

FCC RADIO TEST REPORT

FCC ID: 2A439CARLOS107

Sample: APP vibrator (Tadpole)

Trade Name: N/A

Main Model: K-107

Additional Model: K108, K-109, K-1301

Report No.: UNIA22022408ER-61

Prepared for

Huizhou kelemeida Technology Co., Ltd

4th floor, zone B, No. 6 (Plant C), Songlin Road, Zhongkai high tech Zone,
Huizhou, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang
Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优测检测技术有限公司
Shenzhen United Testing Technology Co.,Ltd.
United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China
深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编: 518102 Tel: +86-755-86180996 Fax: +86-755-86180156

<http://www.uni-lab.hk>

TEST RESULT CERTIFICATION

Applicant.....: Huizhou kelemeida Technology Co., Ltd

Address.....: 4th floor, zone B, No. 6 (Plant C), Songlin Road, Zhongkai high tech Zone, Huizhou, China

Manufacturer.....: Huizhou kelemeida Technology Co., Ltd

Address.....: 4th floor, zone B, No. 6 (Plant C), Songlin Road, Zhongkai high tech Zone, Huizhou, China

Product description

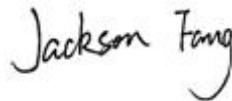
Product.....: APP vibrator (Tadpole)

Trade Name.....: N/A

Model Name.....: K-107, K108, K-109, K-1301

Test Methods.....: FCC Rules and Regulations Part 15 Subpart C Section 15.249, ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.


This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test.....:

Date (s) of performance of tests.....: Feb. 24, 2022 ~ Mar. 11, 2022

Date of Issue.....: Mar. 14, 2022

Test Result.....: Pass

Prepared by:

Jackson Fang/Editor

kahn.yang

Reviewer:

Kahn yang/Supervisor

Approved & Authorized Signer:

Liuze/Manager

Table of Contents	Page
1 TEST SUMMARY	4
2 GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 CARRIER FREQUENCY OF CHANNELS	7
2.3 TEST MODE	7
2.4 TEST SETUP	7
2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	8
2.6 MEASUREMENT INSTRUMENTS LIST	9
3 CONDUCTED EMISSION	10
3.1 TEST LIMIT	10
3.2 TEST SETUP	10
3.3 TEST PROCEDURE	11
3.4 TEST RESULT	11
4 RADIATED EMISSION	14
4.1 TEST LIMIT	14
4.2 TEST SETUP	15
4.3 TEST PROCEDURE	16
4.4 TEST RESULT	16
5 BAND EDGE	23
5.1 TEST LIMIT	23
5.2 TEST PROCEDURE	23
5.3 TEST RESULT	23
6 OCCUPIED BANDWIDTH	26
6.1 TEST SETUP	26
6.2 TEST PROCEDURE	26
6.4 TEST RESULT	26
7 ANTENNA REQUIREMENT	28
8 PHOTO OF TEST	29
8.1 RADIATED EMISSION	29
8.2 CONDUCTED EMISSION	30

TEST SUMMARY**TEST PROCEDURES AND RESULTS**

ITEM	STANDARD	RESULT
CONDUCTED EMISSION	FCC Part 15.207	COMPLIANT
RADIATED EMISSION	FCC Part 15.209/15.249	COMPLIANT
BAND EDGE	FCC Part 15.249/15.205	COMPLIANT
OCCUPIED BANDWIDTH	FCC Part 15.215	COMPLIANT
ANTENNA REQUIREMENT	FCC Part 15.203	COMPLIANT

TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.
Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9kHz ~ 150kHz	2.96	
		150kHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9kHz ~ 30MHz	2.50	
		30MHz ~ 1000MHz	4.80	
		Above 1000MHz	4.13	

GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

Product:	APP vibrator (Tadpole)
Trade Name:	N/A
Main Model:	K-107
Additional Model:	K108, K-109, K-1301
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: K-107.
FCC ID:	2A439CARLOS107
Operation Frequency:	2402MHz~2480MHz
Number of Channels:	40CH
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Battery:	DC 3.7V, 300mAh
Adapter:	N/A
Power Source:	DC 3.7V from Li-battery or DC 5.0V from adapter with AC 120(240)V/60Hz

CARRIER FREQUENCY OF CHANNELS

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

TEST MODE

The EUT was programmed to be in continuously transmitting mode.

Channel List		
Test Channel	EUT Channel	Test Frequency (MHz)
Low	CH00	2402
Middle	CH19	2440
High	CH39	2480

TEST SETUP

Operation of EUT during Conducted and Radiation testing:

Operation of EUT during Above1GHz Radiation testing:

DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	APP vibrator (Tadpole)	N/A	K-107	EUT
E-2	Adapter	XIAOMI	MDY-08-EF	AE

Item	Shielded Type	Ferrite Core	Length	Note

Note:

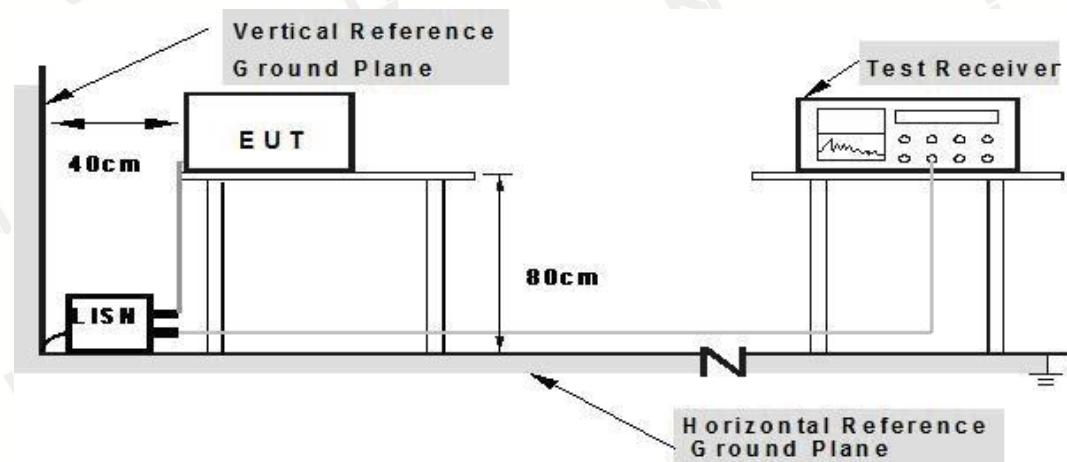
1. The support equipment was authorized by Declaration of Confirmation.
2. For detachable type I/O cable should be specified the length in cm in 『Length』 column.
3. "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
Conduction Emissions Measurement					
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2022.09.22
3	AAN	TESEQ	T8-Cat6	38888	2022.09.22
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2022.05.17
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2022.09.22
Radiated Emissions Measurement					
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2022.09.27
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2024.02.26
4	PREAMP	HP	8449B	3008A00160	2022.09.22
5	PREAMP	HP	8447D	2944A07999	2022.05.17
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2022.09.22
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2022.09.22
8	Signal Generator	Agilent	E4421B	MY4335105	2022.09.22
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2022.09.22
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2022.09.22
11	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2022.05.17
12	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2022.05.17
13	RF power divider	Anritsu	K241B	992289	2022.09.22
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2022.09.22
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2022.07.25
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2022.09.22
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2022.05.23
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2022.09.27
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2022.09.22
20	Signal Generator	Agilent	N5183A	MY47420153	2022.09.22
21	Spectrum Analyzer	Rohde&Schwarz	FSP 40	100501	2022.09.22
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2022.09.22
23	Frequency Meter	VICTOR	VC2000	997406086	2022.09.22
24	DC Power Source	HYELEC	HY5020E	055161818	2022.09.22

CONDUCTED EMISSION

3.1 TEST LIMIT


For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15~0.50	79	66	66~56*	56~46*
0.50~5.00	73	60	56	46
5.00~30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

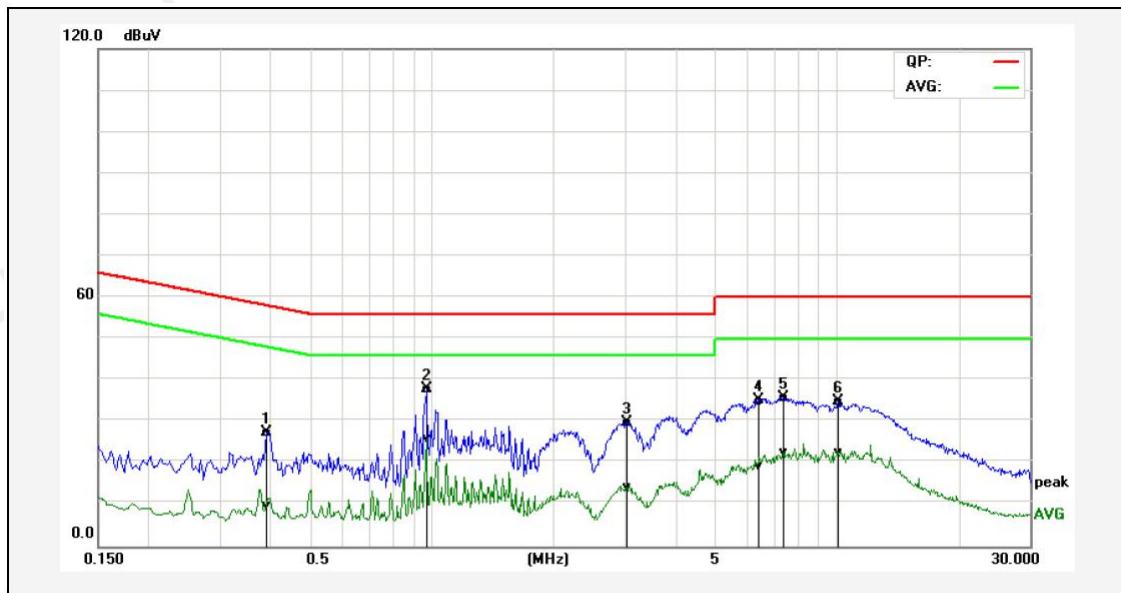
3.2 TEST SETUP

Note:

- 1. Support units were connected to second LISH.
- 2. Both of LISHs (A M N) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.3 TEST PROCEDURE

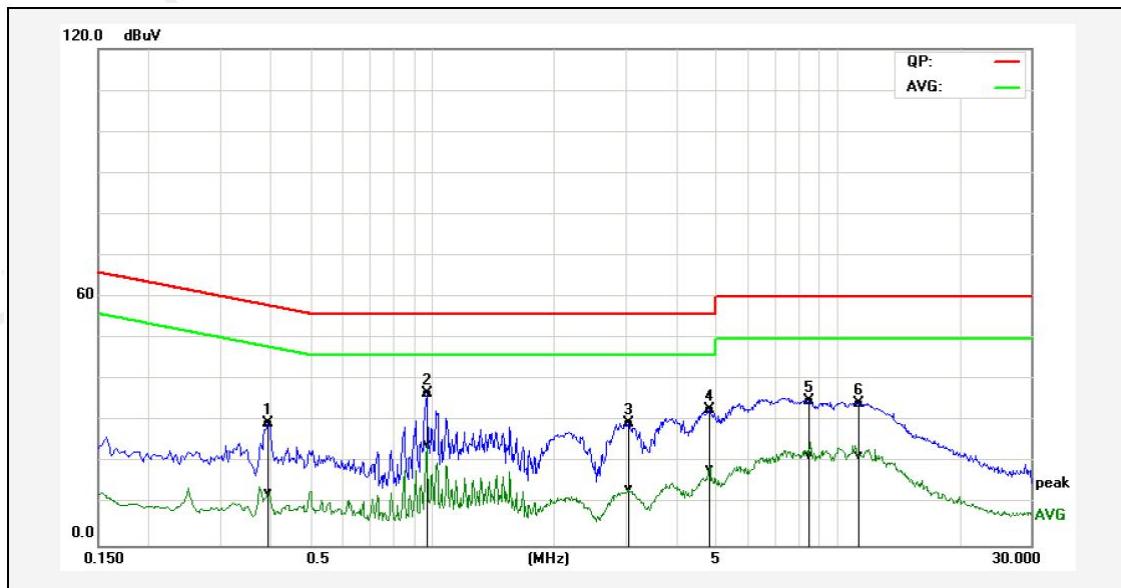
1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
2. Support equipment, if needed, was placed as per ANSI C63.10.
3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5. All support equipments received AC power from a second LISN, if any.
6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.


3.4 TEST RESULT

PASS

Remark:

1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
2. All modes were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported.


Temperature:	24°C	Relative Humidity:	48%
Test Date:	Mar. 01, 2022	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Line
Test Mode:	Transmitting mode of GFSK 2402MHz		

No.	Frequency (MHz)	QuasiPeak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	QuasiPeak result (dBuV)	Average result (dBuV)	QuasiPeak limit (dBuV)	Average limit (dBuV)	QuasiPeak margin (dB)	Average margin (dB)	Remark
1P	0.3900	17.40	-0.42	10.11	27.51	9.69	58.06	48.06	-30.55	-38.37	Pass
2*	0.9700	27.71	15.81	10.12	37.83	25.93	56.00	46.00	-18.17	-20.07	Pass
3P	3.0340	19.82	4.11	10.17	29.99	14.28	56.00	46.00	-26.01	-31.72	Pass
4P	6.2980	24.65	9.28	10.18	34.83	19.46	60.00	50.00	-25.17	-30.54	Pass
5P	7.3700	25.67	12.59	10.18	35.85	22.77	60.00	50.00	-24.15	-27.23	Pass
6P	10.0980	24.66	12.42	10.15	34.81	22.57	60.00	50.00	-25.19	-27.43	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Mar. 01, 2022	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral
Test Mode:	Transmitting mode of GFSK 2402MHz		

No.	Frequency (MHz)	QuasiPeak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	QuasiPeak result (dBuV)	Average result (dBuV)	QuasiPeak limit (dBuV)	Average limit (dBuV)	QuasiPeak margin (dB)	Average margin (dB)	Remark
1P	0.3940	19.50	2.53	10.11	29.61	12.64	57.98	47.98	-28.37	-35.34	Pass
2*	0.9700	26.51	14.32	10.12	36.63	24.44	56.00	46.00	-19.37	-21.56	Pass
3P	3.0420	19.36	3.44	10.18	29.54	13.62	56.00	46.00	-26.46	-32.38	Pass
4P	4.8460	22.56	8.24	10.21	32.77	18.45	56.00	46.00	-23.23	-27.55	Pass
5P	8.5420	24.69	11.53	10.16	34.85	21.69	60.00	50.00	-25.15	-28.31	Pass
6P	11.2660	24.15	11.64	10.17	34.32	21.81	60.00	50.00	-25.68	-28.19	Pass

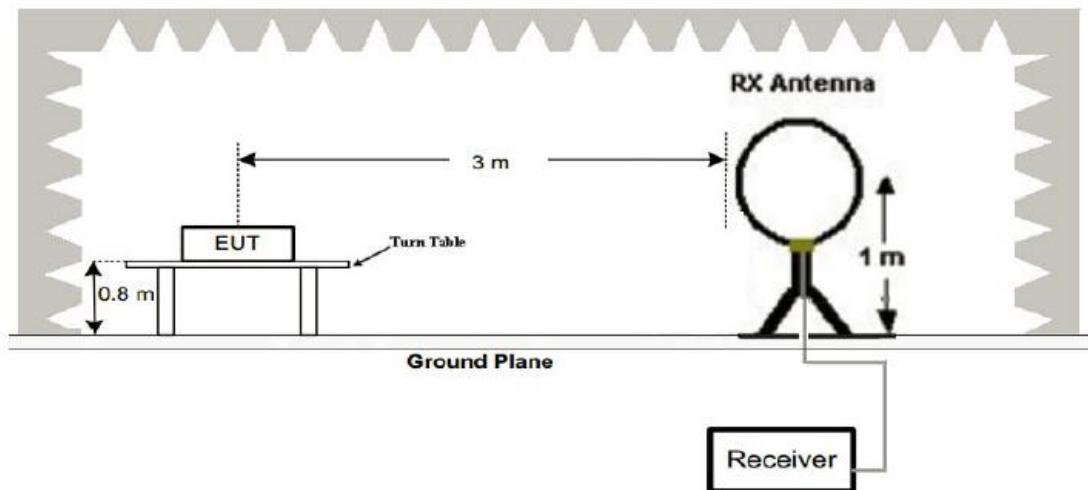
Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

4 RADIATED EMISSION

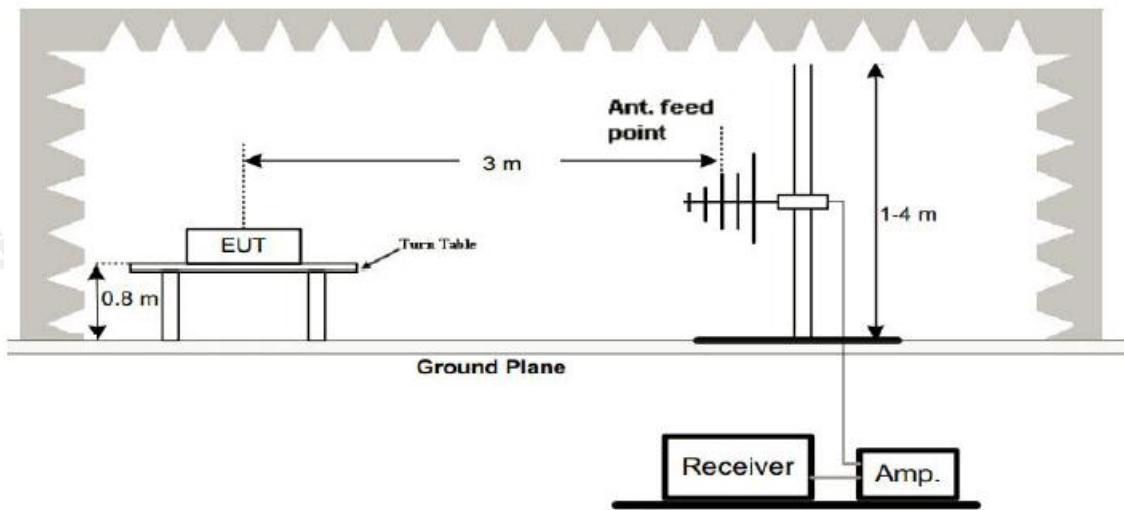
4.1 TEST LIMIT

For unintentional device, according to § 15.209(a), except for Class B digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

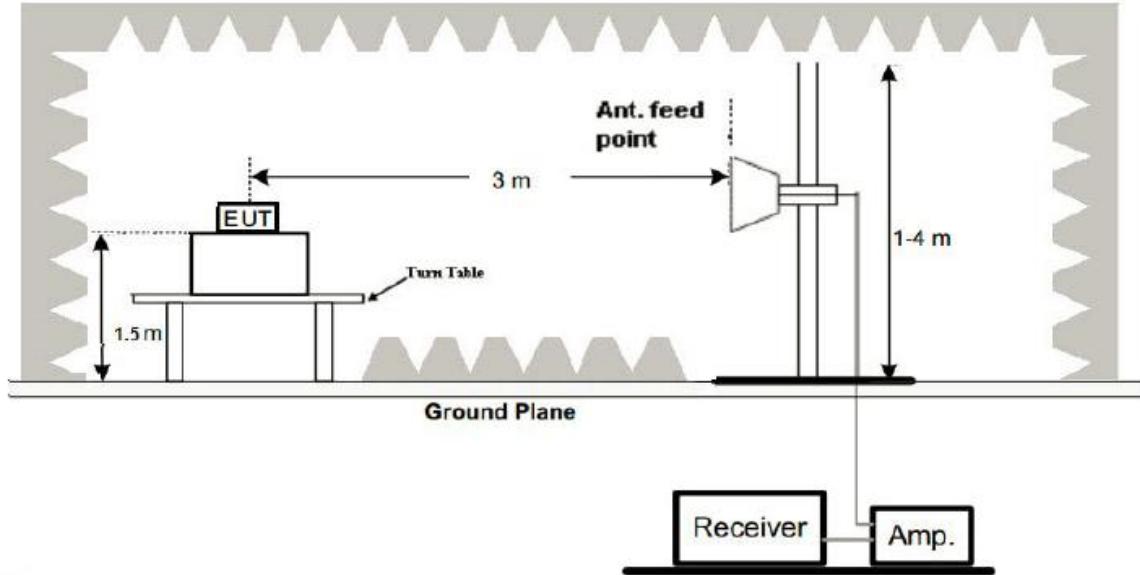
Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	-	Quasi-peak	300
0.490MHz-1.705MHz	24000/F (kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3
		74.0	Peak	3


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

Limit: (Field strength of the fundamental signal)


Frequency	Limit (dBuV/m @3m)	Remark
2400MHz-2483.5MHz	94.0	Average Value
	114.0	Peak Value

4.2 TEST SETUP


1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

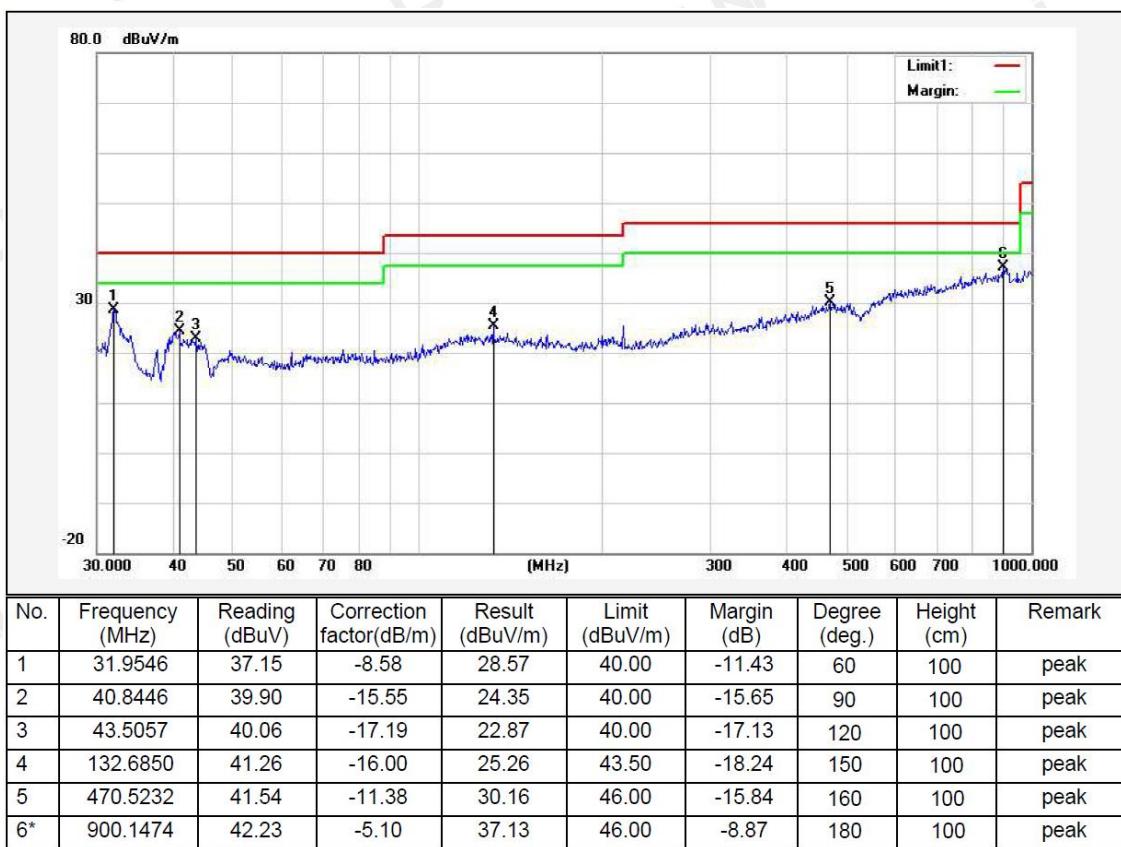
4.3 TEST PROCEDURE

1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

Note:

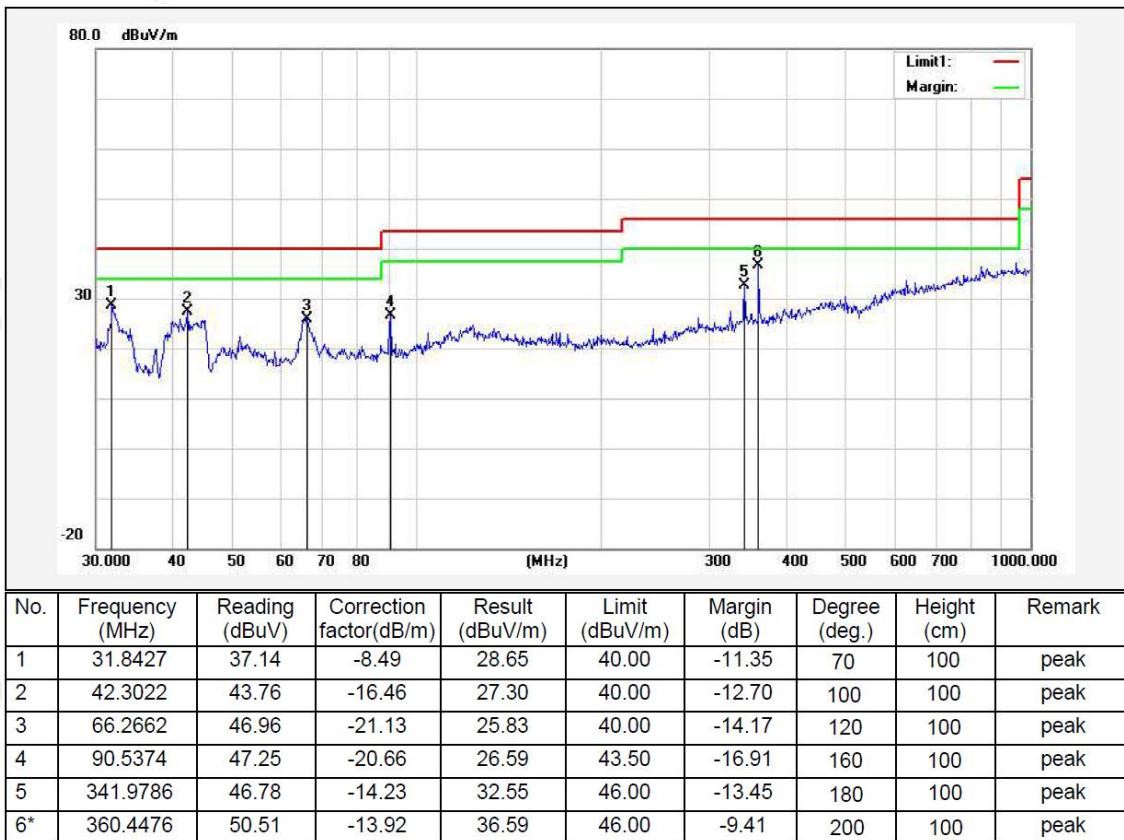
For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 TEST RESULT


PASS

Remark:

1. All modes were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported for below 1GHz test.
2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.
3. Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.


Below 1GHz Test Results:

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Mar. 01, 2022	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Horizontal
Test Mode:	Transmitting mode of GFSK 2402MHz		

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit
 Factor = Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Mar. 01, 2022	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Vertical
Test Mode:	Transmitting mode of GFSK 2402MHz		

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit
 Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

1. Measuring frequencies from 9 kHz to the 1 GHz, Radiated emission test from 9kHz to 30MHz was verified, and no any emission was found except system noise floor.
2. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
3. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz.

**Above 1 GHz Test Results:
CH00 (2402MHz)****Horizontal:**

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2402	112.69	-5.84	106.85	114	-7.15	PK
2402	82.77	-5.84	76.93	94	-17.07	AV
4804	60.05	-3.64	56.41	74	-17.59	PK
4804	50.23	-3.64	46.59	54	-7.41	AV
7206	56.90	-0.95	55.95	74	-18.05	PK
7206	47.21	-0.95	46.26	54	-7.74	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2402	112.57	-5.84	106.73	114	-7.27	PK
2402	82.46	-5.84	76.62	94	-17.38	AV
4804	60.22	-3.64	56.58	74	-17.42	PK
4804	50.34	-3.64	46.70	54	-7.30	AV
7206	56.92	-0.95	55.97	74	-18.03	PK
7206	47.23	-0.95	46.28	54	-7.72	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH19 (2440MHz)

Horizontal:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2440	112.24	-5.71	106.53	114	-7.47	PK
2440	82.36	-5.71	76.65	94	-17.35	AV
4880	59.75	-3.51	56.24	74	-17.76	PK
4880	50.06	-3.51	46.55	54	-7.45	AV
7320	56.71	-0.82	55.89	74	-18.11	PK
7320	46.72	-0.82	45.90	54	-8.10	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2440	112.33	-5.71	106.62	114	-7.38	PK
2440	82.36	-5.71	76.65	94	-17.35	AV
4880	59.66	-3.51	56.15	74	-17.85	PK
4880	50.10	-3.51	46.59	54	-7.41	AV
7320	56.63	-0.82	55.81	74	-18.19	PK
7320	46.75	-0.82	45.93	54	-8.07	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH39 (2480MHz)

Horizontal:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2480	112.10	-5.65	106.45	114	-7.55	PK
2480	82.03	-5.65	76.38	94	-17.62	AV
4960	59.41	-3.43	55.98	74	-18.02	PK
4960	49.75	-3.43	46.32	54	-7.68	AV
7440	56.37	-0.75	55.62	74	-18.38	PK
7440	46.53	-0.75	45.78	54	-8.22	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2480	112.07	-5.65	106.42	114	-7.58	PK
2480	81.96	-5.65	76.31	94	-17.69	AV
4960	59.43	-3.43	56.00	74	-18.00	PK
4960	49.77	-3.43	46.34	54	-7.66	AV
7440	56.45	-0.75	55.70	74	-18.30	PK
7440	46.47	-0.75	45.72	54	-8.28	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark:

1. Measuring frequencies from 1 GHz to the 25 GHz.
2. "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
3. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
6. When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dB_{AV}/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dB_{AV}/m(PK Value) <54 dB_{AV}/m(AV Limit), the Average Detected not need to completed.
7. All modes of operation were investigated and the worst-case emissions of π/4 DQPSK are reported.
8. For fundamental frequency, RBW >20dB BW, VBW>=3XRBW, PK detector for PK value, AV detector for AV value.

5 BAND EDGE

5.1 TEST LIMIT

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 TEST PROCEDURE

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. Peak detector is for both.

5.3 TEST RESULT

PASS

Operation Mode: TX CH00 (2402MHz)

Horizontal:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2310	57.05	-5.81	51.24	74	-22.76	PK
2310	/	-5.81	/	54	/	AV
2390	57.12	-5.84	51.28	74	-22.72	PK
2390	/	-5.84	/	54	/	AV
2400	57.44	-5.84	51.60	74	-22.40	PK
2400	/	-5.84	/	54	/	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2310	57.42	-5.81	51.61	74	-22.39	PK
2310	/	-5.81	/	54	/	AV
2390	57.24	-5.84	51.40	74	-22.60	PK
2390	/	-5.84	/	54	/	AV
2400	57.42	-5.84	51.58	74	-22.42	PK
2400	/	-5.84	/	54	/	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH39 (2480MHz)

Horizontal:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2483.5	57.03	-5.65	51.38	74	-22.62	PK
2483.5	/	-5.65	/	54	/	AV
2500	57.15	-5.72	51.43	74	-22.57	PK
2500	/	-5.72	/	54	/	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2483.5	57.39	-5.65	51.74	74	-22.26	PK
2483.5	/	-5.65	/	54	/	AV
2500	57.26	-5.72	51.54	74	-22.46	PK
2500	/	-5.72	/	54	/	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

6 OCCUPIED BANDWIDTH

6.1 TEST SETUP

Same as Radiated Emission Measurement.

6.2 TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane.
2. Set EUT as normal operation.
3. Based on ANSI C63.10 section 6.9.2: RBW=30kHz, VBW=100kHz, Span=3MHz.
4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.4 TEST RESULT

PASS

GFSK Modulation:

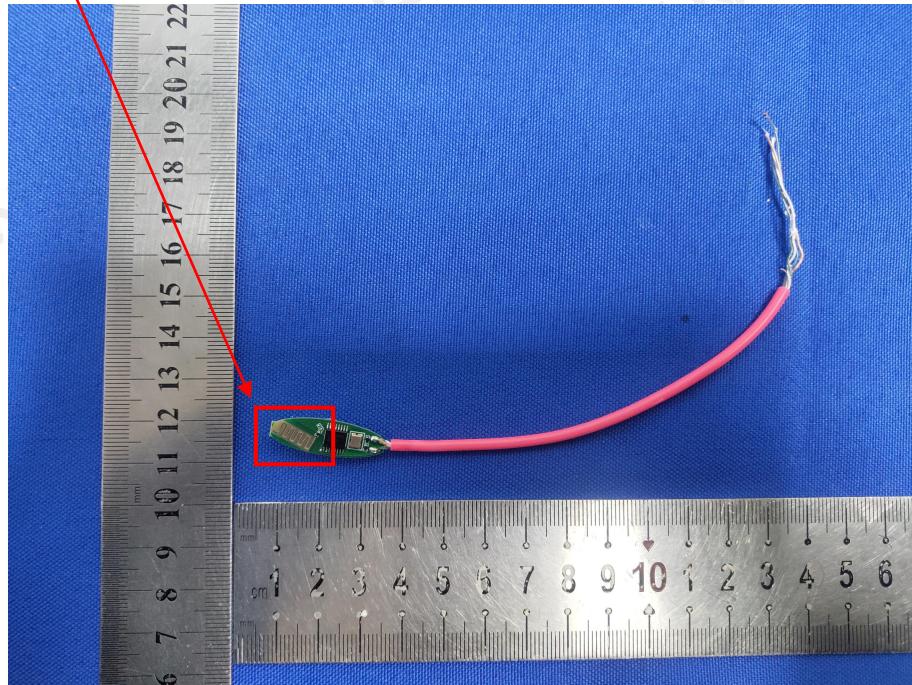
Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
CH00	2402	1.190	PASS
CH19	2440	1.202	PASS
CH39	2480	1.204	PASS


CH00: 2402MHz

CH19: 2440MHz

CH39: 2480MHz

7 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA:

8 PHOTO OF TEST**8.1 RADIATED EMISSION**

8.2 CONDUCTED EMISSION

End of Report