

Shenzhen Heyixun Technology Co., LTD

SPECIFICATION FOR APPROVAL

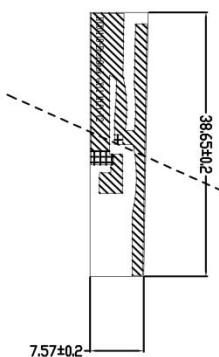
customer Name	Shenzhen Baseus Technology Co., Ltd.		
Customer project Name	EnerGeek Gx11 Mifi	Heyixun project Name	EnerGeek Gx11 Mifi
customer P/N		Heyixun P/N	HYX0119-Ener Geek GX11 Mifi v2
Band	2400-2500MHZ 5100-5850MHZ		
version	A1		
Designer Information			
RF Engineer	Feng Xiaoheng	EE Engineer	Shi Zhenhao
ME Engineer	Zhu Zengyuan		

Heyixun Approval				customer Approval	
	prepared	checked BY	Approval BY	checked BY	Approval BY
signature	Guo Mengya				
Date	2025-6-10				

change Log					
version	change Description		person in charge	Approval BY	Date

catalogue

No.	Item	Page No.
1	Drawing or Product Image	3-4
2	Dimensions Test Report	5
3	RF Performance Test Report	6-10
4	Reliability Test Report	11
5	PACKING CRITERION	12
6	Environmental requirements	13
7	Install Wizard or Other	13


1

5

concentrate.

positive

Hand-torn position

Silk screen white, antenna black

6

1. The adhesive is made of 3M 9471 300SF, the viscosity is more than 300MP, the shape of the adhesive is consistent with the substrate, covered on the back of the substrate, and the adhesive is cut in half;
- 2, the material is single-sided, half to one third of the.
3. There is no crack on the surface of the product after being bent at 180° after being

3. There is no crack on the surface of the product after being bent at 180° after being oiled, and the flexibility should be good;
2. The materials single-sided nail to one unit of time.

4. The surface of the gold finger is plated with gold 0.5 μ , no oxidation, and there is no crack or conduction phenomenon after 180° bending at the junction of copper foil.

5. The precise tolerance range of wiring and holes: $\pm 0.03\text{mm}$, and the tolerance of external

dimensions is controlled within 0.1mm;

6. The ★ size is strictly controlled, marked with * as the key size, and the unmarked size is

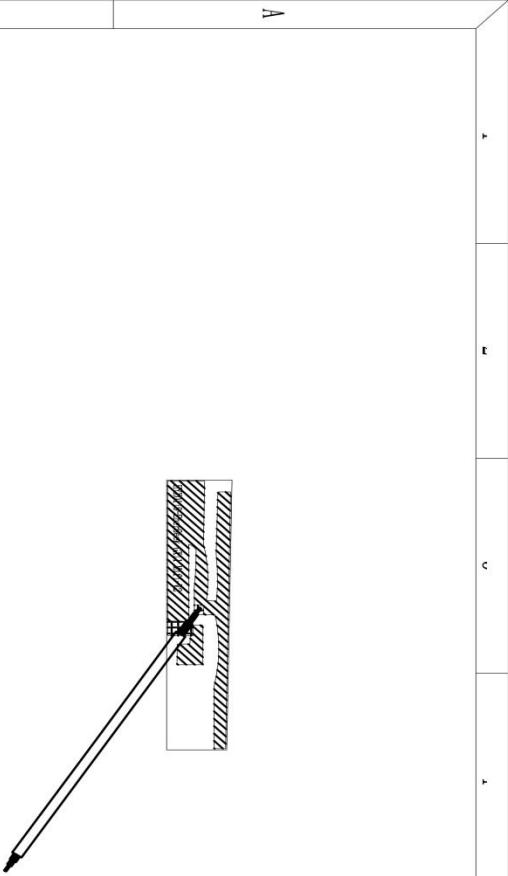
measured according to the CAD electronic drawing file 1:1;

7. Printing on the surface, see the figure for the specific content and location;

8. The non-appearance needs to be cut and sent to our company after the sample is sent

Lavar
Description (Thickness)

Adhesive backings
3M9471M
Description (thickness)


3. Substrate: KUM-800F NHG3<10 μ m>

PSM-800FSDM-ASMH-80

1 2

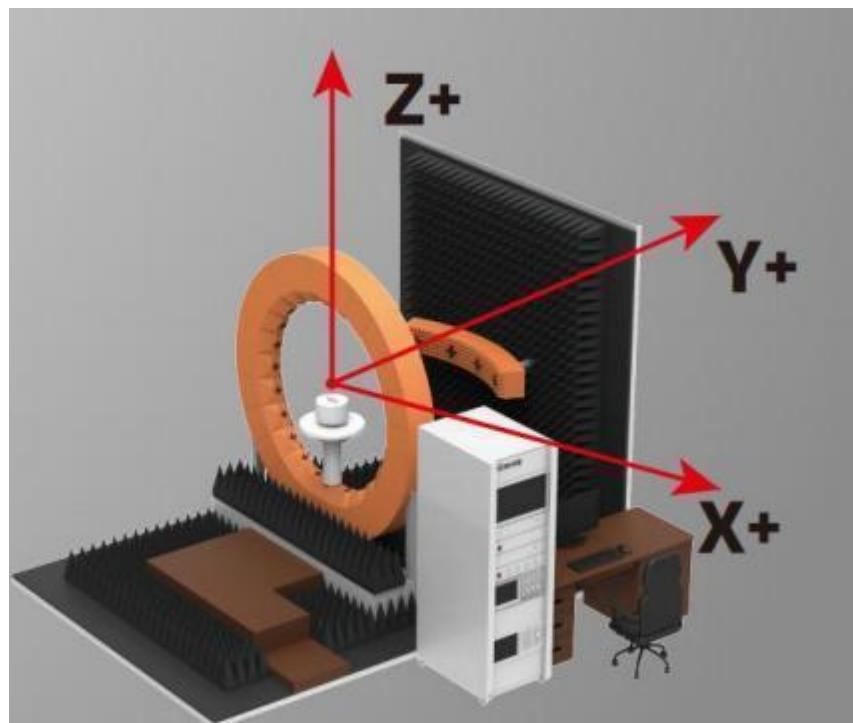
X

shenzhen heyixun technology co., ltd

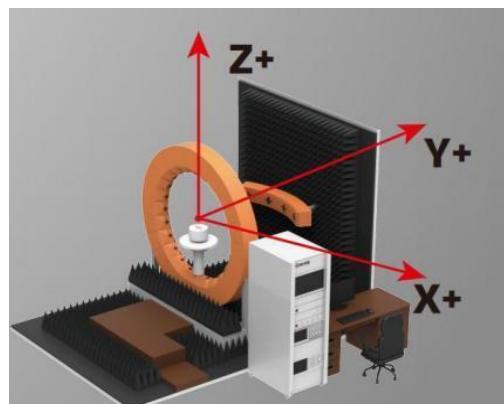
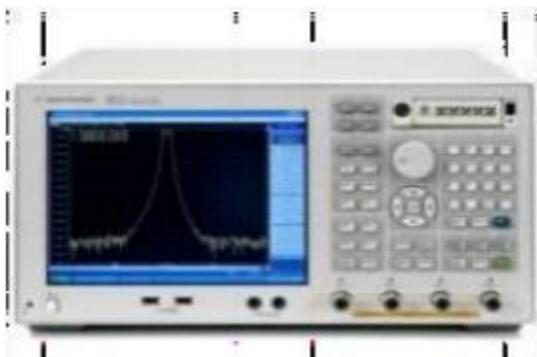
<p>B</p> <p>一、 technical specification</p> <ol style="list-style-type: none"> 1. nominal voltage: 60VAC (R.M.S) 2. Frequency test range: 0~6GHz 3. characteristic: 50 ± 2 ohms 4. operating temperature range: $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$ 5. operating humidity: 95%R.H. Max. <p>二、 Electrical performance</p> <ol style="list-style-type: none"> 1. insulation resistance: 500M ohms 2. Contact resistance: centerPINNeedle 25m ohms Max. 3. withstand voltage: 200V AC 2 Min 4. line loss: 900M Hz 0.5dB Max 5. VSWR: 0.1~3GHz 1.3 Max. 3~6GHz 1.5 Max. <p>三、 mechanical property</p> <ol style="list-style-type: none"> 1. withdrawal force: initial stage 4N Min. 30N After returning 2N Min. 2. pull: 7N Min 	<p>A</p>																																																																																																																																								
<p>C</p> <p>External iron shell 15m ohms Max.</p> <p>1800M Hz 0.7dB Max</p> <p>5. VSWR: 0.1~3GHz 1.3 Max.</p> <p>3~6GHz 1.5 Max.</p> <p>Min.</p> <p>10a: 45 ± 3mm</p> <p>unit: MM</p>																																																																																																																																									
<p>D</p> <p>shenzhen heyixun technology co., ltd</p> <table border="1" style="width: 100%; border-collapse: collapse; text-align: center;"> <thead> <tr> <th rowspan="2">No.</th> <th rowspan="2">Layer</th> <th rowspan="2">Description(thickness)</th> <th rowspan="2">Manufacturer &P/N</th> <th colspan="2">The third corner</th> <th rowspan="2">date</th> <th rowspan="2">2025-5-17</th> <th rowspan="2">drawing</th> <th rowspan="2">ZhuZengLian</th> <th rowspan="2">page number</th> <th rowspan="2">1 of 1</th> </tr> <tr> <th>Models</th> <th>devise</th> <th>Audit</th> <th>Approved</th> </tr> </thead> <tbody> <tr> <td>0~10</td> <td>± 0.10</td> <td>\bigcirc</td> <td>0.02</td> <td>Product name</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>10~20</td> <td>± 0.12</td> <td>\odot</td> <td>0.03</td> <td>Part number</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>20~40</td> <td>± 0.15</td> <td>\perp</td> <td>0.02</td> <td>structure</td> <td>TengXiaoteng</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>40~</td> <td>± 0.20</td> <td>\square</td> <td>0.04</td> <td>Material</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>2</td> <td>terminal</td> <td>4 generations</td> <td>ZF P0</td> <td>Die face treatment</td> <td>RF</td> <td>ZhuZengLian</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>3</td> <td></td> <td></td> <td>Do not measure the drawing</td> <td>Location</td> <td>Appearance</td> <td>treatment</td> <td>unit</td> <td>mm</td> <td>proportion 1:1</td> <td>version</td> <td>REV/A</td> </tr> <tr> <td>1</td> <td></td> <td></td> <td></td> <td>5</td> <td>6</td> <td></td> <td>7</td> <td>8</td> <td></td> <td></td> <td></td> </tr> <tr> <td>2</td> <td></td> </tr> <tr> <td>3</td> <td></td> </tr> <tr> <td>4</td> <td></td> </tr> </tbody> </table>		No.	Layer	Description(thickness)	Manufacturer &P/N	The third corner		date	2025-5-17	drawing	ZhuZengLian	page number	1 of 1	Models	devise	Audit	Approved	0~10	± 0.10	\bigcirc	0.02	Product name								10~20	± 0.12	\odot	0.03	Part number								20~40	± 0.15	\perp	0.02	structure	TengXiaoteng							40~	± 0.20	\square	0.04	Material								2	terminal	4 generations	ZF P0	Die face treatment	RF	ZhuZengLian						3			Do not measure the drawing	Location	Appearance	treatment	unit	mm	proportion 1:1	version	REV/A	1				5	6		7	8				2												3												4											
No.	Layer					Description(thickness)	Manufacturer &P/N							The third corner		date	2025-5-17	drawing	ZhuZengLian	page number	1 of 1																																																																																																																				
		Models	devise	Audit	Approved																																																																																																																																				
0~10	± 0.10	\bigcirc	0.02	Product name																																																																																																																																					
10~20	± 0.12	\odot	0.03	Part number																																																																																																																																					
20~40	± 0.15	\perp	0.02	structure	TengXiaoteng																																																																																																																																				
40~	± 0.20	\square	0.04	Material																																																																																																																																					
2	terminal	4 generations	ZF P0	Die face treatment	RF	ZhuZengLian																																																																																																																																			
3			Do not measure the drawing	Location	Appearance	treatment	unit	mm	proportion 1:1	version	REV/A																																																																																																																														
1				5	6		7	8																																																																																																																																	
2																																																																																																																																									
3																																																																																																																																									
4																																																																																																																																									

Shenzhen Heyixun Technology Co., LTD

sample Dimensions Test Report


customer Name	Shenzhen Baseus Technology Co., Ltd.	customer P/N		Heyixun P/N	HYX0119-Ener Geek GX11 Mifi-v2
Test Date	2025-6-10	sample Qty.	3	Inspector	Guo Mengya
Dimension NO.	standard	sample 1	sample 2	sample 3	pass/NG
①length	38.65±0.2mm	29.65mm	38.60mm	38.63mm	Pass
②width	7.57±0.2mm	7.53mm	7.50mm	7.57mm	Pass
③thickness	0.20±0.05mm	0.22mm	0.20mm	0.21mm	Pass
④Line length	45±3mm	44mm	45mm	45mm	Pass
Conclusion					PASS
Inspector & Date	Guo Mengya 2025-6-10	Approval & Date			

RF Performance Test Report



customer Name	Shenzhen Baseus Technology Co., Ltd.	project Name	EnerGeek Gx11 Mifi	Heyixun P/N	HYX0119-Ener Geek GX11 Mifi-v2
Band	2400-2500MHZ 5100-5850MHZ	Test Date	2025-6-10	Inspector	Guo Mengya

Antenna Test Equipment Introduction

Test of antenna input characteristics using Agilent E5071c and Agilent 5071c vector network analyzer ; The radiation pattern of the antenna are tested using the ETS starlab 3D near field Anechoic Chamber, and the instrument is used to agilent8960 E5515 and Agilent E4438C. The test coordinates of the darkroom are as follows:

Sequence Number	Test Item	equipment
S parameter	VSWR	Agilent 5071C & Agilent 5062A
OTA Test	TRP&TIS	Agilent 8960 E5515C& Agilent 4438C&CMW500 ETS&SATIMO
Gain & Efficiency	Gain & Efficiency	ETS&SATIMO Agilent 5071C

2. Product Overview & Dimension

WIFI天线

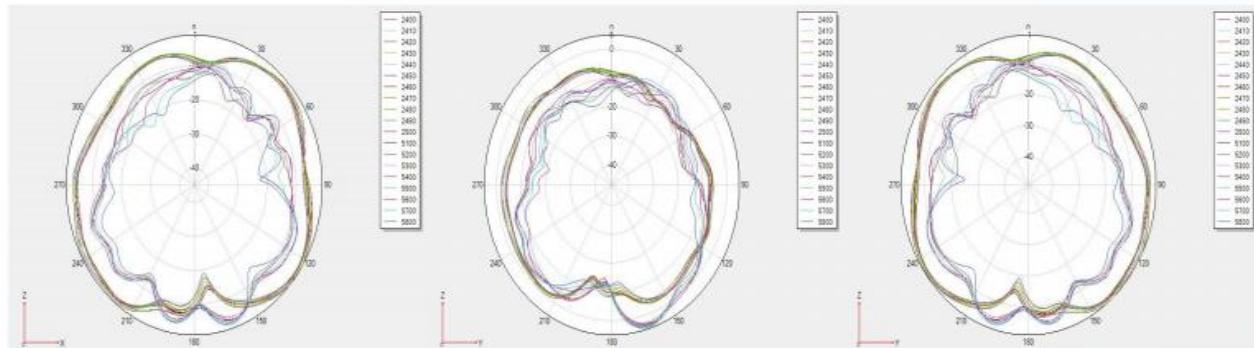
3 Test Result VSWR&Log Mag&Smith(Ω)

Frequency (MHz)	2400	2450	2480	2500	5150	5500	5720	5850
VSWR	1.58	1.49	1.41	1.38	2.61	1.75	1.38	1.15

3. Test Result VSWR&Log Mag&Smith(Ω)

3.2 Gain & Efficiency—ANT

Frequency (MHz)	Efficiency (%)	Max GAIN (dBi)
2400	55.93	2.32
2450	56.70	2.40
2480	53.97	2.21
2490	52.13	2.01


3. Test Result VSWR&Log Mag&Smith(Ω)

3.2 Gain & Efficiency—ANT

Frequency (MHz)	Efficiency (%)	Max GAIN (dBi)
5100	49.41	2.16
5200	49.78	2.71
5300	50.08	2.31
5400	53.95	3.31
5500	52.84	3.39
5600	53.93	3.92
5700	52.47	3.56
5850	50.32	3.43

3. Test Result

3.3 2D Pattern—BTANT

4.OTA Data

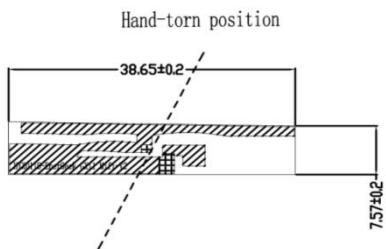
1#

Test Equipment:		R&S CMW500		
Test Condition:		3D chamber		
Band	Wireless Protocol	Channel	TRP(dBm)	TIS(dBm)
WIFI	802.11 b/11Mbs	1	18.78	-84.66
		6	17.76	-84.78
		11	18.93	-84.3
	802.11 g/54Mbs	1	16.97	-71.51
		6	15.81	-70.10
		11	17.46	-71.18
	802.11 n/65Mbs	1	16.98	-67.73
		6	15.89	-65.88
		11	17.45	-67.59
	802.11 A/54Mbs	36	16.19	-71.71
		149	15.28	-71.37
		165	15.75	-71.14

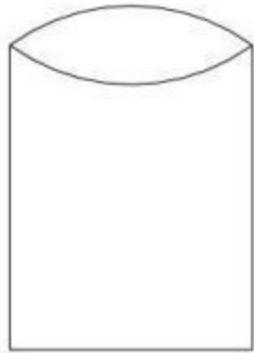
4.OTA Data

1#

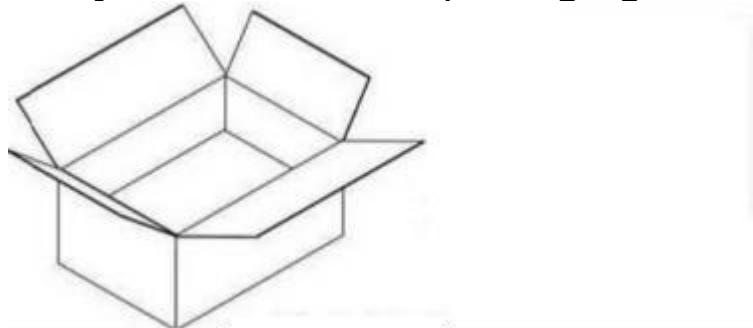
Test Equipment:		R&S CMW500		
Test Condition:		3D chamber		
Band	Wireless Protocol	Channel	TRP(dBm)	TIS(dBm)
WIFI	802.11 b/1Mbs	1	18.76	-92.78
		6	17.05	-92.74
		11	18.89	-92.38
	802.11 g/6Mbs	1	16.57	-87.78
		6	16.40	-86.44
		11	16.79	-87.58
	802.11 n/6.5Mbs	1	16.51	-86.70
		6	16.27	-85.77
		11	16.79	-86.68


Reliability Test Report

customer Name	Shenzhen Baseus Technology Co., Ltd.	customer P/N		Heyixun P/N	HYX0119-Ener Geek GX11 Mifi-v2	
Test Date	2025-6-10	sample Qty.	3	Inspector	Guo Mengya	
Test Item	Requirement	testing equipment	sample 1	sample 2	sample 3	PASS/NG
High temperature storage	The test was performed after 24 hours of exposure at +85° C and 2 hours of recovery	Constant temperature and humidity chamber	OK	OK	OK	Pass
Cryogenic storage	The test was performed after 24 hours of exposure at -40° C and 2 hours of recovery	Constant temperature and humidity chamber	OK	OK	OK	Pass
High temperature operation	Operates at +60° C for 24 hours	Constant temperature and humidity chamber	OK	OK	OK	Pass
Operates at low temperatures	It works on power for 24H at -20° C	Constant temperature and humidity chamber	OK	OK	OK	Pass
Salt spray test	(5 Shi 0.5)*Sodium chloride, pH value is 6.5~7.2, and the temperature of the experimental chamber is (35 ±2)° C <input checked="" type="checkbox"/> 24H <input type="checkbox"/> 48H	Salt spray testing machine	OK	OK	OK	Pass
Connector riveting pull-out force	1.13 Wire size ≥10N 0.81 Wire size ≥8N RG174 ≥60N RG178 ≥50N	Push-pull force gauge	8N	8N	8N	Pass
Conclusion						Pass
Inspector & Date	Guo Mengya 2025-6-10	Approval & Date				


Shenzhen Heyixun Technology Co., LTD

PACKING CRITERION


1. Individual products (Subject to the actual packaging)

2. Big PE bag packing (full sheet/single 90pcs) (Subject to the actual packaging)

3. Sealed, the outer box is affixed with our production label and ROHS label. (Subject to the actual packaging)

Environmental requirements

MSDS (Material Safety Data Sheet)	<input checked="" type="checkbox"/> Offer	<input type="checkbox"/> Not available	<input type="checkbox"/> N/A
COC (Environmental Protection Agreement)	<input checked="" type="checkbox"/> Offer	<input type="checkbox"/> Not available	<input type="checkbox"/> N/A
Technical standards for environmentally friendly hazardous substances	<input checked="" type="checkbox"/> Offer	<input type="checkbox"/> Not available	<input type="checkbox"/> N/A
Specific environmental requirements	<input checked="" type="checkbox"/> ROHS2.0 COMPLIANT <input checked="" type="checkbox"/> Halogen-free <input checked="" type="checkbox"/> Meets California 65	<input checked="" type="checkbox"/> ROHS2.0 COMPLIANT	

Install Wizard or Other

Installation Process:

Take the 1POS product, tear off the release paper on the back of the FPC by hand, and then align the position of the FPC positioning hole with the positioning hole position of the shell (positioning rib or positioning line), and attach it to the shell flatly, the specific position is shown in the following figure:

Precautions during the installation process:

- After attaching the antenna, ensure that the FPC is fully attached to the housing;
- The positioning hole is aligned with the positioning post position of the housing;
- The edge of the FPC is against the edge of the case;
- Antenna with Terminals When snapping the terminals to the PCBA end of the motherboard, first snap the terminals and then vertically;
- When disassembling the antenna terminals, it is necessary to use a tool (such as a special crowbar) to the terminals vertically, and do not directly pull the wire to disassemble them.