

RF EXPOSURE EVALUATION

EUT Specification

EUT	Smart led solar light
Model Number	ST0206
FCC ID	2A4AQST0206
Antenna gain (Max)	0 dBi
Operation Frequency	2402-2480MHz
Input Rating	3.7V from battery and DC 5V from adapter
Max. output power	4.03dBm(0.0025W)

Test Requirement:

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density(mW/cm ²)	Average Time
(A) Limits for Occupational/Control Exposures				
300-1500	--	--	F/300	6
1500-100000	--	--	5	6
(B) Limits for General Population/Uncontrol Exposures				
300-1500	--	--	F/1500	6
1500-100000	--	--	1	30

$$11.1 \text{ Friis transmission formula: } Pd = (Pout * G) / (4 * \pi * R^2)$$

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm^2 . If we know the maximum gain of the nd total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

11.2 Measurement Result

Antenna gain: 0 dBi

Mode	Channe l Freq. (MHz)	Measu red power (dBm)	Tune-up power (dBm)	Max tune-up power (dBm)	Antenn a Gain (Nume ric)	Evaluation result (mW/cm ²)	Power density Limits (mW/cm ²)
GFSK	2402	3.8	4±1	5	1	0.000756	1
GFSK	2440	3.95	4±1	4	1	0.000786	1
GFSK	2480	4.03	4±1	4	1	0.000802	1

Signature:

Alan He

Date: 2022-01-14