EMC Test	Repo	ort
For:	Zwif	t Inc
Product:	Play	Controller
Model:	Z00 3	3
FCC ID:	2A4	DF-Z003
		RRund
Project Enginee	er:	Richard Pennell
		Q Valor
Approval Signa	tory:	Dan Tiroke

Document Reference: 4315 FR

Issue Number:	Date:	Test Report Revisions History:
1	8 th November 2022	Original Report Issued

UKAS Accredited:	1871
FCC Registered:	UK2006
KC Lab ID:	UK 1871
Canada CAB ID:	UK0005

Contents

<u>1.0</u>	OVERVIEW	<u> 3</u>	
1.1	Introduction		3
1.2	Objective		3
1.3	Product Modifications		3
1.4	Conclusion		3
1.5	EMC Test Lab Reference		3
1.6	Test Deviations		3
<u>2.0</u>	TEST SUMMARY	4	
2.1	Summary		4
<u>3.0</u>	EQUIPMENT AND TEST DETAILS	<u>5</u>	
3.1	General		5
3.2	EUT Description		6
3.3	Support Equipment		6
3.4	EUT Test Exerciser		6
3.5	EUT Test Configuration #1		6
<u>4.0</u>	TEST RESULTS	7	
4.1	Radiated Emissions; Left Controller		7
4.2	Radiated Emissions; Right Controller	2	25
4.3	Conducted Emissions; Top Channel (Charging mode with DC PSU at 115V/60Hz)	5	0
4.4	Conducted Emissions; Middle Channel (Charging mode with DC PSU at 115V/60Hz)	5	3
4.5	Conducted Emissions; Bottom Channel (Charging mode with DC PSU at 115V/60Hz)	5	6
4.6	Conducted Emissions; RX Channel (Charging mode with DC PSU at 115V/60Hz)	5	9
4.7	Conducted Emissions; RX Channel (Charging mode with DC PSU at 230V/50Hz)	6	2
<u>5.0</u>	MEASUREMENT UNCERTAINTIES	65	
<u>6.0</u>	ANNEX – CONDUCTED EMISSIONS RESULTS	66	
6.1	Summary	6	6
6.2	DTS Bandwidth	6	7
6.3	Maximum Peak Conducted Output Power	6	9
6.4	Maximum Power Spectral Density	7	1
6.5	Occupied bandwidth	7	'3
6.6	Test Equipment	7	4

1.0 OVERVIEW

1.1 Introduction

The equipment under test (EUT) as described within this document was submitted for testing as agreed with the customer.

1.2 Objective

The purpose of the test was to measure and report the EUT against limits and methods of the requested standards as listed in section 2.0 Test Summary.

1.3 Product Modifications

None to sample submitted.

1.4 Conclusion

The EUT met the emission requirements of the tests defined in section 2.0 Test Summary.

This report relates to the sample tested and may not represent the entire population. It is valid only for the product identified, either in part or in full, to the standards and/or tests covered in this document.

1.5 EMC Test Lab Reference

Eurofins E&E Hursley File: 4315

1.6 Test Deviations

None.

2.0 TEST SUMMARY

2.1 Summary

The EUT, as described and reported within this document, complies with the applied requested sections of the standards listed below.

The EUT met the emissions test requirements of the following standards:						
Description	General Standard	Referenced Standard	Status			
Radiated Emissions	FCC/CFR 47:Part 15B 15.109 and 15.107	ANSI C63.4:2014, Class B	Pass			
Conducted Emissions	FCC/CFR 47:Part 15C 15.247 and 15.209	ANSI C63.10:2013, Class B	Pass			

Note(s):

• The highest internal operating frequency declared by the manufacturer is 2480MHz.

3.0 EQUIPMENT AND TEST DETAILS

3.1 General

Product (EUT):	Play Controller					
Models:	Z003 (right)	Serial Numbers:	AC2DVT300129 (conducted) AC2DVT300074 (radiated)			
	Z003 (left)		AD2DVT300033 (radiated)			
Sample Build:	Production Sample					
EUT Power:	Battery Powered 110V/60Hz (Charger)					
Customer Test Plan:	Not Applicable					
Alternate Models:	Not Applicable					
EUT Manufacturer:	Zwift Inc					
Customer Name:	Zwift Inc					
Customer Address:	111 W. Ocean Blvd Suite 1800					
	Long Beach					
	CA90802					
	USA					
Test Commissioned By:	Charlie Blackham, Su	lis Consultants Limi	ted			
Date EUT Received:	22 nd September 2022	1				
Test Date(s):	22 nd September 2022					
EMC Measurement Site:	Eurofins E&E Hursley Limited					
	Trafalgar Close, Chandlers Ford, Hampshire, United Kingdom					
Product Category:	Radio Equipment and	Radio Equipment and Services				

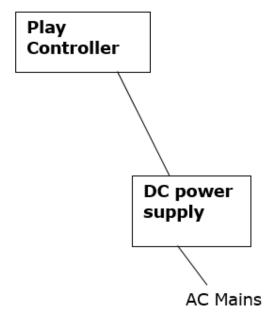
3.2 EUT Description

The EUT is a Bluetooth enabled play controller.

3.3 Support Equipment

Description	Manufacturer	Model	Serial Number		
Tablet	Samsung	Not Applicable	Not Applicable		
Mains – DC PSU	Samsung	ETA0U83UWE	SC2HC07BS/A		

3.4 EUT Test Exerciser


The EUT was powered on and put into testing mode. It was tested in three separate modes:

- 1. Top Channel; 2480MHz
- 2. Middle Channel; 2440MHz
- 3. Bottom Channel; 2402MHz

The EUT was tested in three axes and the worst-case results are shown below.

The Middle Channel was also tested in three different axes to find the worst case axis. Pre-scans were taken of all channels on the worst axis to find the worst case; final testing were performed on the worst case.

3.5 EUT Test Configuration #1

4.0 TEST RESULTS

4.1 Radiated Emissions; Left Controller

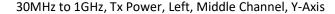
4.1.1 Test Parameters

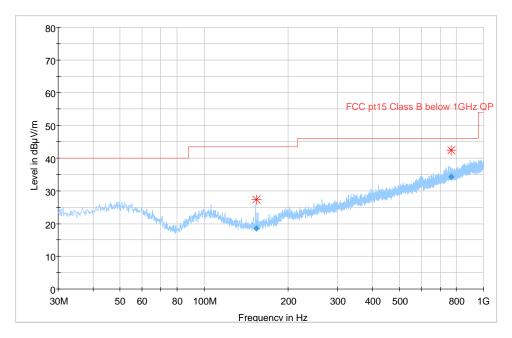
A profile scan was taken using an EMI receiver at a distance of three metres on eight azimuths of the EUT in both the vertical and horizontal polarisation of the field in a semi-anechoic chamber.

Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out at a distance of three metres using the specified detector in a CISPR 16-1-4 semi-anechoic chamber. Cable positions were then finally adjusted to produce the maximum emission levels. The worst-case results are reported below.

Test	Test Equipment										
#ID	CP Manufacturer		Туре	Serial Number	Description	Calibration Due Date					
750	1	Global	CISPR16	1	11 x 7 x 6.2m, chamber	14/12/2022					
672	1	НР	8491B	4596	3dB pad	Internal					
788	1	1 Rohde & Schwarz ESW 44 101799		101799	EMI test receiver (44GHz)	09/08/2023					
877	1 Huber & Suhner SUCOTES		SUCOTEST_18A	602608/18A	ST_18A/Nm/Nm/3m	19/04/2023					
073	3	Schwarzbeck	Schwarzbeck BBHA9120B		Horn Antenna (1-10GHz)	20/05/2024					
399	3	Q-par Angus	WBH18-40k	10300	Horn Antenna (18-40GHz)	18/12/2022					
086a	086a 3 GORE OKOCQOCQ1		0K0CQ0CQ120.0	K0CQ0CQ120.0 05609131 K' Cable (26.5-40GHz)		Internal					
Test	Equip	ment Software									
#ID CP Manufacturer Type 856 0 Rohde & Schwarz Software 0		Туре		Description	Calibration Due Date						
		0	EMC32 v10.50.10	Not required							

Environmental Test Con	ditions
Temperature	23.3° Celsius
Relative Humidity	dity 46%
Atmospheric Pressure	1021.4 millibars
Test Date:	22 nd September 2022
Test Engineer:	Richard Pennell


Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.


4.1.2 Test Configuration

Please refer to EUT Test Configuration #1.

4.1.3 Profile; 30MHz to 1GHz, Tx Power, Left, Middle Channel, Y-Axis

Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

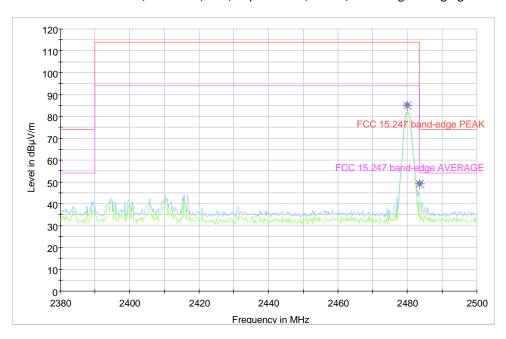
4.1.4 Data; 30MHz to 1GHz, Tx Power, Left, Middle Channel, Y-Axis

Emission Frequency	Measured Quasi-Peak Value	6		Antenna Polarisation	Antenna Height	Turntable Azimuth	
MHz	dBμV/m	dBμV/m	dB	H/V	cm	deg	Status
153.783444	18.50	43.50	25.00	V	162.0	103.0	Pass
765.916772	34.26	46.00	11.74	V	168.0	55.0	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.5 Profile; 2380 to 2500MHz, Tx Power, Left, Top Channel, X-Axis, Band Edge Charging

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

2380 to 2500MHz, Tx Power, Left, Top Channel, X-Axis, Band Edge Charging

4.1.6 Data; 2380 to 2500MHz, Tx Power, Left, Top Channel, X-Axis, Band Edge Charging

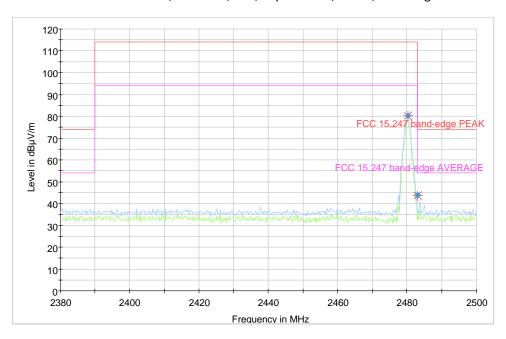
Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2480.000000	85.18		94.00	8.82	105.0	Н	188.0	-7.6	Pass
2483.500000	49.44		54.00	4.56	169.0	Н	187.0	-7.6	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.7 Profile; 2380 to 2500MHz, Tx Power, Left, Top Channel, X-Axis, Band Edge

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

2380 to 2500MHz, Tx Power, Left, Top Channel, X-Axis, Band Edge

4.1.8 Data; 2380 to 2500MHz, Tx Power, Left Controller, Top Channel, X-Axis, Band Edge

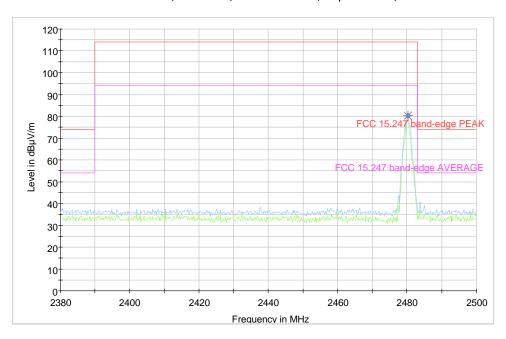
Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2480.200000	80.16		94.00	13.84	183.0	V	18.0	-6.6	Pass
2483.000000	43.95		54.00	10.05	382.0	Н	77.0	-6.6	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.9 Profile; 2380 to 2500MHz, Tx Power, Left Controller, Top Channel, X-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

2380 to 2500MHz, Tx Power, Left Controller, Top Channel, X-Axis

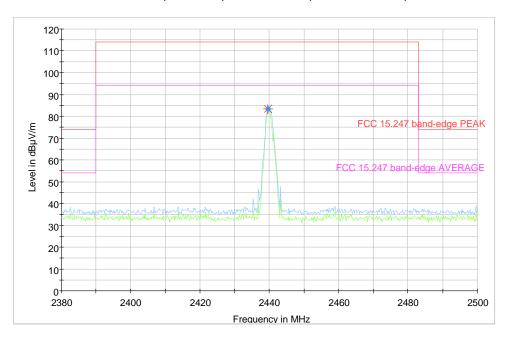
4.1.10 Data; 2380 to 2500MHz, Tx Power, Left Controller, Top Channel, X-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2480.200000	80.16		94.00	13.84	183.0	V	18.0	-6.6	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.11 Profile; 2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, X-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, X-Axis

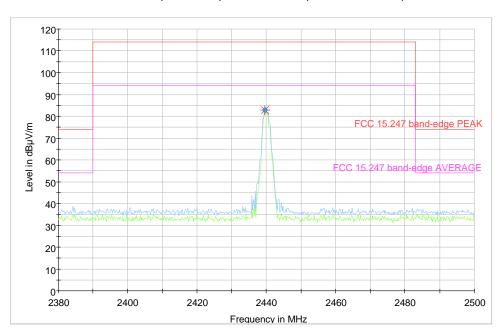
4.1.12 Data; 2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, X-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2439.600000	83.44		94.00	10.56	200.0	V	14.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.13 Profile; 2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, Y-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, Y-Axis

4.1.14 Data; 2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, Y-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2439.600000	82.82		94.00	11.18	214.0	V	215.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.15 Profile; 2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, Z-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, Z-Axis

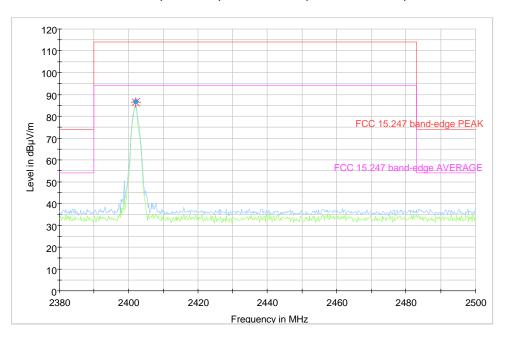
4.1.16 Data; 2380 to 2500MHz, Tx Power, Left Controller, Middle Channel, Z-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2439.600000	82.02		94.00	11.98	184.0	Н	292.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.17 Profile; 2380 to 2500MHz, Tx Power, Left Controller, Bottom Channel, X-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

2380 to 2500MHz, Tx Power, Left Controller, Bottom Channel, X-Axis

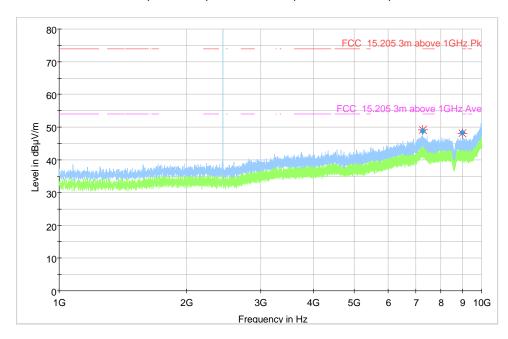
4.1.18 Data; 2380 to 2500MHz, Tx Power, Left Controller, Bottom Channel, X-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2402.000000	86.67		94.00	7.33	202.0	V	8.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.19 Profile; 1 to 10GHz, Tx Power, Left Controller, Middle Channel, X-Axis

Maximum hold trace with peak values ()

Peak measurements (*)

Average measurements ()

1 to 10GHz, Tx Power, Left Controller, Middle Channel, X-Axis

4.1.20 Data; 1 to 10GHz, Tx Power, Left Controller, Middle Channel, X-Axis

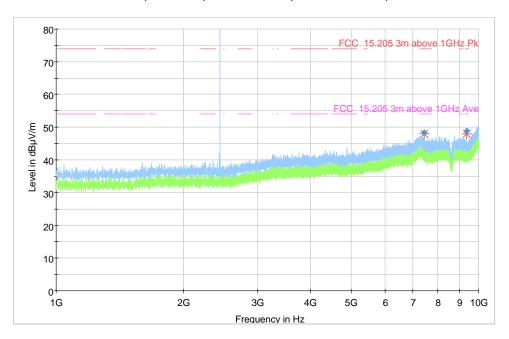
Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7261.750000	48.87		54.00	5.13	381.0	V	244.0	5.0	Pass
9016.750000	48.28		54.00	5.72	185.0	V	336.0	3.0	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.21 Profile; 1 to 10GHz, Tx Power, Left Controller, Middle Channel, Y-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

1 to 10GHz, Tx Power, Left Controller, Middle Channel, Y-Axis

4.1.22 Data; 1 to 10GHz, Tx Power, Left Controller, Middle Channel, Y-Axis

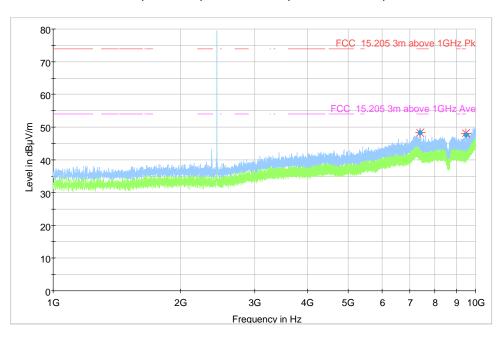
Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7439.950000	48.33		54.00	5.67	243.0	V	108.0	3.6	Pass
9386.200000	48.79		54.00	5.21	238.0	٧	330.0	2.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.23 Profile; 1 to 10GHz, Tx Power, Left Controller, Middle Channel, Z-Axis

Maximum hold trace with peak values ()

Peak measurements (*)

Average measurements ()

1 to 10GHz, Tx Power, Left Controller, Middle Channel, Z-Axis

4.1.24 Data; 1 to 10GHz, Tx Power, Left Controller, Middle Channel, Z-Axis

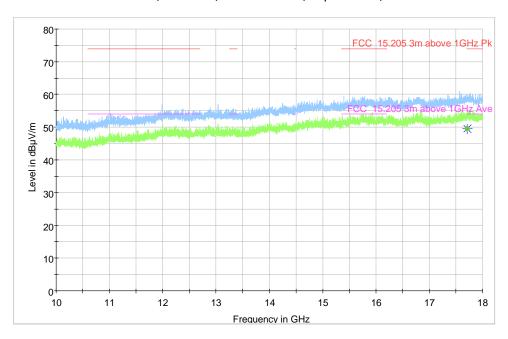
Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7380.100000	48.24		54.00	5.76	187.0	Н	225.0	4.1	Pass
9475.300000	47.66		54.00	6.34	105.0	Н	0.0	2.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.25 Profile; 10 to 18GHz, Tx Power, Left Controller, Top Channel, X-Axis

Maximum hold trace with peak values ()

Peak measurements (*)

Average measurements ()

10 to 18GHz, Tx Power, Left Controller, Top Channel, X-Axis

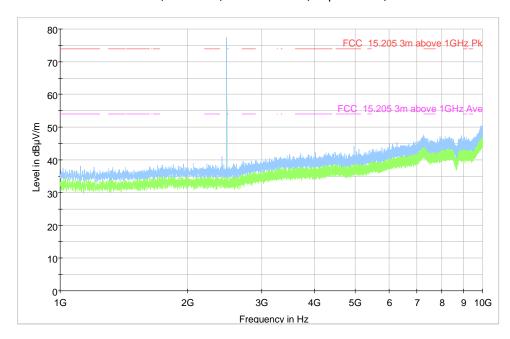
4.1.26 Data; 10 to 18GHz, Tx Power, Left Controller, Top Channel, X-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
17714.00000	49.51		54.00	4.49	396.0	V	61.0	19.1	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.27 Profile; 10 to 18GHz, Tx Power, Left Controller, Top Channel, Y-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

10 to 18GHz, Tx Power, Left Controller, Top Channel, Y-Axis

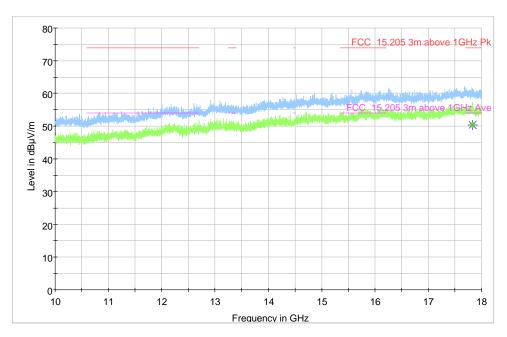
4.1.28 Data; 10 to 18GHz, Tx Power, Left Controller, Top Channel, Y-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.29 Profile; 10 to 18GHz, Tx Power, Left Controller, Middle Channel, X-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

10 to 18GHz, Tx Power, Left Controller, Middle Channel, X-Axis

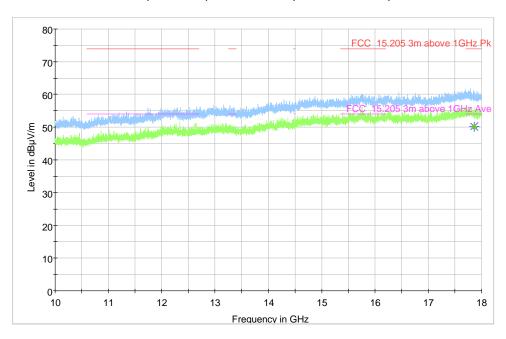
4.1.30 Data; 10 to 18GHz, Tx Power, Left Controller, Middle Channel, X-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
17833.00000	50.42		54.00	3.58	118.0	V	36.0	19.2	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.31 Profile; 10 to 18GHz, Tx Power, Left Controller, Middle Channel, Y-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

10 to 18GHz, Tx Power, Left Controller, Middle Channel, Y-Axis

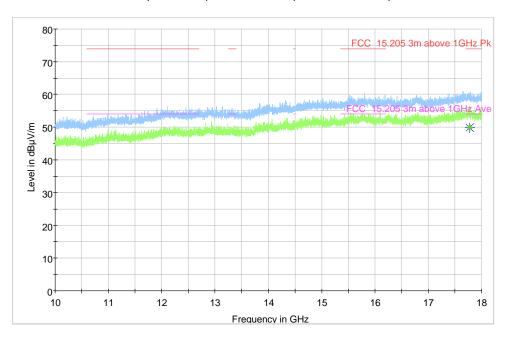
4.1.32 Data; 10 to 18GHz, Tx Power, Left Controller, Middle Channel, Y-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
17860.00000		50.09	54.00	3.91	347.0	Н	32.0	19.2	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.33 Profile; 10 to 18GHz, Tx Power, Left Controller, Middle Channel, Z-Axis

Maximum hold trace with peak values ()

Peak measurements (*)

Average measurements ()

10 to 18GHz, Tx Power, Left Controller, Middle Channel, Z-Axis

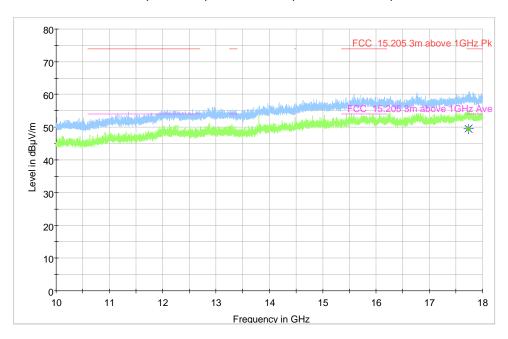
4.1.34 Data; 10 to 18GHz, Tx Power, Left Controller, Middle Channel, Z-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
17781.00000		49.87	54.00	4.13	171.0	V	22.0	19.2	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.1.35 Profile; 10 to 18GHz, Tx Power, Left Controller, Bottom Channel, X-Axis

Maximum hold trace with peak values ()

Peak measurements (*)

Average measurements ()

10 to 18GHz, Tx Power, Left Controller, Bottom Channel, X-Axis

4.1.36 Data; 10 to 18GHz, Tx Power, Left Controller, Bottom Channel, X-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
17737.00000		49.56	54.00	4.44	238.0	Н	63.0	19.1	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2 Radiated Emissions; Right Controller

4.2.1 Test Parameters

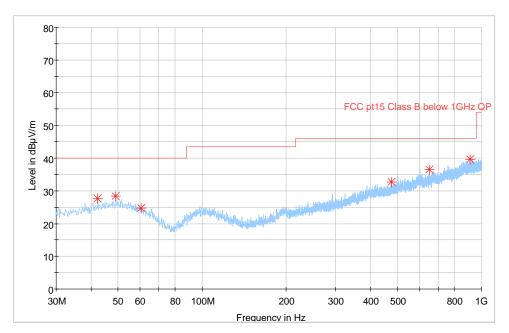
A profile scan was taken using an EMI receiver at a distance of three metres on eight azimuths of the EUT in both the vertical and horizontal polarisation of the field in a semi-anechoic chamber.

Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out at a distance of three metres using the specified detector in a CISPR 16-1-4 semi-anechoic chamber. Cable positions were then finally adjusted to produce the maximum emission levels. The worst-case results are reported below.

Test	Equip	ment				
#ID	СР	Manufacturer	Туре	Serial Number	Description	Calibration Due Date
750	1	Global	CISPR16	1	11 x 7 x 6.2m, chamber	14/12/2022
672 1 HP		НР	8491B	4596	3dB pad	Internal
788	1	Rohde & Schwarz	ESW 44	101799	EMI test receiver (44GHz)	09/08/2023
877	877 1 Huber & Suhner		SUCOTEST_18A	602608/18A	ST_18A/Nm/Nm/3m	19/04/2023
073	3	Schwarzbeck	BBHA9120B	237	Horn Antenna (1-10GHz)	20/05/2024
399	3	Q-par Angus	WBH18-40k	10300	Horn Antenna (18-40GHz)	18/12/2022
086a	3	GORE	0K0CQ0CQ120.0	05609131	K' Cable (26.5-40GHz)	Internal
Test	Equip	ment Software				
#ID	СР	Manufacturer	Туре		Description	Calibration Due Date
856	0	Rohde & Schwarz	Software	0	EMC32 v10.50.10	Not required

Environmental Test Con	ditions
Temperature	23.3° Celsius
Relative Humidity	46%
Atmospheric Pressure	1021.4 millibars
Test Date:	22 nd September 2022
Test Engineer:	Richard Pennell


Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.


4.2.2 Test Configuration

Please refer to EUT Test Configuration #1.

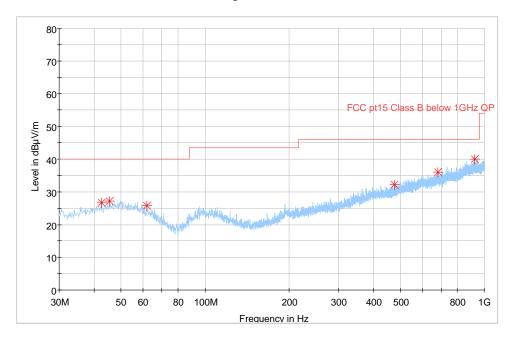
4.2.3 Profile; 30MHz to 1GHz, Tx Power, Right Controller, Top Channel, Z-Axis

Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

4.2.4 Data; 30MHz to 1GHz, Tx Power, Right Controller, Top Channel, Z-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.5 Profile; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, X-Axis

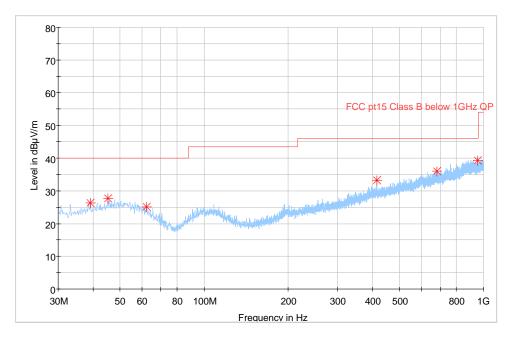
Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

4.2.6 Data; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, X-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.


*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.7 Profile; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Y-Axis

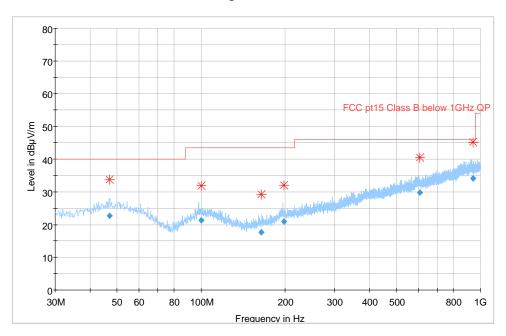
Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

4.2.8 Data; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Y-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.


*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.9 Profile; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Z-Axis

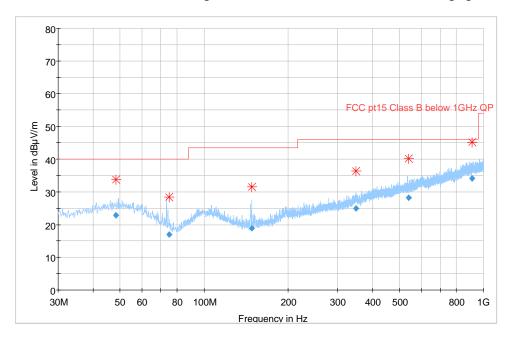
Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Z-Axis

4.2.10 Data; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Z-Axis

Emission Frequency	Measured Quasi-Peak Value	Class B Specified Quasi-Peak Limit	Pass Margin	Antenna Polarisation	Antenna Height	Turntable Azimuth	
MHz	dBμV/m	dBμV/m	dB	H/V	cm	deg	Status
46.974413	22.69	40.00	17.31	V	109.0	311.0	Pass
99.980425	21.24	43.50	22.26	V	400.0	248.0	Pass
164.432104	17.72	43.50	25.78	Н	325.0	195.0	Pass
198.043802	20.94	43.50	22.56	Н	278.0	100.0	Pass
606.419214	29.78	46.00	16.22	Н	145.0	109.0	Pass
940.686321	34.09	46.00	11.91	Н	120.0	174.0	Pass

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.11 Profile; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Z-Axis, Charging

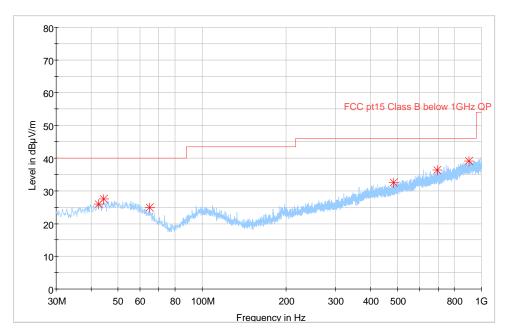
Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Z-Axis, Charging

4.2.12 Data; 30MHz to 1GHz, Tx Power, Right Controller, Middle Channel, Z-Axis, Charging

Emission Frequency	Measured Quasi-Peak Value	Class B Specified Quasi-Peak Limit	Pass Margin	Antenna Polarisation	Antenna Height	Turntable Azimuth	
MHz	dBμV/m	dBμV/m	dB	H/V	cm	deg	Status
48.372922	22.78	40.00	17.22	Н	194.0	12.0	Pass
74.921834	16.94	40.00	23.06	V	181.0	237.0	Pass
148.141930	18.80	43.50	24.70	Н	326.0	110.0	Pass
349.387785	24.87	46.00	21.13	Н	269.0	337.0	Pass
539.149384	28.24	46.00	17.76	V	257.0	135.0	Pass
910.577394	34.06	46.00	11.94	V	214.0	138.0	Pass

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.13 Profile; 30MHz to 1GHz, Tx Power, Right Controller, Bottom Channel, Z-Axis

Maximum peak hold trace with quasi-peak values (◆)
Peak measurements (★)

30MHz to 1GHz, Tx Power, Right Controller, Bottom Channel, Z-Axis

4.2.14 Data; 30MHz to 1GHz, Tx Power, Right Controller, Bottom Channel, Z-Axis

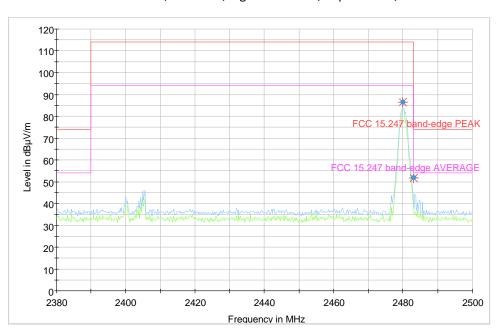
No measurements were taken based on the max peak data values high margins relative to the limit lines.

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the correction factor*. Measurements made according to the ANSI C63.4 test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.15 Profile; 2380 to 2500MHz, Tx Power, Right Controller, Top Channel, Z-Axis,

Maximum hold trace with peak values ()

Peak measurements (★)

Average measurements ()

2380 to 2500MHz, Tx Power, Right Controller, Top Channel, Z-Axis

4.2.16 Data; 2380 to 2500MHz, Tx Power, Right Controller, Top Channel, Z-Axis

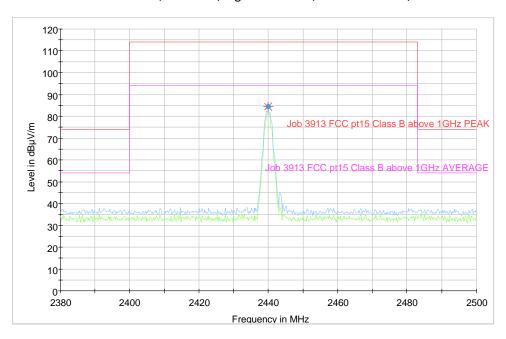
Frequency	Peak	Average Limit	Peak Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2480.000000	86.59	94.00		7.41	115.0	Н	89.0	-6.6	Pass
2483.000000	52.00	54.00		2.00	118.0	Н	92.0	-6.6	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.17 Profile; 2380 to 2500MHz, Tx Power, Right Controller, Middle Channel, Z-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

2380 to 2500MHz, Tx Power, Right Controller, Middle Channel, Z-Axis

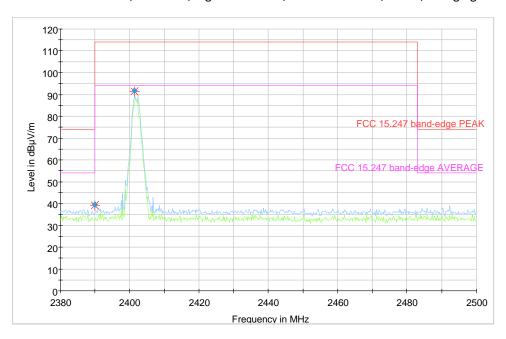
4.2.18 Data; 2380 to 2500MHz, Tx Power, Right Controller, Middle Channel, Z-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2440.000000	84.36		94.00	9.64	288.0	٧	327.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.19 Profile; 2380 to 2500MHz, Tx Power, Right Controller, Bottom Channel, Z-Axis, Charging

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

2380 to 2500MHz, Tx Power, Right Controller, Bottom Channel, Z-Axis, Charging

4.2.20 Data; 2380 to 2500MHz, Tx Power, Right Controller, Bottom Channel, Z-Axis, Charging

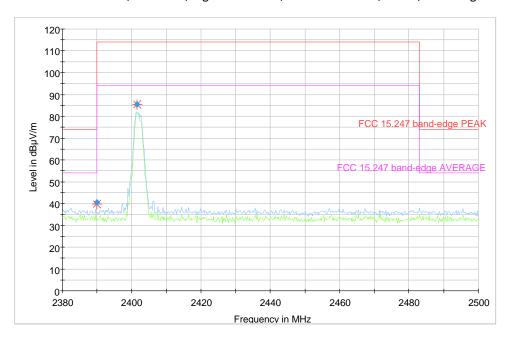
Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2390.000000	39.55		54.00	14.45	167.0	Н	345.0	-6.7	Pass
2401.400000	91.64		94.00	2.36	231.0	V	107.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.21 Profile; 2380 to 2500MHz, Tx Power, Right Controller, Bottom Channel, Z-Axis, Band Edge

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

2380 to 2500MHz, Tx Power, Right Controller, Bottom Channel, Z-Axis, Band Edge

4.2.22 Data; 2380 to 2500MHz, Tx Power, Right Controller, Bottom Channel, Z-Axis, Band Edge

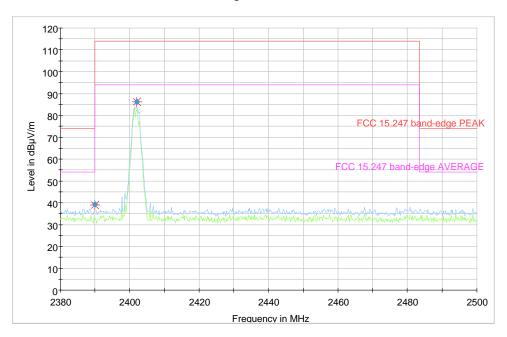
Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2390.000000	40.49		54.00	13.51	298.0	Н	48.0	-6.7	Pass
2401.600000	85.56		94.00	8.44	261.0	Н	158.0	-6.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.23 Profile; 2380 to 2500MHz, Rx Power, Right Controller, Bottom Channel, Z-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

2380 to 2500MHz, Rx Power, Right Controller, Bottom Channel, Z-Axis

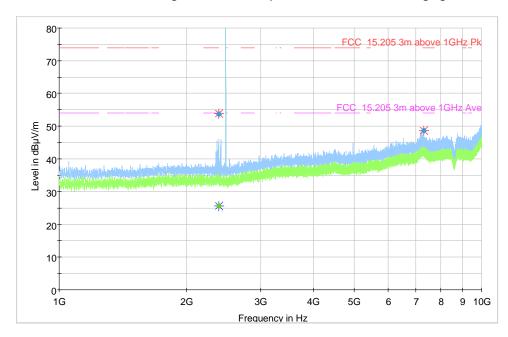
4.2.24 Data; 2380 to 2500MHz, Rx Power, Right Controller, Bottom Channel, Z-Axis

Frequency	Peak	CISPR Average	Average Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2390.000000	39.17		54.00	14.83	257.0	Н	129.0	-7.7	Pass
2402.000000	86.34		94.00	7.66	303.0	V	79.0	-7.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.25 Profile; 1 to 10GHz, Tx Power, Right Controller, Top Channel, Y-Axis with Charging Cable

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

1 to 10GHz, Tx Power, Right Controller, Top Channel, Y-Axis with Charging Cable

4.2.26 Data; 1 to 10GHz, Tx Power, Right Controller, Top Channel, Y-Axis with Charging Cable

Frequency	Peak	CISPR Average	Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
2384.650000		25.62	54.00	28.38	100.0	V	290.0	-6.7	Pass
2384.650000	53.73		74.00	20.27	168.0	V	107.0	-6.7	Pass
7301.350000	48.60		54.00	5.40	136.0	V	290.0	4.7	Pass

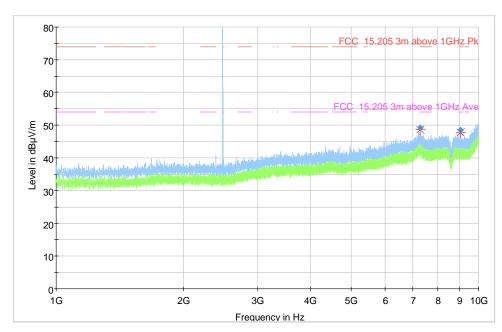
V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

Hursley


4.2.27 Profile; 1 to 10GHz, Tx Power, Right Controller, Top Channel, Y-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

1 to 10GHz, Tx Power, Right Controller, Top Channel, Y-Axis

4.2.28 Data; 1 to 10GHz, Tx Power, Right Controller, Top Channel, Y-Axis

Frequency	Peak	CISPR Average	Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7277.950000	49.24		54.00	4.76	325.0	Н	14.0	4.9	Pass
9062.650000	48.44		54.00	5.56	126.0	٧	151.0	2.9	Pass

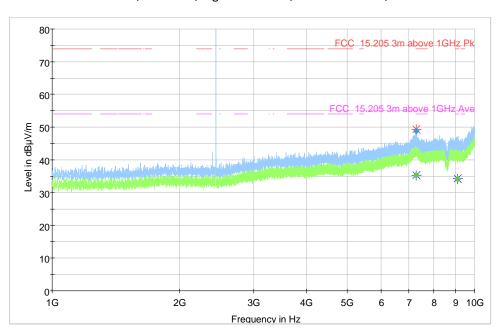
V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

Hursley


4.2.29 Profile; 1 to 10GHz, Tx Power, Right Controller, Middle Channel, X-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

1 to 10GHz, Tx Power, Right Controller, Middle Channel, X-Axis

4.2.30 Data; 1 to 10GHz, Tx Power, Right Controller, Middle Channel, X-Axis

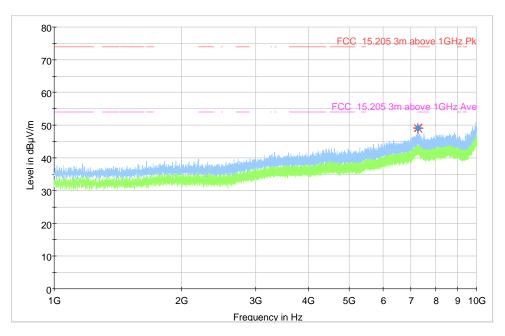
Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7270.750000		35.29	54.00	18.71	368.0	Н	339.0	4.9	Pass
7273.450000	48.89		74.00	25.11	138.0	V	66.0	4.9	Pass
9105.850000		34.19	54.00	19.81	263.0	V	62.0	2.9	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.31 Profile; 1 to 10GHz, Rx Power, Right Controller, Middle Channel, Y-Axis, Charging

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

1 to 10GHz, Rx Power, Right Controller, Middle Channel, Y-Axis, Charging

4.2.32 Data; 1 to 10GHz, Rx Power, Right Controller, Middle Channel, Y-Axis, Charging

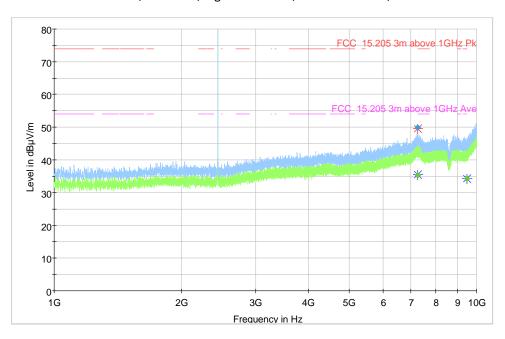
Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7263.550000	49.10		54.00	4.90	196.0	Н	68.0	5.0	Pass
7273.900000	48.94		54.00	5.06	330.0	V	234.0	4.9	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.33 Profile; 1 to 10GHz, Tx Power, Right Controller, Middle Channel, Y-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

1 to 10GHz, Tx Power, Right Controller, Middle Channel, Y-Axis

4.2.34 Data; 1 to 10GHz, Tx Power, Right Controller, Middle Channel, Y-Axis

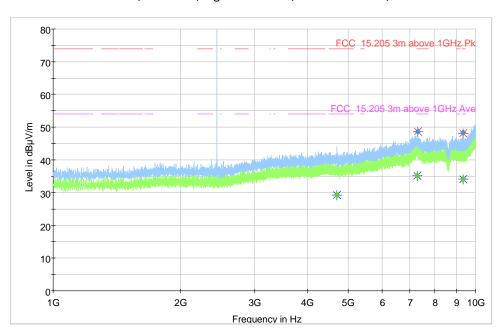
Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7253.650000		35.39	54.00	18.61	247.0	Н	241.0	5.0	Pass
7262.200000	49.83		74.00	24.17	290.0	Н	136.0	5.0	Pass
9498.700000		34.25	54.00	19.75	193.0	V	114.0	2.7	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.35 Profile; 1 to 10GHz, Tx Power, Right Controller, Middle Channel, Z-Axis

Maximum hold trace with peak values (◆)

Peak measurements (*)

Average measurements ()

1 to 10GHz, Tx Power, Right Controller, Middle Channel, Z-Axis

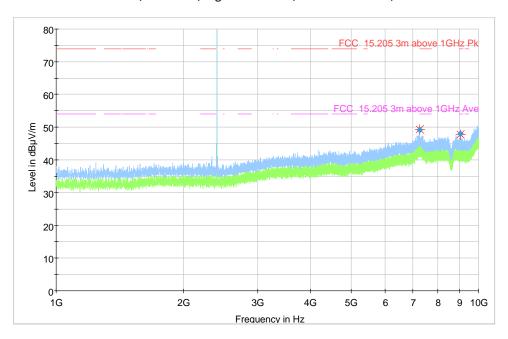
4.2.36 Data; 1 to 10GHz, Tx Power, Right Controller, Middle Channel, Z-Axis

Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
4690.900000		29.19	54.00	24.81	109.0	Н	0.0	-1.4	Pass
7283.800000		35.15	54.00	18.85	255.0	Н	103.0	4.8	Pass
7294.150000	48.73		74.00	25.27	354.0	V	357.0	4.7	Pass
9356.500000		34.17	54.00	19.83	247.0	V	263.0	2.6	Pass
9356.500000	48.37		74.00	25.63	304.0	V	181.0	2.6	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).


4.2.37 Profile; 1 to 10GHz, Tx Power, Right Controller, Bottom Channel, Y-Axis

Maximum hold trace with peak values (◆)

Peak measurements (★)

Average measurements ()

1 to 10GHz, Tx Power, Right Controller, Bottom Channel, Y-Axis

4.2.38 Data; 1 to 10GHz, Tx Power, Right Controller, Bottom Channel, Y-Axis

Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
7255.450000	49.14		54.00	4.86	208.0	V	10.0	5.0	Pass
9064.450000	48.04		54.00	5.96	165.0	V	20.0	2.9	Pass

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB).

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.39 Profile; 10 to 18GHz, Tx Power, Right Controller, Top Channel, Y-Axis with Charging Cable

Maximum hold trace with peak values (◆)

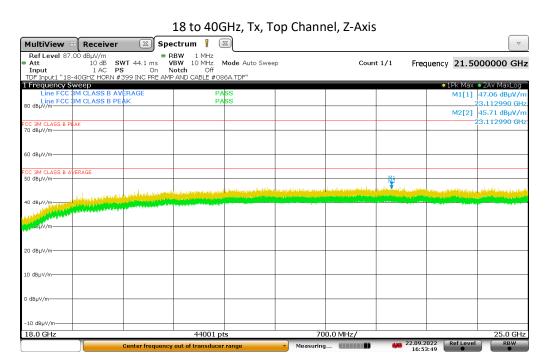
Peak measurements (*)

Average measurements ()

10 to 18GHz, Tx Power, Right Controller, Top Channel, X-Axis with Charging Cable

4.2.40 Data; 10 to 18GHz, Tx Power, Right Controller, Top Channel, X-Axis with Charging Cable

Frequency	Peak	CISPR Average	Class B Limit	Margin	Height	Pol	Azimuth	Corr.	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	cm	H/V	Deg	dB/m	Status
17758.00000		49.42	54.00	4.58	400.0	V	43.0	19.1	Pass


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

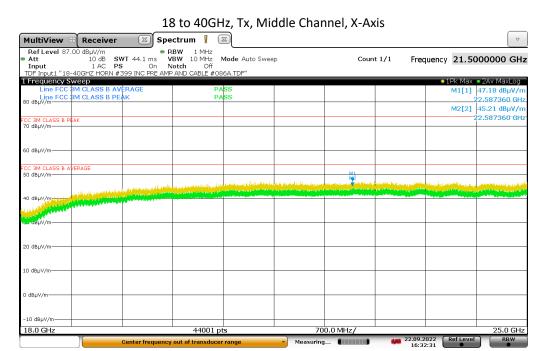
4.2.41 Profile; 18 to 40GHz, Tx, Top Channel, Z-Axis

Maximum hold trace with peak values (∇) Maximum hold trace with average values (∇)

16:53:49 22.09.2022

4.2.42 Data; 18 to 40GHz, Tx, Top Channel, Z-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

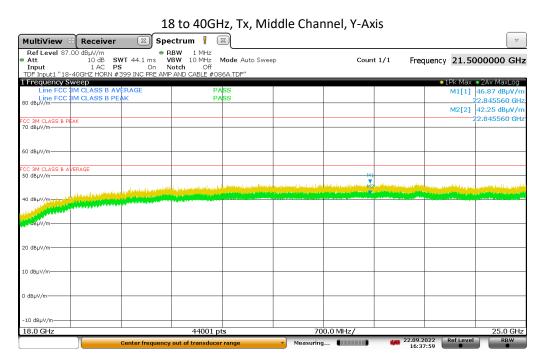
4.2.43 Profile; 18 to 40GHz, Tx, Middle Channel, X-Axis

Maximum hold trace with peak values (∇) Maximum hold trace with average values (∇)

16:32:32 22.09.2022

4.2.44 Data; 18 to 40GHz, Tx, Middle Channel, X-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

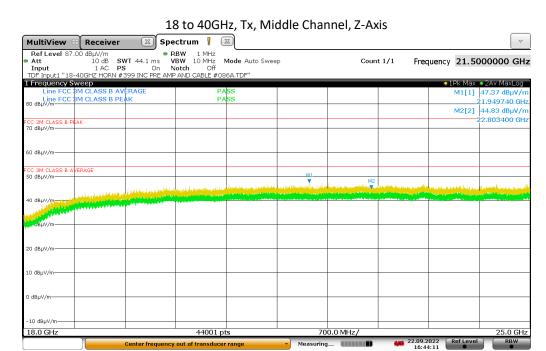
4.2.45 Profile; 18 to 40GHz, Tx, Middle Channel, Y-Axis

Maximum hold trace with peak values (∇) Maximum hold trace with average values (∇)

16:38:00 22.09.2022

4.2.46 Data; 18 to 40GHz, Tx, Middle Channel, Y-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

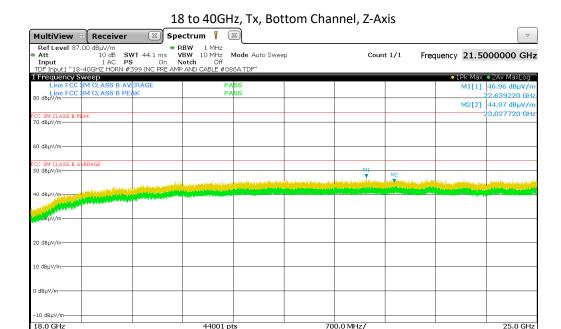
4.2.47 Profile; 18 to 40GHz, Tx, Middle Channel, Z-Axis

Maximum hold trace with peak values (∇) Maximum hold trace with average values (∇)

16:44:11 22.09.2022

4.2.48 Data; 18 to 40GHz, Tx, Middle Channel, Z-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.2.49 Profile; 18 to 40GHz, Tx, Bottom Channel, Z-Axis

Maximum hold trace with peak values (∇) Maximum hold trace with average values (∇)

16:50:34 22.09.2022

4.2.50 Data; 18 to 40GHz, Tx, Bottom Channel, Z-Axis

No measurements were taken based on the max peak data values high margins relative to the limit lines.

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC 15.205 limits and take into account the correction factor*. Measurements made according to the CISPR test standard and Eurofins Hursley test procedure RAD-01.

*Correction factor (dB) = cable and antenna losses as summed positive values (dB) – pre-amp gain where applicable (dB). The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.3 Conducted Emissions; Top Channel (Charging mode with DC PSU at 115V/60Hz)

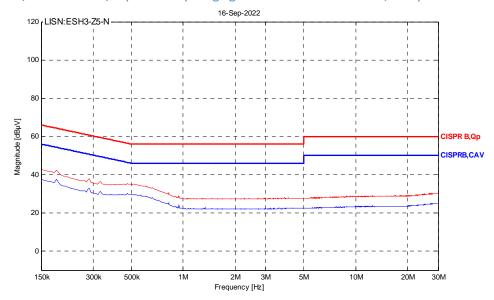
4.3.1 Test Parameters

A filtered supply was fed to the EUT via a $50\Omega/50\mu H$ Artificial Mains Network (AMN). The AMN was bonded to a conductive ground plane. Line and neutral phases were measured separately.

An EMI receiver was set to scan between 0.15MHz and 30.0MHz with a 20s measurement time. A CISPR Average and Quasi-Peak trace was generated and compared to the limits and take into account the correction factor. Measurements made according to the test standard and Eurofins Hursley test procedure CON-02.

Test	Test Equipment								
#ID	СР	Manufacturer	Туре	Serial Number	Description	Calibration Due Date			
785	0	EH	Ground plane	Neptune	Ground plane work area	Not required			
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022			
482	1	0	Cable BNC	0	Cable BNC	26/10/2022			
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022			
699	1	Gauss	TDEMI30M	1506001	Time domain conducted receiver	16/09/2023			
Test	Equip	ment Software							
#ID	СР	Manufacturer	Туре		Description	Calibration Due Date			
857	0	Gauss	Software	0	TDMI 30 v5.00	Not required			

Environmental Test Conditions					
Temperature 22.4° Celsius					
Relative Humidity 43%					
Atmospheric Pressure	1020.3 millibars				
Test Date: 16 th September 2022					
Test Engineer:	Rich Beckett				


Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.

4.3.2 Test Configuration

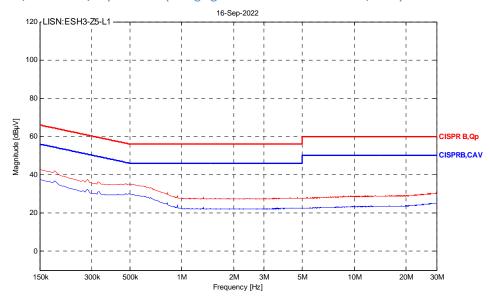
Please refer to EUT Test Configuration #1.

4.3.3 Profile; Mains Neutral, Top Channel (Charging mode with DC PSU at 115V/60Hz)

Data; Mains Neutral, Top Channel (Charging mode with DC PSU at 115V/60Hz)

Quasi-peak value (dBμV)									
Frequency	Frequency Measured Class B Limit Margin Status								
522.137 kHz	35.06	56.00	20.94	Pass					
9.973 MHz	28.76	60.00	31.24	Pass					
12.500 MHz	29.14	60.00	30.86	Pass					
15.943 MHz	29.23	60.00	30.77	Pass					
24.998 MHz	29.96	60.00	30.04	Pass					
29.995 MHz	30.27	60.00	29.73	Pass					

	CISPR Average value (dBμV)										
Frequency	Measured	Class B Limit	Margin	Status							
493.526 kHz	29.91	46.11	16.19	Pass							
9.973 MHz	23.31	50.00	26.69	Pass							
12.500 MHz	23.95	50.00	26.05	Pass							
15.929 MHz	23.92	50.00	26.08	Pass							
24.998 MHz	24.66	50.00	25.34	Pass							
29.395 MHz	24.98	50.00	25.02	Pass							


The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.3.5 Profile; Mains Line, Top Channel (Charging mode with DC PSU at 115V/60Hz)

4.3.6 Data; Mains Line, Top Channel (Charging mode with DC PSU at 115V/60Hz)

Quasi-peak value (dBμV)					
Frequency Measured Class B Limit Margin Status					
517.368 kHz	35.18	56.00	20.82	Pass	
9.987 MHz	28.82	60.00	31.18	Pass	
12.500 MHz	29.11	60.00	30.89	Pass	
15.929 MHz	29.25	60.00	30.75	Pass	
24.998 MHz	29.89	60.00	30.11	Pass	
29.819 MHz	30.34	60.00	29.66	Pass	

CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
517.368 kHz	29.87	46.00	16.13	Pass		
9.987 MHz	23.38	50.00	26.62	Pass		
12.500 MHz	23.98	50.00	26.02	Pass		
15.938 MHz	23.90	50.00	26.10	Pass		
24.998 MHz	24.66	50.00	25.34	Pass		
29.876 MHz	24.98	50.00	25.02	Pass		

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB) The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.4 Conducted Emissions; Middle Channel (Charging mode with DC PSU at 115V/60Hz)

4.4.1 Test Parameters

A filtered supply was fed to the EUT via a $50\Omega/50\mu H$ Artificial Mains Network (AMN). The AMN was bonded to a conductive ground plane. Line and neutral phases were measured separately.

An EMI receiver was set to scan between 0.15MHz and 30.0MHz with a 20s measurement time. A CISPR Average and Quasi-Peak trace was generated and compared to the limits and take into account the correction factor. Measurements made according to the test standard and Eurofins Hursley test procedure CON-02.

Test	Test Equipment					
#ID	СР	Manufacturer	Туре	Serial Number	Description	Calibration
""	<u> </u>	- Widiraractarer	Type	Schai Walliber	Description	Due Date
785	0	EH	Ground plane	Neptune	Ground plane work area	Not required
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
482	1	0	Cable BNC	0	Cable BNC	26/10/2022
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
699	1	Gauss	TDEMI30M	1506001	Time domain conducted receiver	16/09/2023
Test	Equip	ment Software				
#ID	CD	Manufacturer	Tuno		Description	Calibration
#ID	CP	ivianuracturer	Type		Description	Due Date
857	0	Gauss	Software	0	TDMI 30 v5.00	Not required

Environmental Test Conditions			
Temperature 22.4° Celsius			
Relative Humidity 43%			
Atmospheric Pressure 1020.3 millibars			
Test Date: 16 th September 2022			
Test Engineer: Rich Beckett			


Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.

4.4.2 Test Configuration

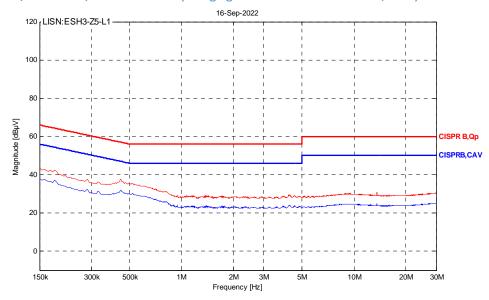
Please refer to EUT Test Configuration #1.

4.4.3 Profile; Mains Neutral, Middle Channel (Charging mode with DC PSU at 115V/60Hz)

Data; Mains Neutral, Middle Channel (Charging mode with DC PSU at 115V/60Hz)

Quasi-peak value (dBμV)					
Frequency Measured Class B Limit Margin Status					
441.074 kHz	37.89	57.04	19.15	Pass	
8.738 MHz	30.21	60.00	29.79	Pass	
10.126 MHz	30.03	60.00	29.97	Pass	
15.991 MHz	29.29	60.00	30.71	Pass	
24.998 MHz	29.92	60.00	30.08	Pass	
29.995 MHz	30.36	60.00	29.64	Pass	

CISPR Average value (dBμV)					
Frequency Measured Class B Limit Margin Status					
441.074 kHz	33.47	47.04	13.57	Pass	
8.733 MHz	24.92	50.00	25.08	Pass	
10.278 MHz	24.62	50.00	25.38	Pass	
15.986 MHz	24.02	50.00	25.98	Pass	
24.998 MHz	24.64	50.00	25.36	Pass	
29.991 MHz	25.01	50.00	24.99	Pass	


The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.4.5 Profile; Mains Line, Middle Channel (Charging mode with DC PSU at 115V/60Hz)

4.4.6 Data; Mains Line, Middle Channel (Charging mode with DC PSU at 115V/60Hz)

Quasi-peak value (dBμV)					
Frequency Measured Class B Limit Margin Status					
445.843 kHz	37.57	56.95	19.38	Pass	
9.177 MHz	30.14	60.00	29.86	Pass	
13.559 MHz	30.84	60.00	29.16	Pass	
15.943 MHz	29.39	60.00	30.61	Pass	
24.998 MHz	29.96	60.00	30.04	Pass	
29.662 MHz	30.38	60.00	29.62	Pass	

CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
445.843 kHz	31.88	46.95	15.08	Pass		
9.177 MHz	24.67	50.00	25.33	Pass		
13.559 MHz	24.98	50.00	25.02	Pass		
15.996 MHz	24.11	50.00	25.89	Pass		
24.998 MHz	24.64	50.00	25.36	Pass		
29.571 MHz	24.99	50.00	25.01	Pass		

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

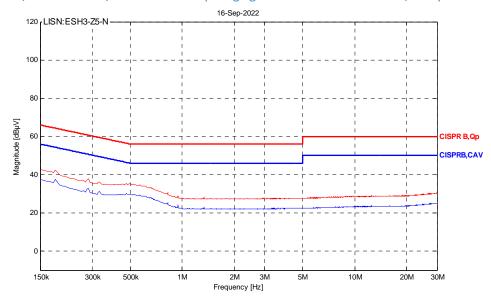
4.5 Conducted Emissions; Bottom Channel (Charging mode with DC PSU at 115V/60Hz)

4.5.1 Test Parameters

A filtered supply was fed to the EUT via a $50\Omega/50\mu H$ Artificial Mains Network (AMN). The AMN was bonded to a conductive ground plane. Line and neutral phases were measured separately.

An EMI receiver was set to scan between 0.15MHz and 30.0MHz with a 20s measurement time. A CISPR Average and Quasi-Peak trace was generated and compared to the limits and take into account the correction factor. Measurements made according to the test standard and Eurofins Hursley test procedure CON-02.

Test	Test Equipment					
#ID	СР	Manufacturer	Туре	Serial Number	Description	Calibration Due Date
785	0	EH	Ground plane	Neptune	Ground plane work area	Not required
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
482	1	0	Cable BNC	0	Cable BNC	26/10/2022
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
699	1	Gauss	TDEMI30M	1506001	Time domain conducted receiver	16/09/2023
Test	Test Equipment Software					
#ID	СР	Manufacturer	Туре		Description	Calibration Due Date
857	0	Gauss	Software	0	TDMI 30 v5.00	Not required


Environmental Test Conditions			
Temperature 22.4° Celsius			
Relative Humidity 43%			
Atmospheric Pressure 1020.3 millibars			
Test Date: 16 th September 2022			
Test Engineer: Rich Beckett			

Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.

4.5.2 Test Configuration

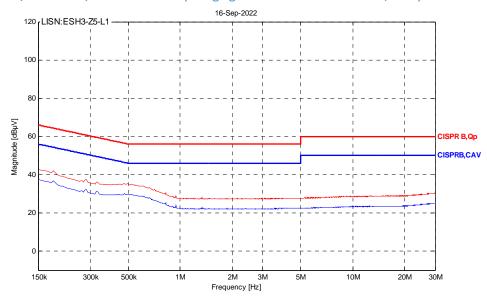
Please refer to EUT Test Configuration #1.

4.5.3 Profile; Mains Neutral, Bottom Channel (Charging mode with DC PSU at 115V/60Hz)

Data; Mains Neutral, Bottom Channel (Charging mode with DC PSU at 115V/60Hz)

Quasi-peak value (dBμV)					
Frequency Measured Class B Limit Margin Status					
493.526 kHz	35.23	56.11	20.88	Pass	
9.525 MHz	28.76	60.00	31.24	Pass	
12.500 MHz	29.15	60.00	30.85	Pass	
15.976 MHz	29.19	60.00	30.81	Pass	
24.998 MHz	29.99	60.00	30.01	Pass	
28.865 MHz	30.33	60.00	29.67	Pass	

CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
517.368 kHz	29.83	46.00	16.17	Pass		
9.992 MHz	23.34	50.00	26.66	Pass		
12.500 MHz	23.90	50.00	26.10	Pass		
15.976 MHz	23.88	50.00	26.12	Pass		
24.998 MHz	24.64	50.00	25.36	Pass		
29.857 MHz	24.98	50.00	25.02	Pass		


The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.5.5 Profile; Mains Line, Bottom Channel (Charging mode with DC PSU at 115V/60Hz)

Data; Mains Line, Bottom Channel (Charging mode with DC PSU at 115V/60Hz) 4.5.6

Quasi-peak value (dBμV)						
Frequency Measured Class B Limit Margin Status						
517.368 kHz	35.16	56.00	20.84	Pass		
9.716 MHz	28.83	60.00	31.17	Pass		
12.500 MHz	29.18	60.00	30.82	Pass		
15.986 MHz	29.19	60.00	30.81	Pass		
24.998 MHz	30.01	60.00	29.99	Pass		
29.752 MHz	30.33	60.00	29.67	Pass		

CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
517.368 kHz	29.83	46.00	16.17	Pass		
9.925 MHz	23.36	50.00	26.64	Pass		
12.500 MHz	23.88	50.00	26.12	Pass		
15.981 MHz	23.91	50.00	26.09	Pass		
24.998 MHz	24.65	50.00	25.35	Pass		
29.747 MHz	25.00	50.00	25.00	Pass		

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB) The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

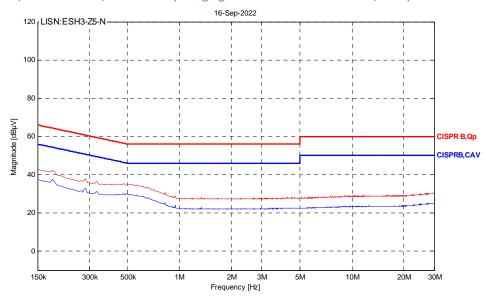
4.6 Conducted Emissions; RX Channel (Charging mode with DC PSU at 115V/60Hz)

4.6.1 Test Parameters

A filtered supply was fed to the EUT via a $50\Omega/50\mu$ H Artificial Mains Network (AMN). The AMN was bonded to a conductive ground plane. Line and neutral phases were measured separately.

An EMI receiver was set to scan between 0.15MHz and 30.0MHz with a 20s measurement time. A CISPR Average and Quasi-Peak trace was generated and compared to the limits and take into account the correction factor. Measurements made according to the test standard and Eurofins Hursley test procedure CON-02.

Test	Test Equipment					
#ID	СР	Manufacturer	Туре	Serial Number	Description	Calibration Due Date
785	0	EH	Ground plane	Neptune	Ground plane work area	Not required
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
482	1	0	Cable BNC	0	Cable BNC	26/10/2022
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
699	1	Gauss	TDEMI30M	1506001	Time domain conducted receiver	16/09/2023
Test	Test Equipment Software					
#ID	СР	Manufacturer	Туре		Description	Calibration Due Date
857	0	Gauss	Software	0	TDMI 30 v5.00	Not required


Environmental Test Conditions			
Temperature 22.4° Celsius			
Relative Humidity	43%		
Atmospheric Pressure	1020.3 millibars		
Test Date: 16 th September 2022			
Test Engineer: Rich Beckett			

Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.

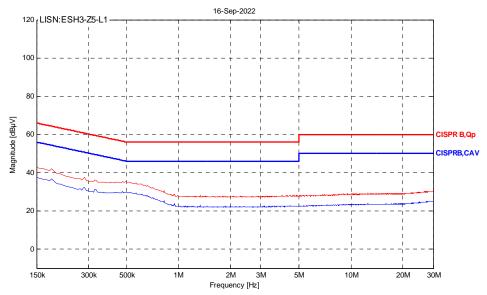
4.6.2 Test Configuration

Please refer to EUT Test Configuration #1.

4.6.3 Profile; Mains Neutral, RX Channel (Charging mode with DC PSU at 115V/60Hz)

4.6.4 Data; Mains Neutral, RX Channel (Charging mode with DC PSU at 115V/60Hz)

Quasi-peak value (dBμV)					
Frequency Measured Class B Limit Margin Statu					
517.368 kHz	35.11	56.00	20.89	Pass	
9.043 MHz	28.92	60.00	31.08	Pass	
12.500 MHz	29.22	60.00	30.78	Pass	
15.972 MHz	29.19	60.00	30.81	Pass	
24.998 MHz	29.95	60.00	30.05	Pass	
29.876 MHz	30.32	60.00	29.68	Pass	


CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
493.526 kHz	29.97	46.11	16.14	Pass		
9.949 MHz	23.42	50.00	26.58	Pass		
12.500 MHz	24.01	50.00	25.99	Pass		
15.967 MHz	23.88	50.00	26.12	Pass		
24.998 MHz	24.71	50.00	25.29	Pass		
29.957 MHz	24.99	50.00	25.01	Pass		

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.6.5 Profile; Mains Line, RX Channel (Charging mode with DC PSU at 115V/60Hz)

4.6.6 Data; Mains Line, RX Channel (Charging mode with DC PSU at 115V/60Hz)

Quasi-peak value (dBμV)						
Frequency Measured Class B Limit Margin Status						
517.368 kHz	35.18	56.00	20.82	Pass		
9.019 MHz	28.97	60.00	31.03	Pass		
12.500 MHz	29.37	60.00	30.63	Pass		
15.976 MHz	29.15	60.00	30.85	Pass		
24.998 MHz	29.94	60.00	30.06	Pass		
29.747 MHz	30.32	60.00	29.68	Pass		

CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
517.368 kHz	29.85	46.00	16.15	Pass		
9.682 MHz	23.47	50.00	26.53	Pass		
12.500 MHz	24.06	50.00	25.94	Pass		
15.986 MHz	23.85	50.00	26.15	Pass		
24.998 MHz	24.62	50.00	25.38	Pass		
29.991 MHz	24.98	50.00	25.02	Pass		

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.7 Conducted Emissions; RX Channel (Charging mode with DC PSU at 230V/50Hz)

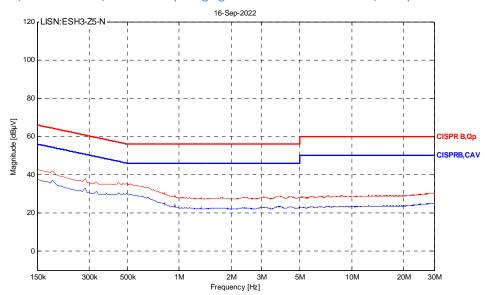
4.7.1 Test Parameters

A filtered supply was fed to the EUT via a $50\Omega/50\mu H$ Artificial Mains Network (AMN). The AMN was bonded to a conductive ground plane. Line and neutral phases were measured separately.

An EMI receiver was set to scan between 0.15MHz and 30.0MHz with a 20s measurement time. A CISPR Average and Quasi-Peak trace was generated and compared to the limits and take into account the correction factor. Measurements made according to the test standard and Eurofins Hursley test procedure CON-02.

Test Equipment						
#ID	СР	Manufacturer	Type	Serial Number	Description	Calibration
שוויי	Cr	Iviaiiuiacturei	Туре	Jeriai Nullibei	Description	Due Date
785	0	EH	Ground plane	Neptune	Ground plane work area	Not required
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
482	1	0	Cable BNC	0	Cable BNC	26/10/2022
162	1	Rohde & Schwarz	ESH3 Z5	829996/003	Single phase LISN / AMN ANSI&CISPR	14/12/2022
699	1	Gauss	TDEMI30M	1506001	Time domain conducted receiver	16/09/2023
Test	Equip	ment Software				
#10	CD	Manufacturer	Tuna		Description	Calibration
#ID	СР	Manufacturer	Туре		Description	Due Date
857	0	Gauss	Software	0	TDMI 30 v5.00	Not required

Environmental Test Conditions			
Temperature 22.4° Celsius			
Relative Humidity	43%		
Atmospheric Pressure	1020.3 millibars		
Test Date: 16 th September 2022			
Test Engineer: Rich Beckett			


Note: "Calibration due date" means the instrument is certified within UKAS or traceable calibration certificate. "Internal" means the instrument is calibrated using Eurofins Hursley procedures. "Not required" means the asset does not require calibration. "CP" is the interval period [year] prescribed for external calibration.

4.7.2 Test Configuration

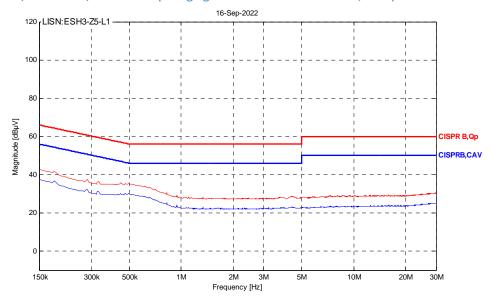
Please refer to EUT Test Configuration #1.

4.7.3 Profile; Mains Neutral, RX Channel (Charging mode with DC PSU at 230V/50Hz)

4.7.4 Data; Mains Neutral, RX Channel (Charging mode with DC PSU at 230V/50Hz)

	<u> </u>						
Quasi-peak value (dBμV)							
Frequency Measured Class B Limit Margin Status							
517.368 kHz	35.21	56.00	20.79	Pass			
8.667 MHz	29.05	60.00	30.95	Pass			
12.500 MHz	29.33	60.00	30.67	Pass			
15.981 MHz	29.35	60.00	30.65	Pass			
24.998 MHz	29.97	60.00	30.03	Pass			
29.271 MHz	30.39	60.00	29.61	Pass			

CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
493.526 kHz	29.97	46.11	16.14	Pass		
8.695 MHz	23.55	50.00	26.45	Pass		
12.500 MHz	24.09	50.00	25.91	Pass		
15.986 MHz	24.03	50.00	25.97	Pass		
24.998 MHz	24.69	50.00	25.31	Pass		
29.995 MHz	25.01	50.00	24.99	Pass		


The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB)

The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

4.7.5 Profile; Mains Line, RX Channel (Charging mode with DC PSU at 230V/50Hz)

4.7.6 Data; Mains Line, RX Channel (Charging mode with DC PSU at 230V/50Hz)

Quasi-peak value (dBμV)						
Frequency Measured Class B Limit Margin Status						
493.526 kHz	35.24	56.11	20.86	Pass		
8.805 MHz	29.24	60.00	30.76	Pass		
12.500 MHz	29.45	60.00	30.55	Pass		
15.981 MHz	29.44	60.00	30.56	Pass		
24.998 MHz	30.02	60.00	29.98	Pass		
29.981 MHz	30.32	60.00	29.68	Pass		

CISPR Average value (dBμV)						
Frequency Measured Class B Limit Margin Status						
493.526 kHz	29.99	46.11	16.12	Pass		
8.729 MHz	23.65	50.00	26.35	Pass		
12.500 MHz	24.17	50.00	25.83	Pass		
15.986 MHz	24.13	50.00	25.87	Pass		
24.998 MHz	24.66	50.00	25.34	Pass		
29.809 MHz	25.03	50.00	24.97	Pass		

The measured value takes into account the correction factor.

Correction factor (dB) = cable, AMN, and pulse limiter losses as summed positive values (dB) The recorded measured value (dB) = measured receiver value (dB) + correction factor (dB).

5.0 MEASUREMENT UNCERTAINTIES

Emissions tests

For all emissions tests, measurement uncertainties have been calculated in line with the requirements of CISPR 16-4-2 to give a confidence level of greater than 95%. In all cases the laboratories calculated uncertainty values (known as Ulab) are equal to or are less than the expected uncertainty values contained in CISPR 16-4-2 (known as Ucispr). Below is a list of the laboratories calculated measurement uncertainties:

Conducted emissions:

Via AMN/LISN: ±3.27dB (9kHz - 150kHz), ±3.27dB (150kHz - 30MHz)

 Via AAN/ISN:
 ±5.00dB (150kHz – 30MHz)

 Via CVP:
 ±3.47dB (150kHz – 30MHz)

 Via CP:
 ±2.69dB (150kHz – 30MHz)

 Via 100 Ω:
 ±2.68dB (150kHz – 30MHz)

 Clicks:
 ±2.83dB (150kHz – 30MHz)

 Harmonics:
 ±1.42% (100Hz – 2kHz)

Flicker: ±1.76% (worst case for all parameters)

Radiated emissions:

H-Field: ±2.84dB (9kHz - 3MHz), ±2.92dB (3MHz - 30MHz)

D = 3.0 m (Horizontal): ±3.91dB (30MHz – 1GHz SAC), ±3.82dB (30MHz – 1GHz FAC)
D = 3.0 m (Vertical): ±5.22dB (30MHz – 1GHz SAC), ±3.82dB (30MHz – 1GHz FAC)
D = 3.0 m: ±5.13dB (1GHz – 6GHz SAC), ±5.15dB (1GHz – 10GHz SAC), ±3.6dB (10GHz – 12GHz SAC) ±3.6dB (10GHz – 40GHz SAC)

±3.64dB (10GHz - 18GHz SAC), ±3.10dB (18GHz - 40GHz SAC).

±3.05dB (1GHz - 6GHz FAC)

Radiated spurious emissions (RSE):

±1.71dB (30MHz - 1GHz), ±1.81dB (1 - 12.75GHz), ±2.07dB (12.75 - 18GHz)

Immunity tests

For IEC 61000-4-2, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11 tests, the following applies:

Measurement uncertainty has been calculated or calibrated for the various required parameters to provide a confidence level of 95% (k=2). These parameters have been compared to the basic standard tolerance requirements for each of the various parameters.

In all cases the calculated or calibrated uncertainty meets the basic standard requirements.

For IEC 61000-4-3, IEC 61000-4-6 tests, the following applies:

Measurement uncertainty has been calculated to provide a confidence level of 95%, or k=2, but this has not been applied to the applied test level, therefore the applied test level has an uncertainty of $\pm 50\%$. This is in accordance with CENELEC and other international guidance.

In the case of Maritime equipment tested to EN/IEC 60945, there is a specific requirement that the applied test level be increased by the calculated measurement uncertainty. This is done by applying a coverage factor of k=1.64, which provides a 95% confidence that the applied test level has been achieved.

Test Results - Decision Rules

As the decision is generally inherent in the standard for Commercial EMC a simple acceptance rule can be applied. The following statement will be added to EMC quotes and reports. "The Decision Rule is applied on the basis of CISPR16-4-2 and/or EN61000-4-x (TR61000-1-6) These standards provide guidance on how to calculate and apply measurement uncertainty whilst providing maximum uncertainties allowance. Due consideration will also be given to JCGM 106:2012, ILAC-G8:09/2019 and LAB 48. This laboratory has demonstrated by calibrating its equipment and facilities, and calculating its own uncertainties, that it complies with the above requirements and therefore no allowance of uncertainties has been given to the tolerances." Where a result is considered marginal in respect of its proximity to the limit line, for example, the customer would be made aware of situation so that they can make an informed decision on how to proceed.

Published 02/08/2022

6.0 ANNEX – CONDUCTED EMISSIONS RESULTS

6.1 Summary

Test	Clause	Requirement	Result
Occupied Bandwidth	None	None	Pass
Maximum Peak Conducted Output Power	FCC 15.247(b)(3)	1W	Pass
Power Spectral Density	FCC 15.247(c)	8 dBm / 3 kHz	Pass
Maximum Antenna Gain	15.247(b)(4)(11)	≤ 6dBi	Pass
Conducted AC Emissions	15.207(a)	15.207(a)	None

6.2 DTS Bandwidth

6.2.1 Measurement method

Test was conducted in accordance with ANSI C63.10 Clause 11.8 Option 1:

- a) Set resolution bandwidth to 100 kHz
- b) Set the video bandwidth to $\geq 3 \times RBW$
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2.2 Test Results

Channel	6dB DTS Bandwidth (MHz)	Requirement	Status
Bottom	670.0	> 500 kHz	Pass
Middle	850.0	> 500 kHz	Pass
Тор	860.0	> 500 kHz	Pass

Table 6: DTS Bandwidth

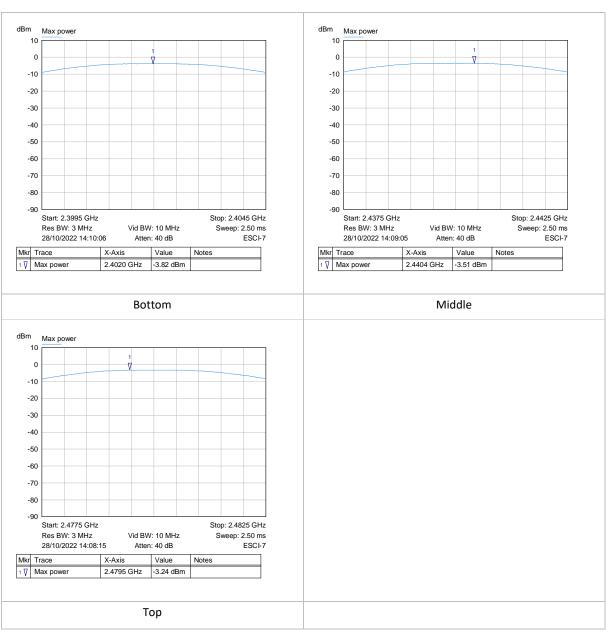
6.2.3 Profile; DTS Bandwidth

Figure 1: DTS Bandwidth plots

6.3 Maximum Peak Conducted Output Power

6.3.1 Measurement method

As the analyser could be set RBW ≥ DTS bandwidth, the test was conducted in accordance with ANSI C63.10 Clause 11.9.1.1:


- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq 3 x RBW.
- c) Set span $\geq 3 \times RBW$.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

6.3.2 Test Results

Channel	Channel Power (dBm)	Power (W)	Channel Power (dBm)	Status
Bottom	-3.82	0.00041	1.0	Pass
Middle	-3.51	0.00045	1.0	Pass
Тор	-3.24	0.00047	1.0	Pass

Table 1: Channel Power

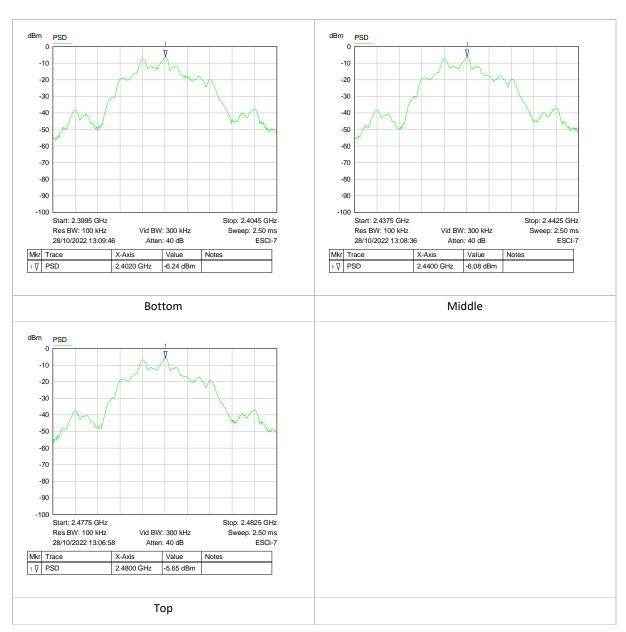
6.3.3 Profile; Maximum Peak Conducted Power

Figure 2: Peak Conducted Power plots

6.4 Maximum Power Spectral Density

6.4.1 Measurement Method

As conducted power was measured as Maximum Peak Conducted Power, measurement was performed in accordance with ANSI C63.10 Clause 11.10.2:


- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 x DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.4.2 Test results

Channel	Peak Marker reading (dBm)	Limit (dBm/3kHz)	Status
Bottom	-6.24	8.0	Pass
Middle	-6.08	8.0	Pass
Тор	-5.65	8.0	Pass

Table 8: Spectral Density results

6.4.3 Profile; Power Spectral Density

Figure 3: Power Spectral Density plots

6.5 Occupied bandwidth

99% occupied bandwidth measured using the inbuilt function in the spectrum analyser

Channel	Peak limit (dBm)	Average limit (dBm)	Result
Bottom	2.050	None	For information
Middle	2.050	None	For information
Тор	2.050	None	For information

Table 2: Occupied Bandwidth

6.5.1 Profile; Occupied Bandwidth

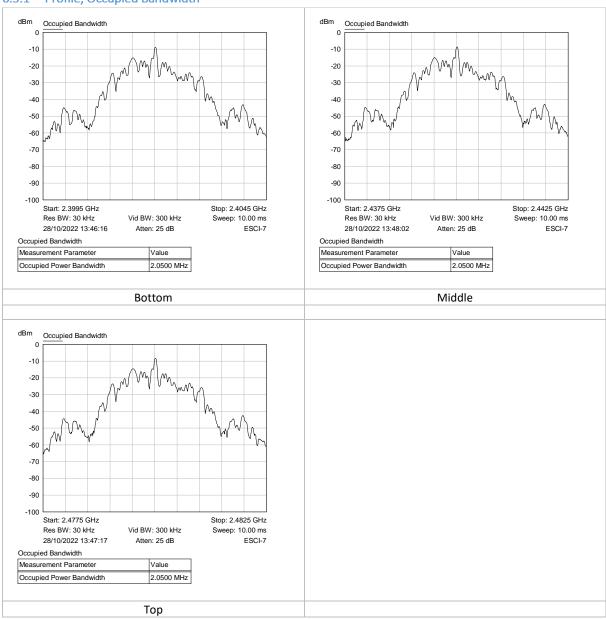


Figure 6: Occupied Bandwidth

6.6 Test Equipment

Description	Manufacturer	Name	Serial Number	Calibration certificate Or Calibration due
Spectrum Analyser	Rohde & Schwarz	ESCI 7	HEMC #289	20/09/2023

End of Document