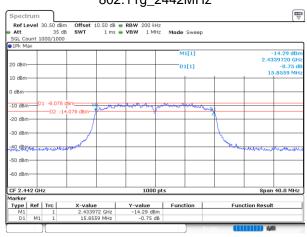
| Mode               | Test Frequency Result Limit (MHz) (MHz) (MHz) |             | Verdict |      |
|--------------------|-----------------------------------------------|-------------|---------|------|
|                    | 2412                                          | 10.210      | ≥0.5    | Pass |
| 802.11b            | 2442                                          | 10.170      | ≥0.5    | Pass |
|                    | 2472                                          | 10.210      | ≥0.5    | Pass |
|                    | 2412                                          | 15.856      | ≥0.5    | Pass |
| 802.11g            | 2442                                          | 15.856      | ≥0.5    | Pass |
|                    | 2472                                          | 15.816      | ≥0.5    | Pass |
|                    | 2412                                          | 16.016      | ≥0.5    | Pass |
| 802.11n20          | 2442                                          | 15.936      | ≥0.5    | Pass |
|                    | 2472                                          | 15.976      | ≥0.5    | Pass |
|                    | 2422                                          | 35.476      | ≥0.5    | Pass |
| 802.11n40          | 2442                                          | 35.476      | ≥0.5    | Pass |
|                    | 2462                                          | 35.235      | ≥0.5    | Pass |
|                    | 2412                                          | 15.616      | ≥0.5    | Pass |
| 802.11ax20_RU_Full | 2442                                          | 15.816 ≥0.5 |         | Pass |
|                    | 2472                                          | 16.617      | ≥0.5    | Pass |
|                    | 2422                                          | 34.995      | ≥0.5    | Pass |
| 802.11ax40_RU_Full | 2442                                          | 35.075      | ≥0.5    | Pass |
|                    | 2462                                          | 34.995      | ≥0.5    | Pass |

#### 2412~2472


#### 802.11b\_2412MHz

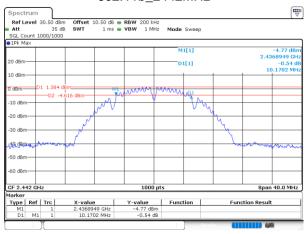


ProjectNo.:2504V71150E-RF Tester:Cayde Hou


Date: 2.AUG.2025 15:35:21

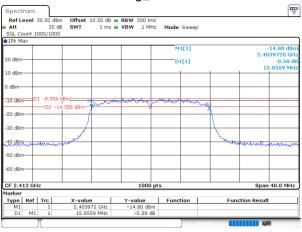
#### 802.11b\_2472MHz




Date: 2.AUG.2025 15:42:04

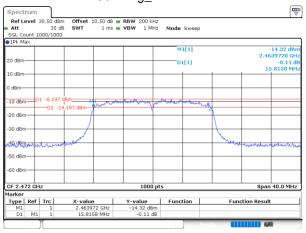
#### 802.11g\_2442MHz




Date: 2.AUG.2025 15:47:31

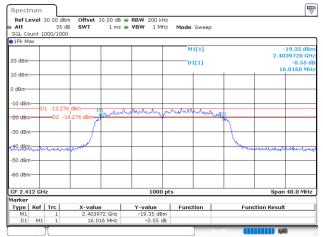
#### 802.11b\_2442MHz




Date: 2.AUG.2025 15:38:12

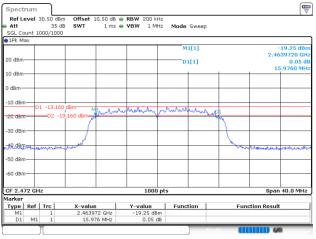
#### 802.11g\_2412MHz




Date: 2.AUG.2025 15:45:00

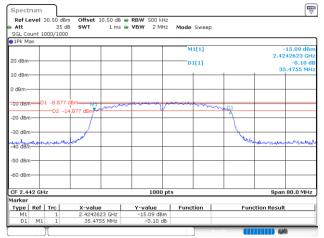
#### 802.11g\_2472MHz




Date: 2.AUG.2025 15:49:17

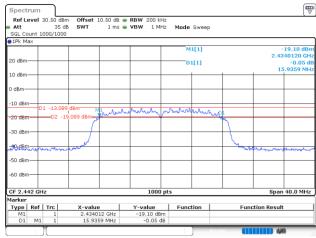
#### 802.11n20\_2412MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:17:54

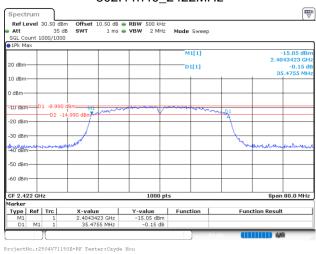
#### 802.11n20\_2472MHz



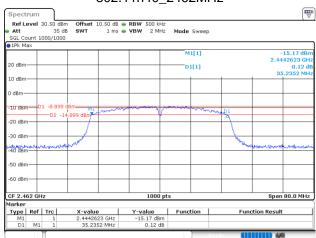

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:24:51

#### 802.11n40\_2442MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:03:30

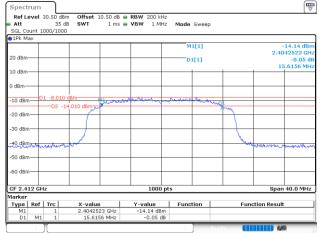
#### 802.11n20\_2442MHz



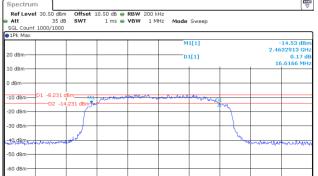

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:22:56

#### 802.11n40\_2422MHz




#### 802.11n40 2462MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:05:56

Date: 2.AUG.2025 15:59:50

#### 802.11ax20\_2412MHz\_RU\_Full

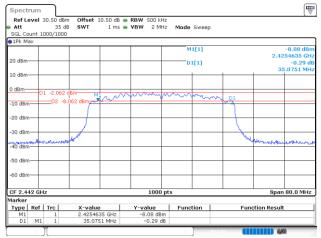


Date: 2.AUG.2025 16:10:17



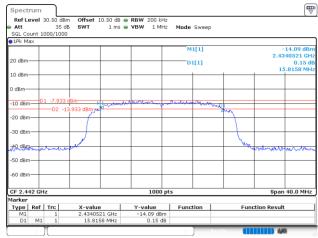
802.11ax20\_2472MHz\_RU\_Full

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:14:02


CF 2.472 GHz

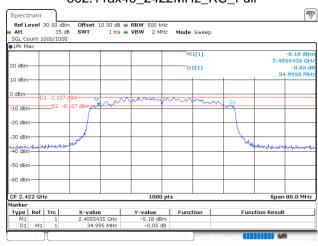
Type Ref Trc

#### 802.11ax40\_2442MHz\_RU\_Full


1000 pts

Y-value Function

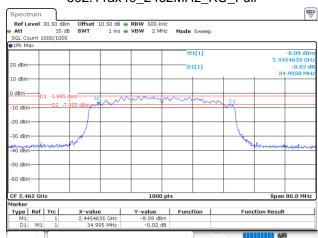



ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:30:36

#### 802.11ax20\_2442MHz\_RU\_Full



ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:12:35


#### 802.11ax40\_2422MHz\_RU\_Full

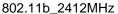


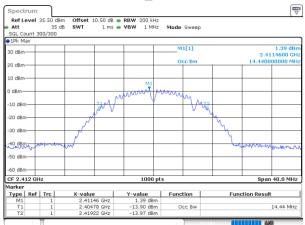
ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:28:23

40.0 MHz

#### 802.11ax40\_2462MHz\_RU\_Full



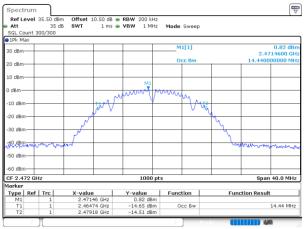

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:33:34


# 99% Occupied Bandwidth

| Mode               | Test Frequency<br>(MHz) | 99% OBW<br>(MHz) |
|--------------------|-------------------------|------------------|
|                    | 2412                    | 14.440           |
| 802.11b            | 2442                    | 14.440           |
|                    | 2472                    | 14.440           |
|                    | 2412                    | 16.120           |
| 802.11g            | 2442                    | 16.120           |
|                    | 2472                    | 16.160           |
|                    | 2412                    | 17.360           |
| 802.11n20          | 2442                    | 17.360           |
|                    | 2472                    | 17.400           |
|                    | 2422                    | 36               |
| 802.11n40          | 2442                    | 36               |
|                    | 2462                    | 36               |
|                    | 2412                    | 18.240           |
| 802.11ax20_RU_Full | 2442                    | 18.240           |
|                    | 2472                    | 18.280           |
|                    | 2422                    | 37.120           |
| 802.11ax40_RU_Full | 2442                    | 37.120           |
|                    | 2462                    | 37.120           |

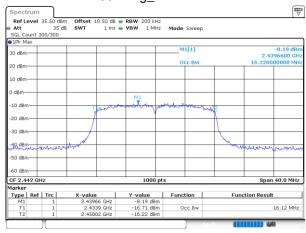
Report No.: 2504V71150E-RF-00B

#### 2412~2472



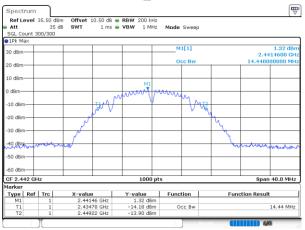



ProjectNo.:2504V71150E-RF Tester:Cayde Hou


Date: 2.AUG.2025 15:34:56

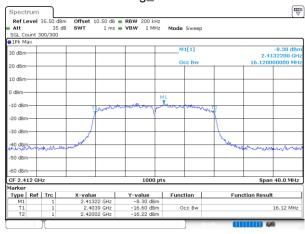
## 802.11b\_2472MHz




Date: 2.AUG.2025 15:41:41

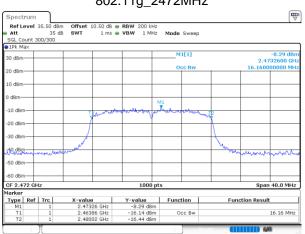
#### 802.11g\_2442MHz




Date: 2.AUG.2025 15:47:11

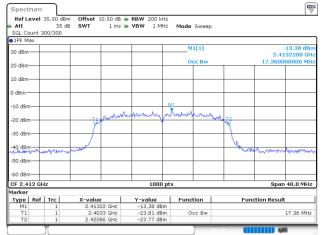
#### 802.11b\_2442MHz




Date: 2.AUG.2025 15:37:52

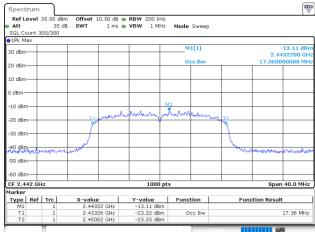
#### 802.11g\_2412MHz




Date: 2.AUG.2025 15:44:35

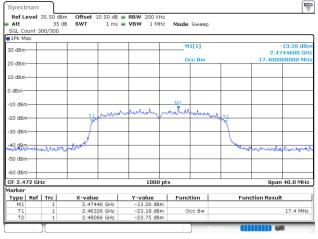
# 802.11g\_2472MHz




Date: 2.AUG.2025 15:48:54

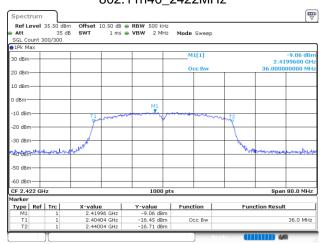
#### 802.11n20\_2412MHz




Date: 11.AUG.2025 11:17:29

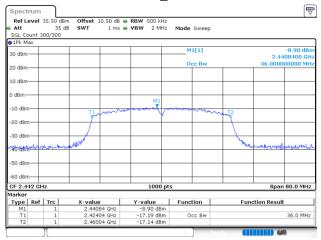
# 802.11n20\_2442MHz




Date: 11.AUG.2025 11:22:36

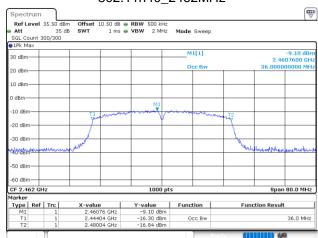
#### 802.11n20\_2472MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:24:29

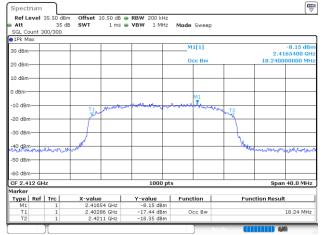
#### 802.11n40\_2422MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 15:59:42

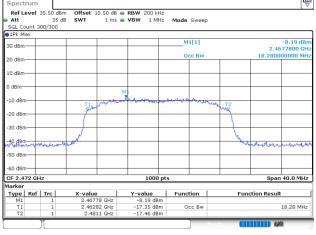
#### 802.11n40\_2442MHz




Date: 2.AUG.2025 16:03:23

#### 802.11n40 2462MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:05:50

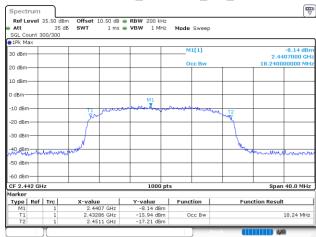
#### 802.11ax20\_2412MHz\_RU\_Full



Date: 2.AUG.2025 16:09:53

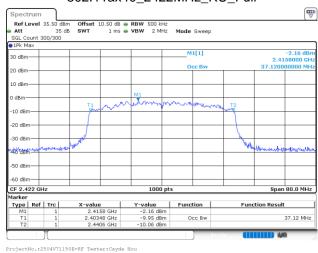
# 802.11ax20\_2472MHz\_RU\_Full




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:13:42

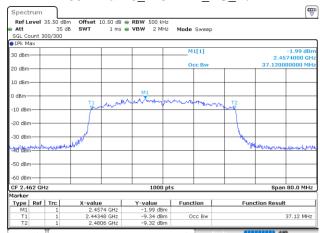
#### 802.11ax40\_2442MHz\_RU\_Full




Date: 11.AUG.2025 11:30:28

#### 802.11ax20\_2442MHz\_RU\_Full




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:12:16

#### 802.11ax40\_2422MHz\_RU\_Full



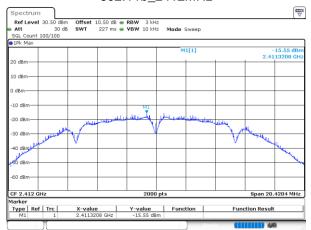
Date: 11.AUG.2025 11:28:15

#### 802.11ax40\_2462MHz\_RU\_Full



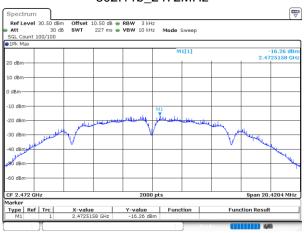
ProjectNo.:2504V71150E-RF Tester:Cayde Hou

# **Maximum Conducted Output Power**


| Mode               | Test Frequency (MHz) |       |    | Verdict |
|--------------------|----------------------|-------|----|---------|
|                    | 2412                 | 13.20 | 30 | Pass    |
| 802.11b            | 2442                 | 13.23 | 30 | Pass    |
|                    | 2472                 | 12.66 | 30 | Pass    |
|                    | 2412                 | 12.64 | 30 | Pass    |
| 802.11g            | 2442                 | 12.86 | 30 | Pass    |
|                    | 2472                 | 12.70 | 30 | Pass    |
|                    | 2412                 | 8.21  | 30 | Pass    |
| 802.11n20          | 2442                 | 8.05  | 30 | Pass    |
|                    | 2472                 | 7.60  | 30 | Pass    |
|                    | 2422                 | 12.98 | 30 | Pass    |
| 802.11n40          | 2442                 | 13.09 | 30 | Pass    |
|                    | 2462                 | 13.11 | 30 | Pass    |
|                    | 2412                 | 11.72 | 30 | Pass    |
| 802.11ax20_RU_Full | 2442                 | 12.08 | 30 | Pass    |
|                    | 2472                 | 11.91 | 30 | Pass    |
| 802.11ax40_RU_Full | 2422                 | 15.72 | 30 | Pass    |
|                    | 2442                 | 15.74 | 30 | Pass    |
|                    | 2462                 | 15.72 | 30 | Pass    |

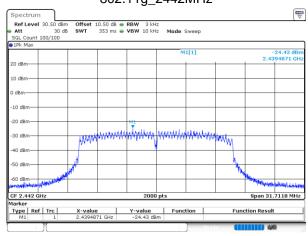
# **Power Spectral Density**

| Mode               | Test Frequency (MHz) | Result<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Verdict |
|--------------------|----------------------|----------------------|---------------------|---------|
|                    | 2412                 | -15.55               | 8                   | Pass    |
| 802.11b            | 2442                 | -15.55               | 8                   | Pass    |
|                    | 2472                 | -16.26               | 8                   | Pass    |
|                    | 2412                 | -24.78               | 8                   | Pass    |
| 802.11g            | 2442                 | -24.43               | 8                   | Pass    |
|                    | 2472                 | -24.61               | 8                   | Pass    |
|                    | 2412                 | -30.70               | 8                   | Pass    |
| 802.11n20          | 2442                 | -30.40               | 8                   | Pass    |
|                    | 2472                 | -30.54               | 8                   | Pass    |
|                    | 2422                 | -27.32               | 8                   | Pass    |
| 802.11n40          | 2442                 | -27.28               | 8                   | Pass    |
|                    | 2462                 | -28.10               | 8                   | Pass    |
|                    | 2412                 | -25.04               | 8                   | Pass    |
| 802.11ax20_RU_Full | 2442                 | -24.12               | 8                   | Pass    |
|                    | 2472                 | -25.32               | 8                   | Pass    |
| 802.11ax40_RU_Full | 2422                 | -24.33               | 8                   | Pass    |
|                    | 2442                 | -24.25               | 8                   | Pass    |
|                    | 2462                 | -24.33               | 8                   | Pass    |


#### 2412~2472

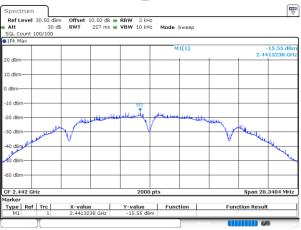
#### 802.11b\_2412MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 15:36:08

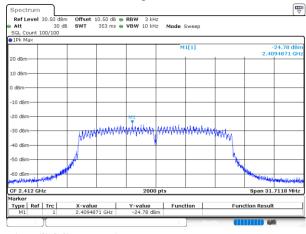
#### 802.11b\_2472MHz




Date: 2.AUG.2025 15:42:50

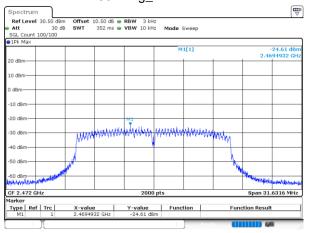
#### 802.11g\_2442MHz




Date: 2.AUG.2025 15:48:22

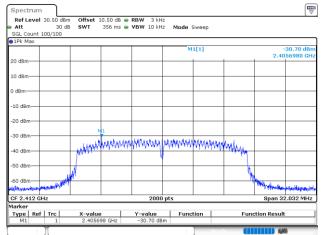
#### 802.11b\_2442MHz




Date: 2.AUG.2025 15:38:48

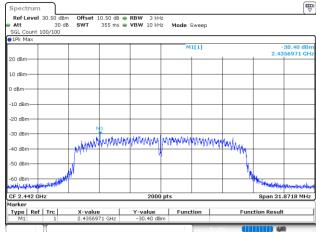
#### 802.11g\_2412MHz




Date: 2.AUG.2025 15:46:02

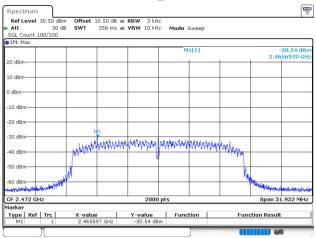
#### 802.11g\_2472MHz




Date: 2.AUG.2025 15:50:19

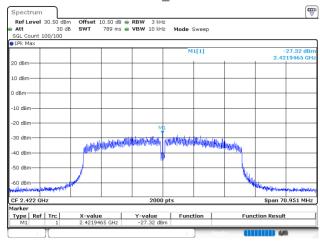
#### 802.11n20\_2412MHz




Date: 11.AUG.2025 11:21:19

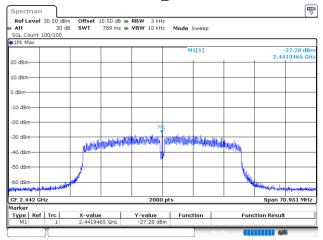
# 802.11n20\_2442MHz




Date: 11.AUG.2025 11:23:47

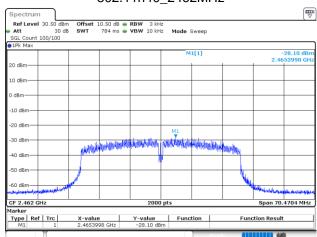
#### 802.11n20\_2472MHz




Date: 11.AUG.2025 11:25:53

#### 802.11n40\_2422MHz

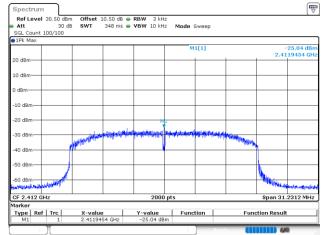



ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:01:42

#### 802.11n40\_2442MHz

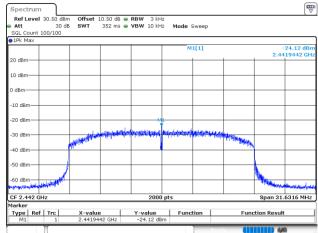


Date: 2.AUG.2025 16:05:08


#### 802.11n40\_2462MHz

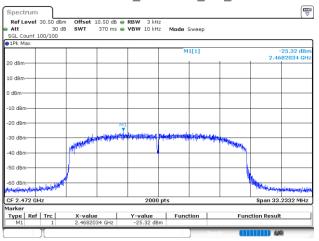


ProjectNo.:2504V71150E-RF Tester:Cayde Hou


Date: 2.AUG.2025 16:07:44

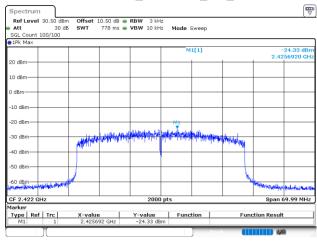
#### 802.11ax20\_2412MHz\_RU\_Full




Date: 2.AUG.2025 16:11:14

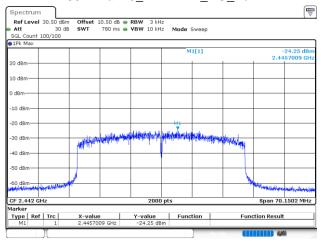
# 802.11ax20\_2442MHz\_RU\_Full




Date: 2.AUG.2025 16:13:24

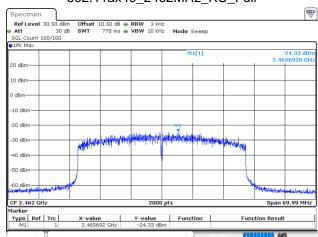
#### 802.11ax20\_2472MHz\_RU\_Full




Date: 2.AUG.2025 16:15:02

#### 802.11ax40\_2422MHz\_RU\_Full



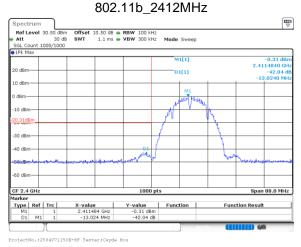

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:30:14

#### 802.11ax40\_2442MHz\_RU\_Full

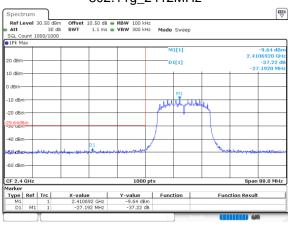


Date: 11.AUG.2025 11:32:17

#### 802.11ax40\_2462MHz\_RU\_Full



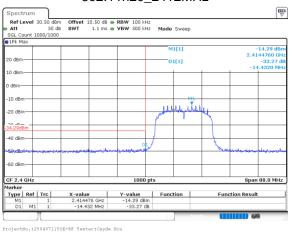

Date: 11.AUG.2025 11:35:24


# 100 kHz Bandwidth of Frequency Band Edge

#### 2412~2472

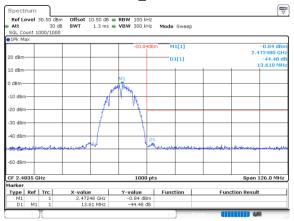





802.11g\_2412MHz

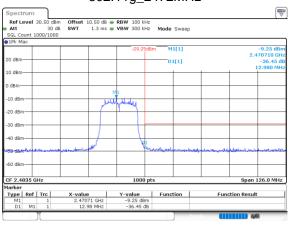


802.11n20\_2412MHz


Date: 2.AUG.2025 15:45:17

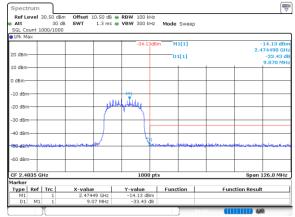
Date: 11.AUG.2025 11:20:33




802.11b 2472MHz

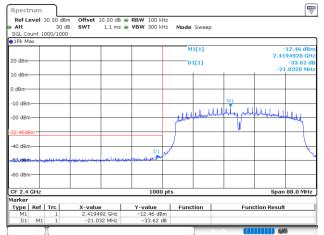
Report No.: 2504V71150E-RF-00B



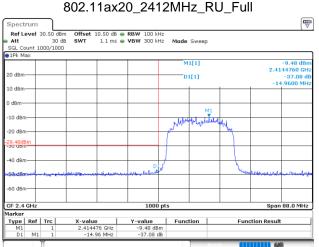

Projectno.:2304V/1130E-RF Tester:Cayde Hou

802.11g\_2472MHz



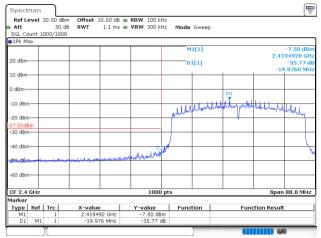

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 15:49:34

802.11n20\_2472MHz



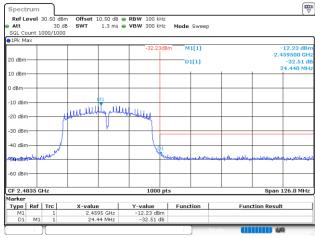

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:25:07

#### 802.11n40\_2422MHz



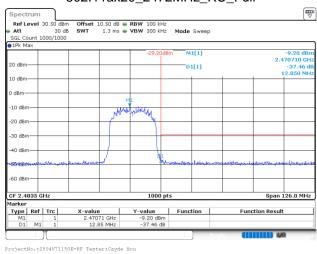

Date: 2.AUG.2025 16:00:07



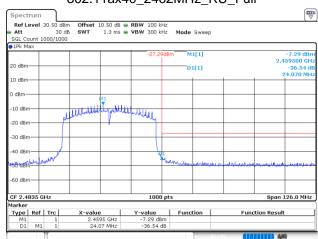

ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:10:30

#### 802.11ax40\_2422MHz\_RU\_Full




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:28:39

#### 802.11n40\_2462MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 2.AUG.2025 16:06:10

#### 802.11ax20\_2472MHz\_RU\_Full

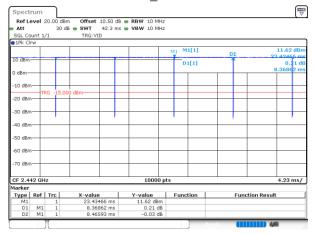


802.11ax40\_2462MHz\_RU\_Full



ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 11.AUG.2025 11:33:50

Date: 2.AUG.2025 16:14:16

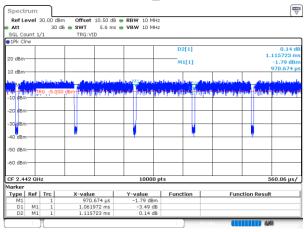

# **Duty Cycle**

| Mode               | Test<br>Frequency<br>(MHz) | Ton<br>(ms) | Ton+Toff (ms) | Duty<br>Cycle<br>(%) | Duty Cycle<br>Factor(dB) | 1/Ton<br>(Hz) | VBW<br>Setting<br>(kHz) |
|--------------------|----------------------------|-------------|---------------|----------------------|--------------------------|---------------|-------------------------|
| 802.11b            | 2442                       | 8.369       | 8.466         | 98.85                | /                        | /             | 0.010                   |
| 802.11g            | 2442                       | 1.381       | 1.398         | 98.78                | /                        | /             | 0.010                   |
| 802.11n20          | 2442                       | 1.062       | 1.116         | 95.16                | 0.22                     | 942           | 1                       |
| 802.11n40          | 2442                       | 0.648       | 0.658         | 98.48                | /                        | /             | 0.010                   |
| 802.11ax20_RU_FULL | 2442                       | 1.061       | 1.116         | 95.07                | 0.22                     | 943           | 1                       |
| 802.11ax40_RU_FULL | 2442                       | 0.563       | 0.617         | 91.25                | 0.40                     | 1776          | 2                       |

Report No.: 2504V71150E-RF-00B

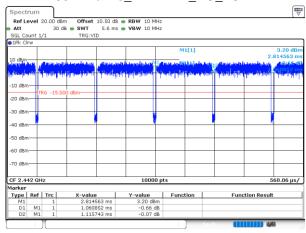
Duty Cycle = Ton/(Ton+Toff)\*100%

#### 802.11b\_2442MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Ho

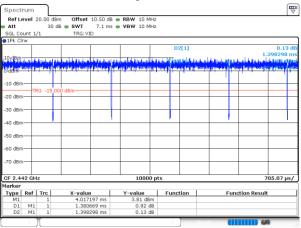
Date: 2.AUG.2025 15:31:17


2412~2472

#### 802.11n20\_2442MHz

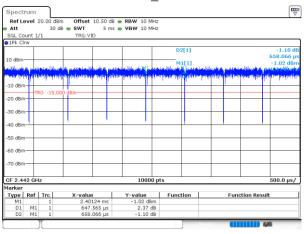


Date: 11.AUG.2025 11:14:45


#### 802.11ax20\_2442MHz\_RU\_FULL

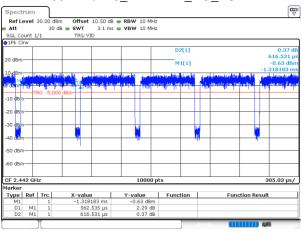


Date: 2.AUG.2025 15:34:05


#### 802.11g\_2442MHz

Report No.: 2504V71150E-RF-00B




Date: 2.AUG.2025 15:32:13

#### 802.11n40\_2442MHz

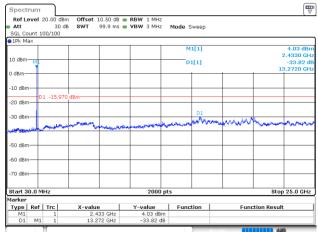


Date: 2.AUG.2025 15:33:42

802.11ax40\_2442MHz\_RU\_FULL



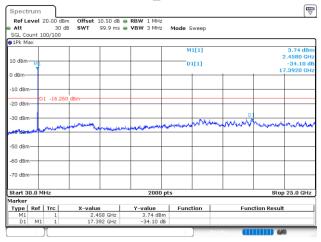
Date: 11.AUG.2025 11:16:39


# **Conducted Spurious Emission**

# 802.11b\_2412MHz Ref Level 20.00 dBm Offset 10.50 dB RBW 1 MHz att 30 dB SWT 99.9 ms VBW 3 MHz Mode Sweep SGL Count 100/100 1Pk Max LO dBm -33.81 d D1[1] -10 dBn 20 dBri بالمساملها الم 50 dBri 60 dBm 70 dBn Type Ref Trc X-value Y-value Function 2.408 GHz 4.11 dBm 13.284 GHz -33.81 dB

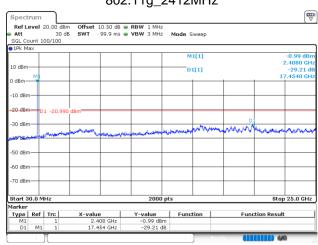
ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:12:31

### 802.11b\_2437MHz


Report No.: 2504V71150E-RF-00B

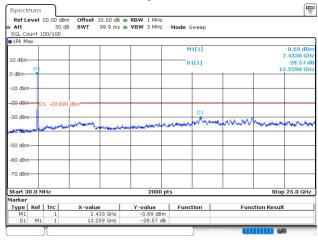


ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:13:49


#### 802.11b\_2462MHz

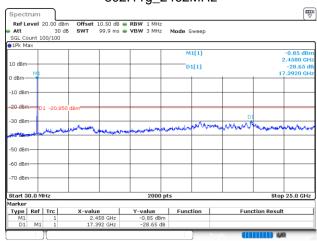
Function Result




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:14:50

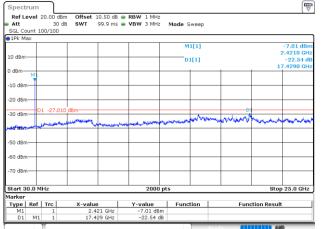
## 802.11g\_2412MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:16:44

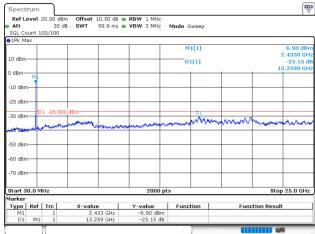
#### 802.11g\_2437MHz




Date: 14.AUG.2025 10:18:07

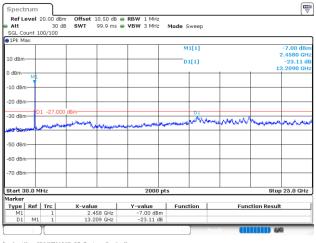
#### 802.11g\_2462MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:19:08

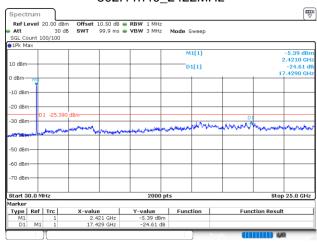
#### 802.11n20\_2412MHz




Date: 14.AUG.2025 10:29:51

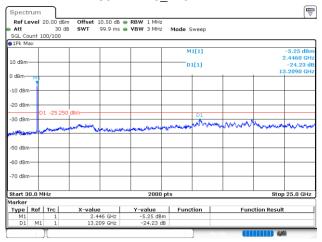
# 802.11n20\_2437MHz




Date: 14.AUG.2025 10:31:14

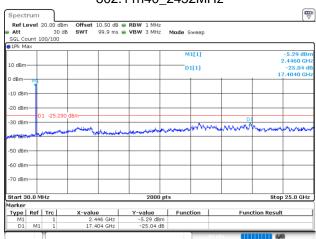
#### 802.11n20\_2462MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:32:29

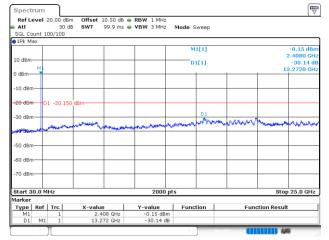
#### 802.11n40\_2422MHz




ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:33:41

#### 802.11n40\_2437MHz




Date: 14.AUG.2025 10:34:45

#### 802.11n40\_2452MHz



ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:35:50

#### 802.11ax20\_2412MHz\_RU\_Full



Date: 14.AUG.2025 10:37:03

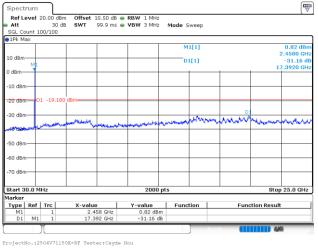
# -60 dBm

0 dBm-

-10 dBm

-50 dBm

Marker Type | Ref | Trc |


 Ref Level
 20.00 dBm
 Offset
 10.50 dB
 ■ RBW
 1 MHz

 Att
 30 dB
 SWT
 99.9 ms
 ■ VBW
 3 MHz

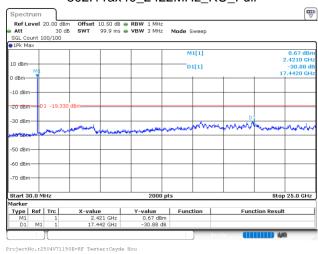
 SGL Count
 100/100

Date: 14.AUG.2025 10:39:08

#### 802.11ax20\_2462MHz\_RU\_Full

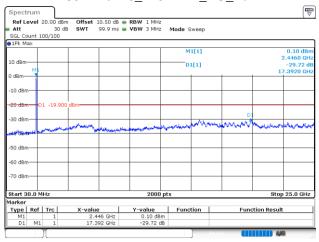


Date: 14.AUG.2025 10:40:18


#### 802.11ax40\_2422MHz\_RU\_Full

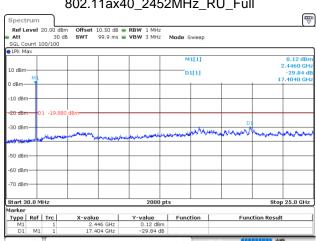
802.11ax20\_2437MHz\_RU\_Full

D1[1]


Function

**Function Result** 




Date: 14.AUG.2025 10:41:45

#### 802.11ax40\_2437MHz\_RU\_Full



Date: 14.AUG.2025 10:42:58

#### 802.11ax40\_2452MHz\_RU\_Full



ProjectNo.:2504V71150E-RF Tester:Cayde Hou Date: 14.AUG.2025 10:45:20