

FCC TEST REPORT

Report No.: STS2302147W01

Issued for

Sichuan AnSphere Technology Co., Ltd.

Room 332, building 2, innovation center, science and
Innovation Park, Mianyang, Sichuan, China

Product Name:	Charging dock
Brand:	N/A
Model Number:	WXCD_V1.0
Series Model(s):	N/A
FCC ID:	2A4AD-WXCD
Test Standard:	FCC Part 15 Subpart C

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample.

Shenzhen STS Test Services Co., Ltd.
A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ,
Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China
TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name: Sichuan AnSphere Technology Co., Ltd.
Address: Room 332, building 2, innovation center, science and Innovation Park, Mianyang, Sichuan, China
Manufacturer's Name: Sichuan AnSphere Technology Co., Ltd.
Address: Room 332, building 2, innovation center, science and Innovation Park, Mianyang, Sichuan, China

Product Description

Product Name: Charging dock

Brand: N/A

Model Number: WXCD_V1.0

Series Model(s): N/A

Test Standards: FCC Part 15 Subpart C

Test Procedure: ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

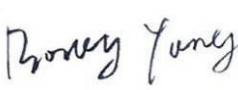
This report shall not be reproduced except in full, without the written approval of STS, this document only be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test:

Date of receipt of test item: 28 Feb. 2023

Date (s) of performance of tests: 28 Feb. 2023 ~ 09 Mar. 2023

Date of Issue: 09 Mar. 2023


Test Result: **Pass**

Testing Engineer :

(Chris Chen)

Technical Manager :

(Sean She)

Authorized Signatory :

(Bovey Yang)

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	5
1.2 MEASUREMENT UNCERTAINTY	5
2. GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF THE EUT	6
2.2 DESCRIPTION OF THE TEST MODES	7
2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	8
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	9
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
3. CONDUCTED EMISSION TEST RESULT (SECTION 15.207)	11
3.1 POWER LINE CONDUCTED EMISSION LIMITS	11
3.2 TEST PROCEDURE	12
3.3 TEST SETUP	12
3.4 EUT OPERATING CONDITIONS	12
3.5 TEST RESULTS	13
4. RADIATED& FIELD EMISSION TEST RESULT (SECTION 15.209)	14
4.1 LIMIT	14
4.2 TEST PROCEDURE	14
4.3 TEST SETUP	15
4.4 TEST RESULTS	16
5. 20 DB BANDWIDTH TEST	20
5.1 LIMIT	20
5.2 TEST SETUP	20
5.3 TEST RESULTS	20
APPENDIX-PHOTOS OF TEST SETUP	21

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	09 Mar. 2023	STS2302147W01	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 , Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	N/A	
15.209(a)	Radiated emission, Spurious Emission	PASS	
15.215	20 dB Bandwidth	PASS	

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	$\pm 1.197\text{dB}$
2	Unwanted Emissions, conducted	$\pm 2.896\text{dB}$
3	All emissions, radiated 9K-30MHz	$\pm 3.84\text{dB}$
4	All emissions, radiated 30M-1GHz	$\pm 3.94\text{dB}$
5	All emissions, radiated 1G-6GHz	$\pm 4.59\text{dB}$
6	All emissions, radiated>6G	$\pm 5.22\text{dB}$
7	Conducted Emission (9KHz-150KHz)	$\pm 2.14\text{dB}$
8	Conducted Emission (150KHz-30MHz)	$\pm 2.54\text{dB}$

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Charging dock
Brand	N/A
Model Number	WXCD_V1.0
Series Model(s)	N/A
Model Difference	N/A
Channel List	Please refer to the Note 2.
Antenna Type	Please refer to the Note 3.
Equipment Category	Non-ISM frequency
Operating frequency	110.5-205KHz
Modulation Type	Load modulation
Power Rating:	Input: DC12V/1A Output: 5W
Hardware version number	1.0.0
Software version number	1.0.0
Connecting I/O Port(s)	Please refer to the Note 1.

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

Channel List					
Channel	Frequency (KHz)	Channel	Frequency (KHz)	Channel	Frequency (KHz)
00	131.4				

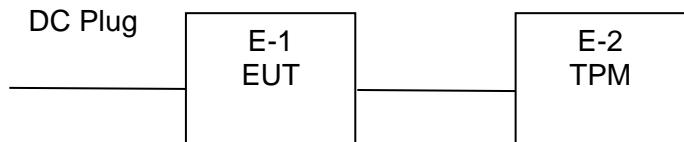
3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	NOTE
1	N/A	WXCD_V1.0	Magnetic coil	N/A	Antenna

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Charging+TX Mode


For Radiated Emission	
Final Test Mode	Description
Mode 1	Charging+TX Mode

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Radiated Emission Test

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-2	Charging dock	N/A	WXCD_V1.0	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in «Length» column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2022.09.29	2023.09.28
Signal Analyzer	R&S	FSV 40-N	101823	2022.09.29	2023.09.28
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2024.02.27
Bilog Antenna	TESEQ	CBL6111D	34678	2022.09.30	2024.09.29
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2022.07.04	2023.07.03
Temperature & Humidity	HH660	Mieo	N/A	2022.09.30	2023.09.29
Test SW	BALUN	BL410-E/18.905			

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2022.09.29	2023.09.28
LISN	R&S	ENV216	101242	2022.09.28	2023.09.27
LISN	EMCO	3810/2NM	23625	2022.09.28	2023.09.27
Temperature & Humidity	HH660	Mieo	N/A	2022.09.30	2023.09.29
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)			

3. CONDUCTED EMISSION TEST RESULT (SECTION 15.207)

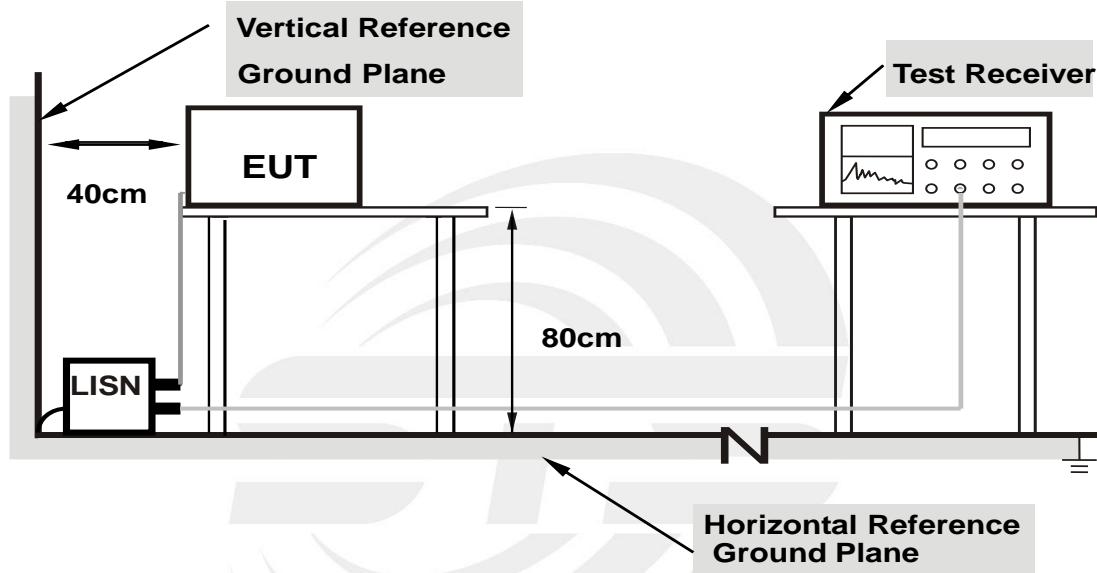
3.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Class B (dBuV)	
	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of “*” marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	22.0 °C	Relative Humidity:	36%
Test Voltage:	N/A	Phase:	L/N
Test Mode:	N/A		

Note: EUT is only power by DC Power, So it is not applicable for this test.

4. RADIATED& FIELD EMISSION TEST RESULT (SECTIOU 15.209)

4.1 LIMIT

Frequency [MHz]	Field Strength [uV/m]	Measurement Distance [Meters]
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

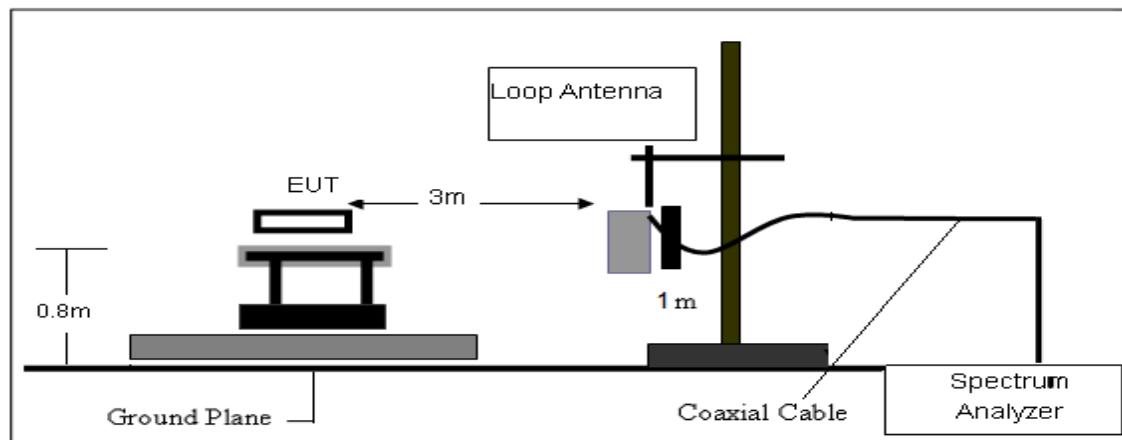
Note:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

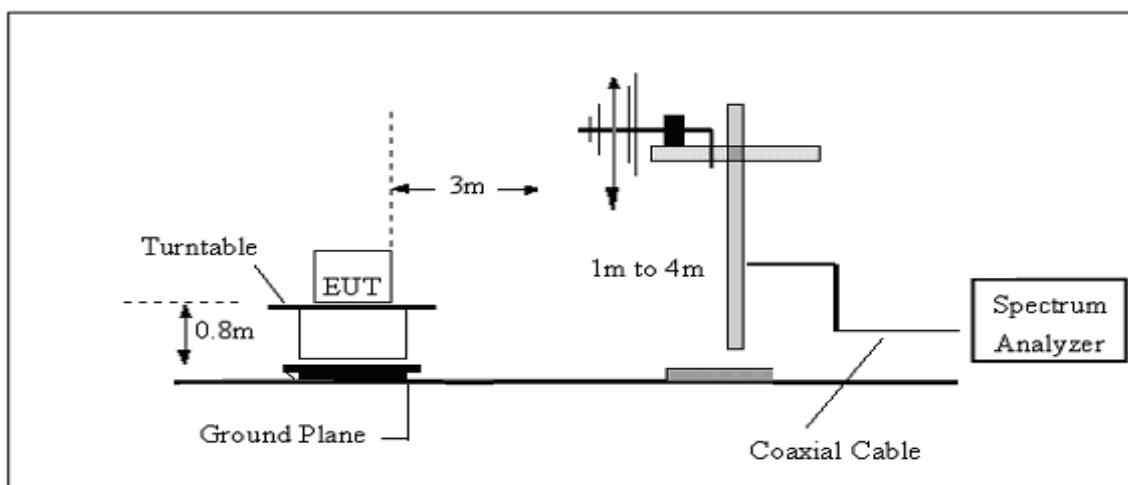
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

§ 15.209(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

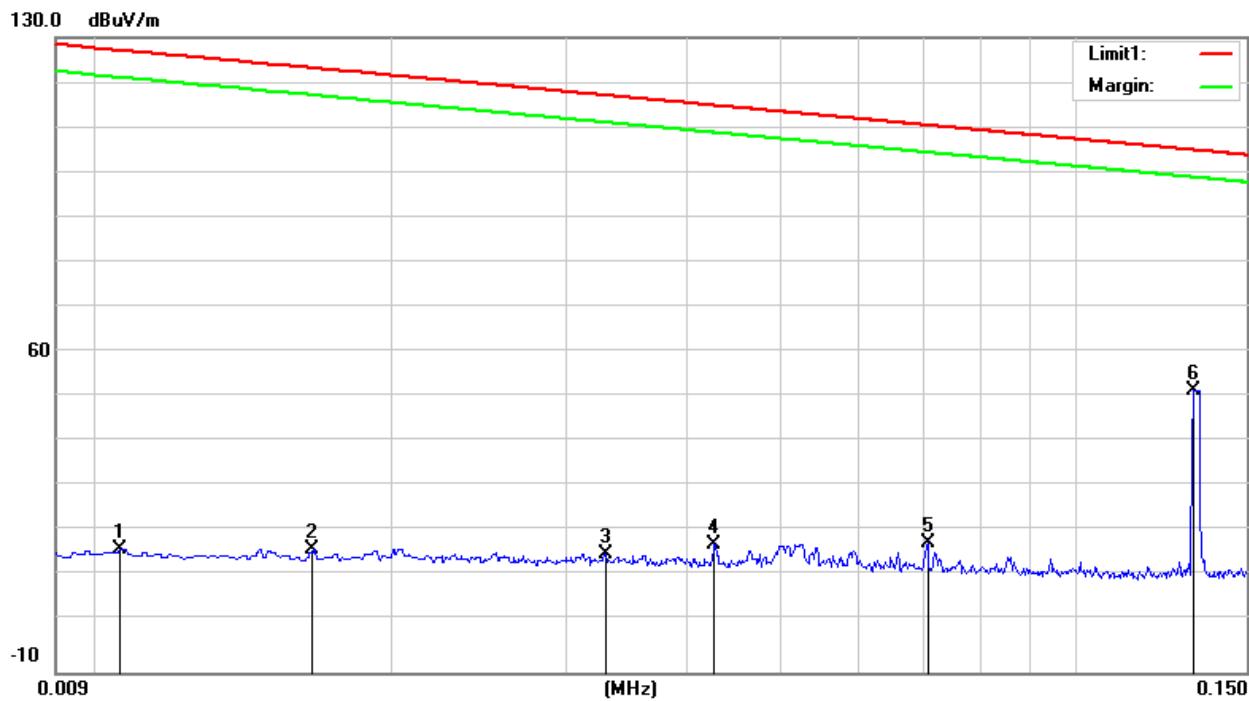
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

4.3 TEST SETUP

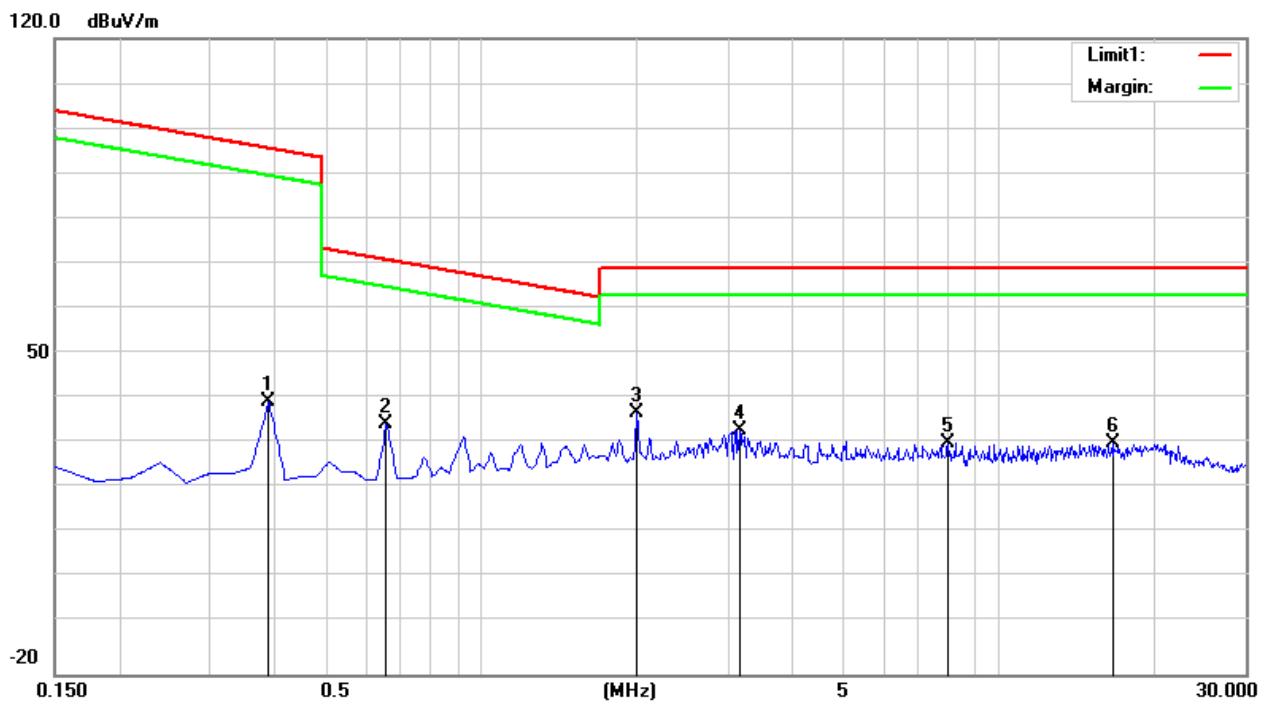
(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



4.4 TEST RESULTS

Temperature :	23.1 °C	Relative Humidity :	60%
Test Voltage :	DC 12V	Test Mode :	TX Mode

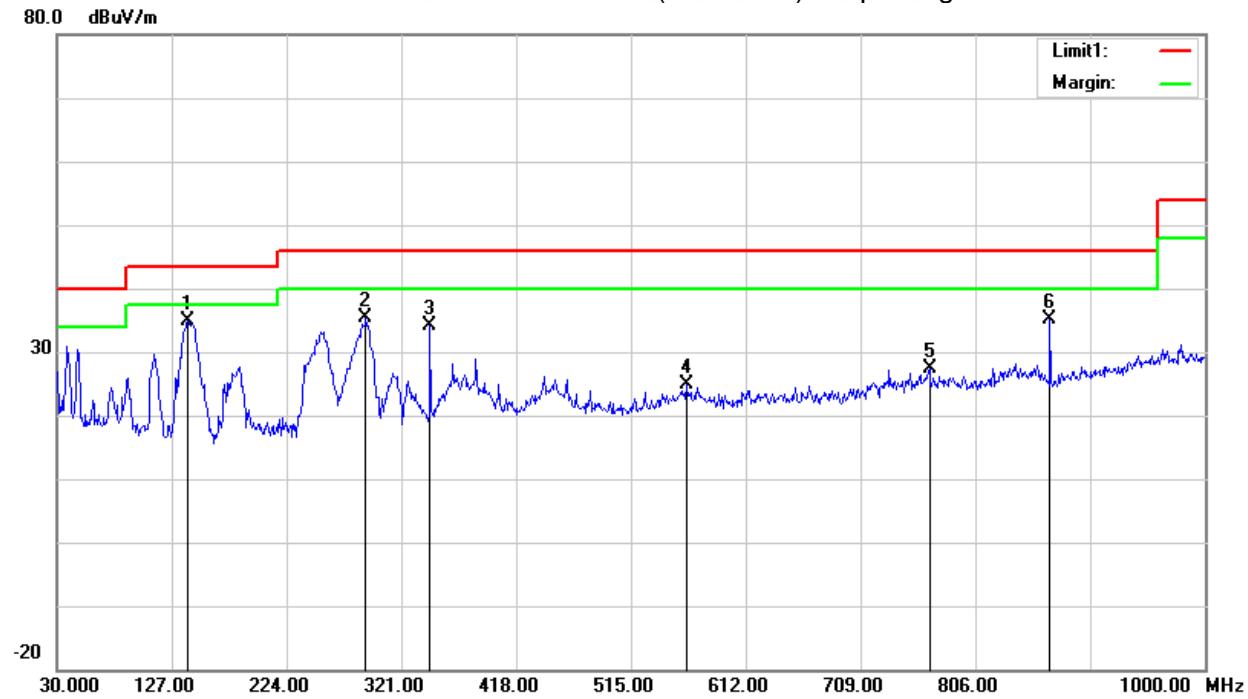

4.4.1 Spurious Radiated Emission Below 30 MHz 9KHz-150KHz

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
							Factor(dB/m)
1	0.0105	-2.38	19.41	17.03	127.18	-110.15	peak
2	0.0165	-2.65	19.85	17.20	123.26	-106.06	peak
3	0.0330	-3.73	19.84	16.11	117.23	-101.12	peak
4	0.0427	-1.30	19.65	18.35	115.00	-96.65	peak
5	0.0706	-0.47	18.92	18.45	110.63	-92.18	peak
6	0.1314	34.73	17.54	52.27	105.17	-52.90	peak

150KHz-30MHz

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.3888	19.89	20.16	40.05	95.81	-55.76	peak
2	0.6574	14.82	20.26	35.08	71.25	-36.17	peak
3	2.0007	17.17	20.40	37.57	69.50	-31.93	peak
4	3.1648	13.53	20.15	33.68	69.50	-35.82	peak
5	8.0006	10.46	20.32	30.78	69.50	-38.72	peak
6	16.6272	9.41	21.69	31.10	69.50	-38.40	peak

4.4.2 Spurious Radiated Emission below 1 GHz

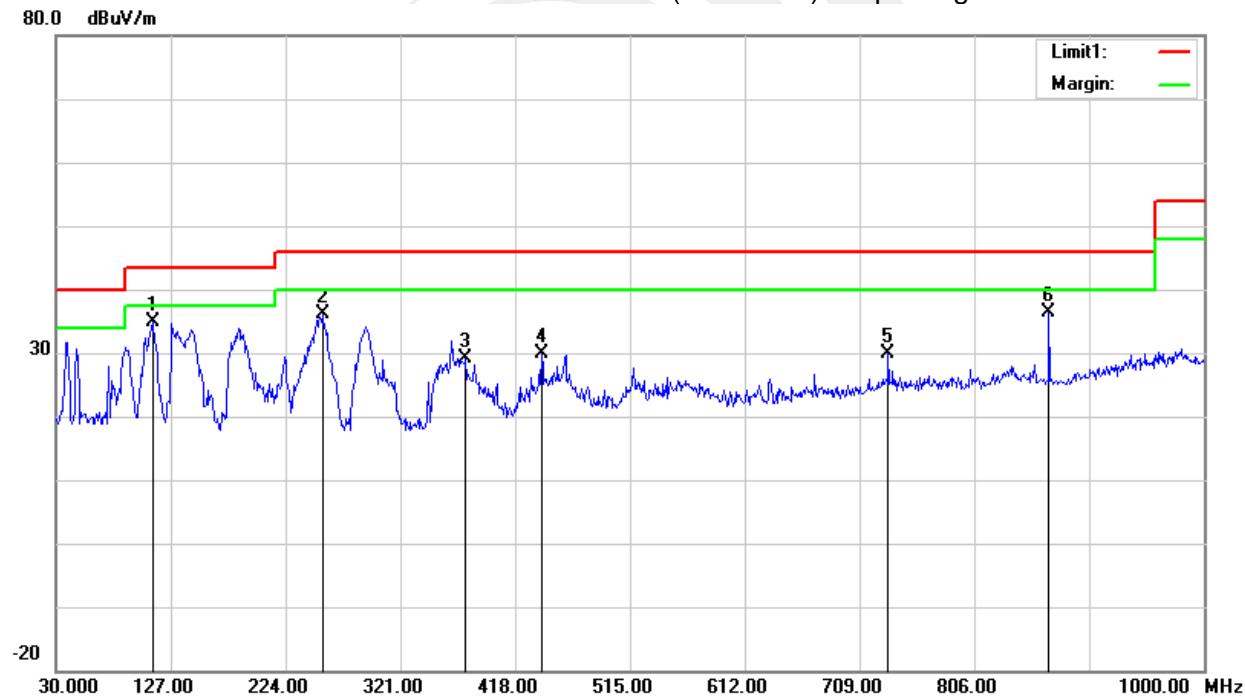

Temperature :	23.1 °C	Relative Humidity :	60%
Test Voltage :	DC 12V	Test Mode :	Mode 1

The following table shows the highest levels of radiated emissions on polarizations of vertical

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
140.5800	52.91	-18.05	34.86	43.50	-8.64	peak
290.9300	50.57	-15.12	35.45	46.00	-10.55	peak
345.2500	47.45	-13.23	34.22	46.00	-11.78	peak
561.5600	30.36	-5.51	24.85	46.00	-21.15	peak
767.2000	29.65	-2.29	27.36	46.00	-18.64	peak
869.0500	35.70	-0.52	35.18	46.00	-10.82	peak

Remark:

1. Margin = Result (Result =Reading + Factor)-Limit
2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain


Temperature :	23.1 °C	Relative Humidity :	60%
Test Voltage :	DC 12V	Test Mode :	Mode 1

The following table shows the highest levels of radiated emissions on polarizations of horizontal

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
111.4800	53.77	-18.92	34.85	43.50	-8.65	peak
255.0400	51.47	-15.35	36.12	46.00	-9.88	peak
376.2900	41.46	-12.35	29.11	46.00	-16.89	peak
440.3100	39.99	-10.08	29.91	46.00	-16.09	peak
733.2500	32.12	-2.35	29.77	46.00	-16.23	peak
869.0500	36.80	-0.52	36.28	46.00	-9.72	peak

Remark:

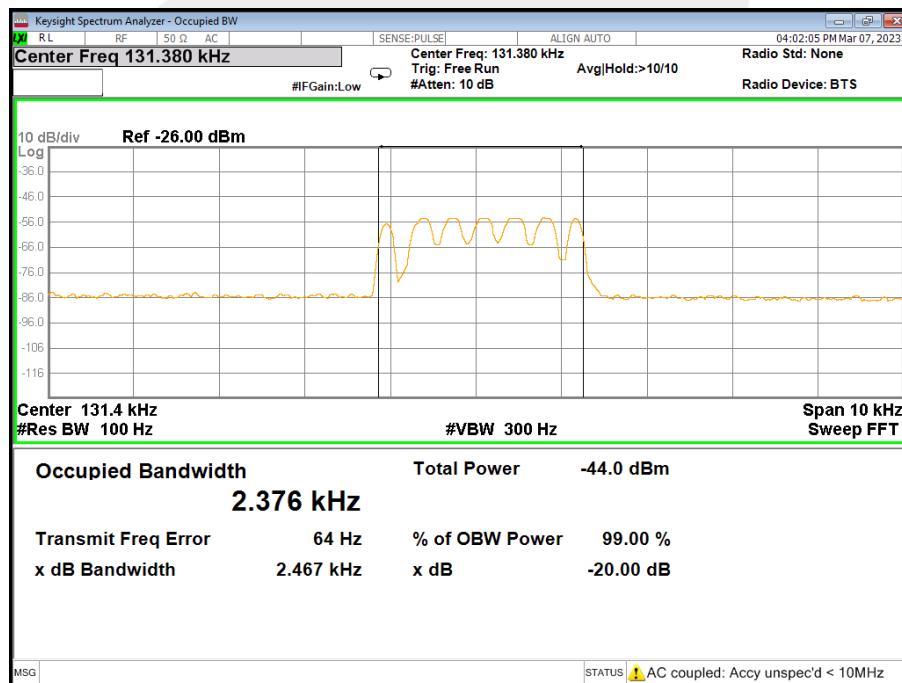
- Margin = Result (Result =Reading + Factor)–Limit
- Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

5. 20 DB BANDWIDTH TEST

5.1 Limit

FCC Part 15.215, Only applicable to report.

5.2 TEST SETUP


Spectrum Parameter	Setting
Span Frequency	approximately 2 to 3 times the 20 dB bandwidth
RB	greater than 1 % of the 20 dB bandwidth,
VB	equal to the RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

The test program and configuration, Refer to 4.2 and 4.3

5.3 TEST RESULTS

Operating Frequency (kHz)	20 dB Bandwidth (kHz)
131.4	2.467

CH00

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

END OF THE REPORT

