

FCC TEST REPORT

Test report On Behalf of shenzhenshi bangfu tou zi fa zhan you xian gong si For **Electronic Cabinet Lock** Model No.: DG001

FCC ID: 2A49Y-DG001

Prepared For: shenzhenshi bangfu tou zi fa zhan you xian gong si

guang dong shen zhen shi longgangqu henggangjiedao lijialu 108# 2013 C1-221

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai

Street, Bao'an District, Shenzhen, Guangdong, China

Feb. 11, 2022 ~Mar. 02, 2022 **Date of Test:**

Mar. 02, 2022 **Date of Report:**

HK2202240678-E **Report Number:**

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEST RESULT CERTIFICATION

Applicant's name	: shenzhenshi bangfu tou zi fa zhan you xian gong si		
Address	guang dong shen zhen shi longgangqu henggangjiedao lijiali 108# 2013 C1-221		

Manufacture's Name..... shenzhenshi bangfu tou zi fa zhan you xian gong si

Address guang dong shen zhen shi longgangqu henggangjiedao lijialu

108# 2013 C1-221

Product description

Trade Mark: N/A

Product name.....: Electronic Cabinet Lock

Model and/or type reference .: DG001

Standards FCC Rules and Regulations Part 15 Subpart C Section 15.225

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests Feb. 11, 2022 ~Mar. 02, 2022

Date of Issue...... Mar. 02, 2022

Test Result : Pass

Testing Engineer: Lang Hian

(Gary Qian)

Technical Manager : Zden Hw

(Eden Hu)

Authorized Signatory: Jason Thou

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

H.

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY		5
	1.1. INFORMATION OF THE TEST LABORATORY	THE	5
	1.2. MEASUREMENT UNCERTAINTY	HINK .	5
2.	EUT DESCRIPTION		6
3.	GENERA INFORMATION	HUAKTES	7
	3.1. TEST ENVIRONMENT AND MODE		
	3.2. DESCRIPTION OF SUPPORT UNITS	ELE LINE	7
4.	TEST RESULTS AND MEASUREMENT DATA		
	4.1. ANTENNA REQUIREMENT	HIVE.	8
	4.2. CONDUCTED EMISSION		9
	4.3. RADIATED EMISSION MEASUREMENT		11
	4.4. OCCUPIED BANDWIDTH		17
	4.5. FREQUENCY STABILITY	(b) Y	19
5.	APPENDIX A: PHOTOGRAPHS OF TEST SETU	JP	21
c	ADDENDIV D. DUOTOS OF THE SHT		TESTING 22

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Mar. 02, 2022	Jason Zhou
AKTESTII.	THE STILL	ESTITE AKTESTI	AKTESTIN
Dr. HO.	Mary Mary	HO.	HOW

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1. TEST RESULT SUMMARY

Requirement	CFR 47 Section	Result		
Conduction Emission, 0.15MHz to 30MHz	§15.207	N/A N/A		
Radiation Emission	§15.225, §15.205, §15.209, §15.35	PASS		
Occupied Bandwidth	§ 15.215	PASS		
Antenna requirement	§ 15.203	PASS		
Frequency stability	§ 15.225	PASS		

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.1. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

1.2. MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.cor

2. EUT DESCRIPTION

Equipment:	Electronic Cabinet Lock	HUAR	WIND HUAN
Model Name:	DG001	LAKTESTING	ang.
Series Model:	N/A NAME TO SEE		HUAKTES
Model Difference:	N/A	HUAKTESTING	
FCC ID:	2A49Y-DG001	WAY TEST	HUAKTESTI
Antenna Type:	Internal Antenna		
Antenna Gain:	1dBi	JING.	WC.
Operation frequency:	13.56MHz	HUAK TES	HUAKTES
Modulation Type:	ASK	TING	
Power Source:	DC 6V from battery	HUAKTE	NK TESTING
Power Rating:	DC 6V from battery	TING	O HO.

CATION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3. GENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test Mode:			
Operation mode:	Keep the EUT in continuous transmitting with modulation		

The sample was placed (0.8m below 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Y	Z HUAKTESTILL Z HUAKTES!
Field Strength(dBuV/m)	63.15	65.58	62.76

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo)

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	1	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

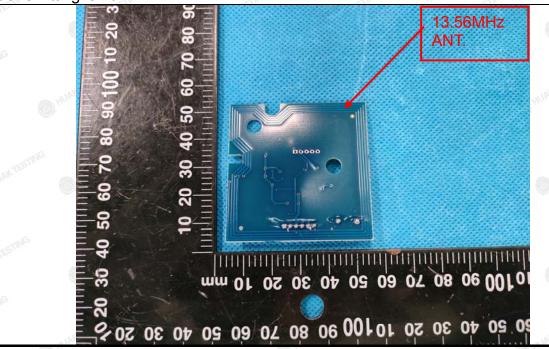
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.cc

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4. TEST RESULTS AND MEASUREMENT DATA

4.1. ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

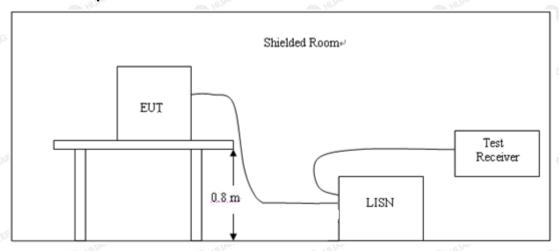
Internal Antenna

The antenna used in this product is a Internal Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1dBi.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

4.2. CONDUCTED EMISSION

4.2.1. Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following.

F=====================================	M	Maximum RF Line Voltage (dΒμV)			
Frequency (MHz)	CLASS A		CLASS B		
(11112)	Q.P.	Ave.	Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

4.2.2. Test Setup

4.2.3. Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.2.4. Test Result

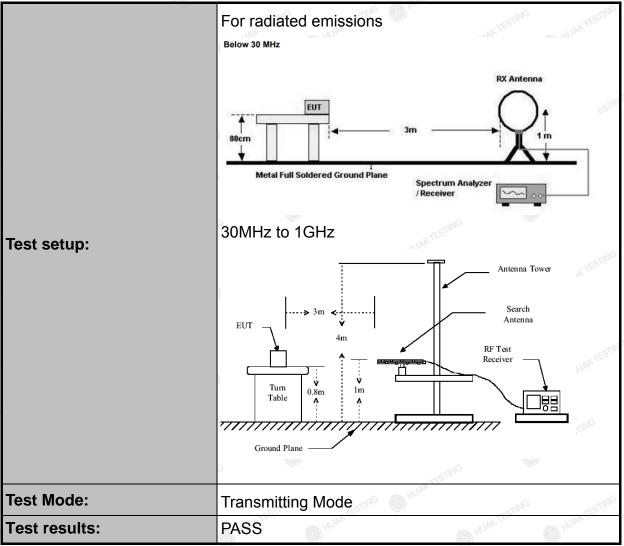
Not applicable.

Note: $\dot{\text{EUT}}$ power supply by DC Power, so this test item not applicable.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3. RADIATED EMISSION MEASUREMENT

4.3.1. Test Specification


Test Requirement:	FCC Part15	C Section 1	5.225(a)	and 15.	209
Test Method:	ANSI C63.10:2013				
Frequency Range:	9 kHz to 1 G	Hz ms	- 11	AKTESTING	TING
Measurement Distance:	3 m	AKTES	0,		HUAKTES
Antenna Polarization:	Horizontal &	Vertical	V TEST	NG	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz	Detector Quasi-peak Quasi-peak Quasi-peak	RBW 200Hz 9kHz 120KHz	VBW 1kHz 30kHz 300KHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value
	meters al below 1G determine 2. The EU interferen on the top 3. The anten meters at value of vertical potentical potentic	bove the garden to the position of a varial and height in the field colorizations are the field colorization of the field colorization are the field colorization are the field colorization are the field colorization and special colorization the field colorization and the potherwise to gin would	pround a ble was on of the et 3 m g antenrole-height s varied ound to control to 6 the a emission. If then the emission of the Emit special point special po	t a 3 m rotated highest eters and tetermine and tetermine and the EU e antenna and teters and teter	way from the n was mounted

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.3.2. Limit

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15.848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.3.3. Frequencies in restricted band are complied to limit on Paragraph 15.209

Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)	Field strength (microvolts/meter)
0.009-0.490	300	20log 2400/F (kHz)	2400/F (kHz)
0.490-1.705	30	20log 24000/F (kHz)	24000/F (kHz)
1.705-30	30	20log 30	30
30-88	3	40.0	100**
88-216	3	43.5	150**
216-960	3	46.0	200**
Above 960	3	54.0	500

NOTE:

4.3.4. Test Instruments

Radiated Emission Test Site (966)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
ESPI Test Receiver	ROHDE&SCHWARZ	ESVD	100008	Dec. 09, 2021		
Spectrum Analyzer	ROHDE&SCHWARZ	FSEM	848597/001	Dec. 09, 2021		
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Dec. 09, 2021		
Pre-amplifier	HP	8447D	2727A05017	Dec. 09, 2021		
Loop antenna	ZHINAN	ZN30900A	12024	Dec. 09, 2021		
Broadband Antenna	Schwarzbeck	VULB9163	340	Dec. 09, 2021		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Dec. 09, 2021		
Coax cable	HUAK	N/A	N/A	Dec. 09, 2021		
Coax cable	HUAK	N/A	N/A	Dec. 09, 2021		
Coax cable	HUAK	N/A	N/A	Dec. 09, 2021		
Coax cable	HUAK	N/A	N/A	Dec. 09, 2021		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., S 15.231 and 15.241.

4.3.5. Test Data

PASS

Note: this EUT was tested for all models and the worst case model (DC 6V) data was reported.

Field Strength of Fundamental

Frequency (MHz)	Reading (dBuV/m)	Correction Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polar (H/V)	Detector
13.21	45.79	15.82	61.61	80.51	-18.9	H	QP
13.21	45.31	15.82	61.13	80.51	-19.38	V	QP
13.85	48.44	15.82	64.26	80.51	-16.25	KTESTH	QP
13.85	48.85	15.82	64.67	80.51	-15.84	V	QP
13.56	84.29	12.33	96.62	124	-27.38	Н	Peak
13.56	82.35	12.33	94.68	124	-29.32	STITE V	Peak
13.45	53.34	15.82	69.16	90.47	-21.31	Н	QP
13.45	48.16	15.82	63.98	90.47	-26.49	V	QP
13.62	49.83	15.82	65.65	90.47	-24.82	Н	QP
13.62	46.11	15.82	61.93	90.47	-28.54	V	QP

Remark: Margin = Result - Limit

Result = Reading +Correction Factor

Correction Factor = Antenna Factor + Cable Factor

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequen	cy (MHz)	Level@3m (dBµV/m)	Limit@	3m (dBµV/m)
THUA!	(TE)	Way K The		- WAKTE
0		√c @	.o.VG	
	ON TES		AK TESTI	
TING	STING WHO	TING STING	1	TING STING

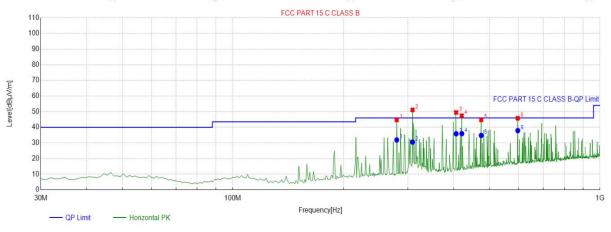
Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

About 30MHz-1GHz


Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Remark:

Margin = Limit - Level

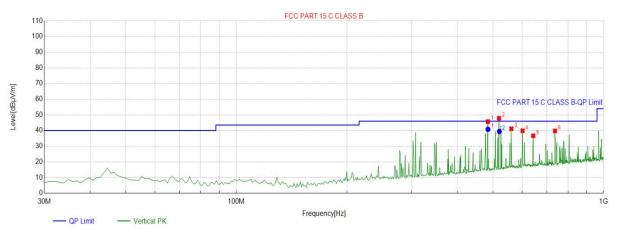
Level=Test receiver reading + correction factor

Horizontal

OP Detector

Suspected List									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	279.5395	-13.27	58.02	44.75	46.00	1.25	100	303	Horizontal
2	308.6687	-12.63	63.75	51.12	46.00	-5.12	100	303	Horizontal
3	405.7658	-10.30	59.80	49.50	46.00	-3.50	100	303	Horizontal
4	420.3303	-10.03	57.45	47.42	46.00	-1.42	100	60	Horizontal
5	474.7047	-8.39	53.18	44.79	46.00	1.21	100	303	Horizontal
6	597.0470	-6.31	52.09	45.78	46.00	0.22	100	303	Horizontal

Final [Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
1	279.5395	-13.27	45.18	31.91	46.00	14.09	100	303	Horizontal
2	308.6687	-12.63	43.18	30.55	46.00	15.45	100	303	Horizontal
3	405.7658	-10.30	46.18	35.88	46.00	10.12	100	303	Horizontal
4	420.3303	-10.03	45.97	35.94	46.00	10.06	100	60	Horizontal
5	474.7047	-8.39	43.18	34.79	46.00	11.21	100	303	Horizontal
6	597.0470	-6.31	44.21	37.90	46.00	8.10	100	303	Horizontal


Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Antenna polarity: V

•	QP	Do	too	io
•	Q.F	De	leu	w

Su	Suspected List									
. NI)	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity
IN	Ο.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	484.4144	-8.49	54.19	45.70	46.00	0.30	100	58	Vertical
. :	2	519.3694	-7.75	55.63	47.88	46.00	-1.88	100	58	Vertical
٥ ;	3	561.1211	-6.65	47.81	41.16	46.00	4.84	100	58	Vertical
4	4	601.9019	-6.01	45.87	39.86	46.00	6.14	100	58	Vertical
. !	5	643.6537	-5.71	42.39	36.68	46.00	9.32	100	58	Vertical
	6	737.8378	-4.22	44.00	39.78	46.00	6.22	100	292	Vertical

Final I	Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
1	484.4144	-8.49	49.29	40.80	46.00	5.20	100	58	Vertical
2	520.3767	-7.75	47.18	39.43	46.00	6.57	150	170	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. OCCUPIED BANDWIDTH

4.4.1. Test Specification

TO HUPIN	401
Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10: 2013
Limit:	N/A HUNTES I
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT 2. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dl bandwidth, centered on a hopping channel; RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test setup:	Attenuator Spectrum Analyzer EUT
Test Mode:	Transmitting Mode
Test results:	PASS

4.4.2. Test Instruments

RF Test Room						
Equipment Manufacturer Model Serial Number Calibration Du						
Spectrum Analyzer	Agilent	N9020A	MY49100060	Dec. 09, 2021		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.4.3. Test data

Test Channel (MHz)	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Conclusion	
13.56	4.057	N/A	PASS	

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. FREQUENCY STABILITY

4.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.225
Test Method:	ANSI C63.10: 2013
Limit:	+/-0.01%
	 The equipment under test was connected to an external DC power supply and input rated voltage. RF output was connected to a spectrum analyzer. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting Mode
Test results:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

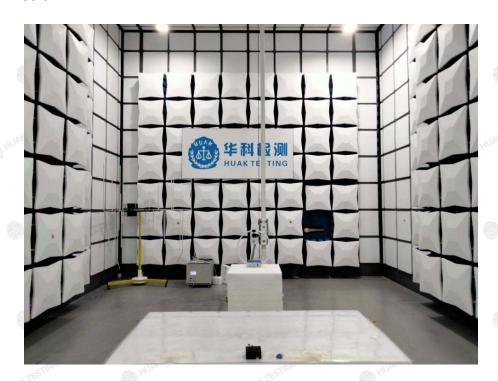
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

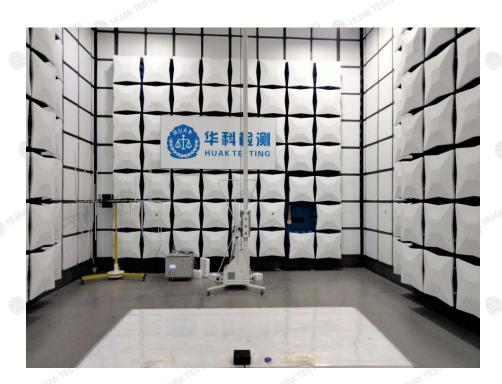
4.5.2. Test Data

PASS

Note: this EUT was tested for all models and the worst case model (DC 6V) data was reported.

Voltage (Vdc)	Temperature (°C)	Frequency (MHz)	Deviation (%)	Limit (%)
6 HUAK	-20	13.560075	0.00055%	UKTESI
6	-10	13.560216	0.00159%	
6	THE NOTE OF	13.559894	-0.00078%	STING (1)
HUAK TG	10 PALAKTE	13.560055	0.00041%	HUAKTES
6	20	13.560033	0.00024%	
6	30	13.560036	0.00027%	A)G
111 MARTIES 16	40	13.560205	0.00151%	WAKTESTING
6	50	13.559891	-0.00080%	9
5.1	-20	13.560031	0.00023%	-mG
5.1	-10	13.560204	0.00150%	UKTESTI
5.1	O ESTING	13.559895	-0.00077%	
5.1	10	13.560421	0.00310%	. / 0 040/
5.1	20	13.560473	0.00349%	+/-0.01%
5.1	30	13.560854	0.00630%	
5.1	40	13.560505	0.00372%	, alG
5.1	50 NOW TEST	13.560592	0.00437%	HUAK TESTIN
6.9	-20	13.559672	-0.00242%	9
6.9	-10	13.560491	0.00362%	TING
6.9	0	13.560092	0.00068%	UKTESI
6.9	10	13.559835	-0.00122%	
6.9	20	13.560305	0.00225%	STING (1)
6.9	30	13.559141	-0.00633%	HUAKA
6.9	40	13.560082	0.00060%	
6.9	50	13.559767	-0.00172%	Đ _{ća.}


-|-


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

6. APPENDIX B: PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com