

TEST REPORT

Product Name: TPSensor Programmer
FCC ID: 2A3UN-XTP-SP800
Trademark:

Model Number: XTP-SP800
Prepared For: Guangzhou Xiangxing Electronic Technology Co., Ltd.
Address: Room A201, 2nd Floor, Building A, Zhongxin Creative Industry Park, Panyu District, Guangzhou, Guangdong, China
Manufacturer: Guangzhou Xiangxing Electronic Technology Co., Ltd.
Address: Room A201, 2nd Floor, Building A, Zhongxin Creative Industry Park, Panyu District, Guangzhou, Guangdong, China
Prepared By: Shenzhen CTB Testing Technology Co., Ltd.
Address: Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong China
Sample Received Date: Nov. 05, 2021
Sample tested Date: Nov. 05, 2021 – Nov. 12, 2021
Issue Date: Nov. 23, 2021
Report No.: CTB211112010RF
Test Standards FCC Part15.209
ANSI C63.10:2013
Test Results PASS
Remark: This is 125KHz radio test report.

Compiled by:

He Xiaona

Reviewed by:

Arron Liu

Approved by:

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

Test Report Declaration	Page
1. VERSION	4
2. TEST SUMMARY	5
3. MEASUREMENT UNCERTAINTY	6
4. PRODUCT INFORMATION AND TEST SETUP.....	7
4.1 Product Information.....	7
4.2 Test Setup Configuration	7
4.3 Support Equipment	7
4.4 Test Mode.....	8
4.5 Test Environment.....	8
5. TEST FACILITY AND TEST INSTRUMENT USED	9
5.1 Test Facility.....	9
5.2 Test Instrument Used.....	9
6. AC POWER LINE CONDUCTED EMISSION	12
6.1 Block Diagram Of Test Setup.....	12
6.2 Limit.....	12
6.3 Test procedure.....	12
6.4 Test Result.....	14
7. RADIATED EMISSION.....	16
7.1 Block Diagram Of Test Setup.....	16
7.2 Limit.....	16
7.3 Test procedure.....	17
7.4 Test Result.....	18
8. OCCUPIED BANDWIDTH	21
8.1 Block Diagram Of Test Setup.....	21
8.2 Limit.....	21
8.3 Test procedure.....	21
8.4 Test Result.....	22
9. ANTENNA REQUIREMENT	23

10. EUT PHOTOGRAPHS..... 24

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB211112010RF	Nov. 23, 2021	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Radiated Emission	47 CFR Part 15 Subpart C Section 15.209	ANSI C63.10-2013	PASS
Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.215	ANSI C63.10-2013	PASS
Antenna requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

Item	Uncertainty
Occupancy bandwidth	$U=\pm 54.3\text{Hz}$
Conducted output power Above 1G	$U=\pm 1.0\text{dB}$
Conducted output power below 1G	$U=\pm 0.9\text{dB}$
Power Spectral Density , Conduction	$U=\pm 1.0\text{dB}$
Conduction spurious emissions	$U=\pm 2.8\text{dB}$
Out of band emission	$U=\pm 54\text{Hz}$
3m chamber Radiated spurious emission(9KHz-30MHz)	$U=\pm 4.8\text{dB}$
3m chamber Radiated spurious emission(30MHz-1GHz)	$U=\pm 4.3\text{dB}$
3m chamber Radiated spurious emission(1GHz-18GHz)	$U=\pm 4.5\text{dB}$
humidity uncertainty	$U=\pm 5.3\%$
Temperature uncertainty	$U=\pm 0.59^\circ\text{C}$
Supply voltages	$U=\pm 3\%$
Time	$U=\pm 5\%$

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): XTP-SP800
Model Description: N/A
Hardware Version: V1.0
Software Version: V1.0
Operation Frequency: 125KHz
Type of Modulation: ASK
Antenna installation: Internal antenna
Antenna Gain: 1dBi
Ratings: DC 5V charging from adapter
DC 3.7V from battery

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.	---	---	---	---	---	--

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode
Keep the EUT in transmitting mode (RFID 125KHz mode) with modulation.
The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.5 Test Environment

Humidity(%):	55
Atmospheric Pressure(kPa):	101.1
Normal Voltage(DC):	3.7
Normal Temperature(°C)	25

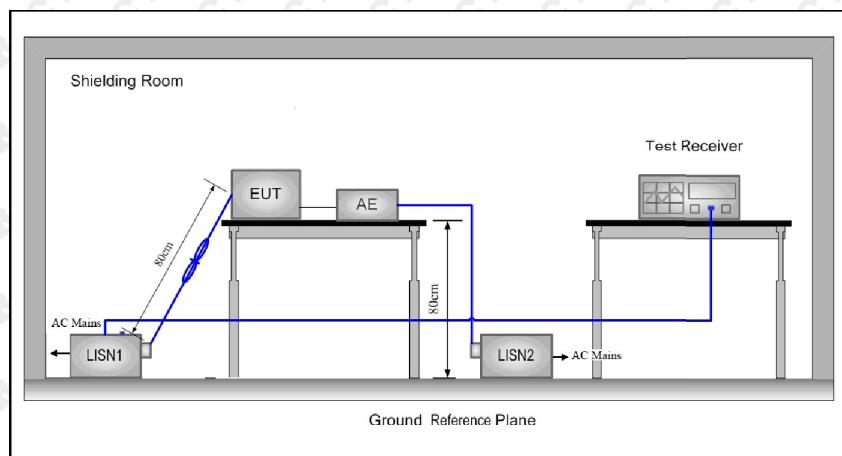
5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated date	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	2021.09.27	2022.08.05
2	Power Sensor	Agilent	U2021XA	MY56120032	2021.09.27	2022.08.05
3	Power Sensor	Agilent	U2021XA	MY56120034	2021.09.27	2022.08.05
4	Communication test set	R&S	CMW500	108058	2021.09.27	2022.08.05
5	Spectrum Analyzer	R&S	FSP40	100550	2021.09.27	2022.08.05
6	Signal Generator	Agilent	N5181A	MY49060920	2021.09.27	2022.08.16
7	Signal Generator	Agilent	N5182A	MY47420195	2021.09.27	2022.08.05
8	Communication test set	Agilent	E5515C	MY50102567	2021.09.27	2022.08.16
9	band rejection filter	Shenxiang	MSF2400-2483.5MS-1154	20181015001	2021.09.27	2022.08.05
10	band rejection filter	Shenxiang	MSF5150-5850MS-1155	20181015001	2021.09.27	2022.08.05
11	band rejection filter	Xingbo	XBLBQ-DZA120	190821-1-1	2021.09.27	2022.08.05
12	BT&WI-FI Automatic test software	Microwave	MTS8310	Ver. 2.0.0.0	2021.09.27	2022.08.05
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	2021.09.27	2022.08.05
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	2021.09.27	2022.08.05
15	234G Automatic test software	Microwave	MTS8200	Ver. 2.0.0.0	2021.09.27	2022.08.05
16	966 chamber	C.R.T.	966 Room	966	2021.09.27	2024.08.11
17	Receiver	R&S	ESPI	100362	2021.09.27	2022.08.05
18	Amplifier	HP	8447E	2945A02747	2021.09.27	2022.08.05
19	Amplifier	Agilent	8449B	3008A01838	2021.09.27	2022.08.05


20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	869	2021.09.27	2022.08.07
21	Horn Antenna	Schwarzbeck	BBHA9120D	1911	2021.09.27	2022.08.08
22	Software	Fala	EZ-EMC	FA-03A2 RE	2021.09.27	2022.08.05
23	3-Loop Antenna	Daze	ZN30401	17014	2021.09.27	2022.08.05
24	loop antenna	ZHINAN	ZN30900A	/	2021.09.27	2022.08.05
25	Horn antenna	A/H/System	SAS-574	588	2021.09.27	2022.08.05
26	Amplifier	AEROFLEX	/	S/N/ 097	2021.09.27	2022.08.05

Continuous disturbance						
No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated date	Calibrated until
1	AMN	ROHDE&SCHWARZ	ESH3-Z5	831551852	2021.09.27	2022.08.05
2	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	2021.09.27	2022.08.05
3	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCS30	834115/006	2021.09.27	2022.08.05
4	Coaxial cable	ZDECL	Z302S	18091904	2021.09.27	2022.08.05
5	AAN	Schwarzbeck	NTFM8158	183	2021.09.27	2022.08.05
6	Communication test set	Agilent	E5515C	MY50102567	2021.09.27	2022.08.05
7	Communication test set	R&S	CMW500	108058	2021.09.27	2022.08.05
8	EZ-EMC	Frad	EMC-con3A1.1	/	/	/

Radiated emission						
No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated date	Calibrated until
1	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120D	1911	2021.11.01	2022.08.05
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	869	2021.11.01	2022.08.05
3	Amplifier	Agilent	8449B	3008A01838	2021.09.27	2022.08.05
4	Amplifier	HP	8447E	2945A02747	2021.09.27	2022.08.05
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESPI7	100362	2021.09.27	2022.08.05
6	Coaxial cable	ETS	RFC-SNS-100-NMS-80 NI	/	2021.09.27	2022.08.05
7	Coaxial cable	ETS	RFC-SNS-100-NMS-20 NI	/	2021.09.27	2022.08.05
8	Coaxial cable	ETS	RFC-SNS-100-SMS-20 NI	/	2021.09.27	2022.08.05
9	Coaxial cable	ETS	RFC-NNS-100-NMS-300 NI	/	2021.09.27	2022.08.05
10	Communication test set	Agilent	E5515C	MY50102567	2021.09.27	2022.08.05
11	Communication test set	R&S	CMW500	108058	2021.09.27	2022.08.05
12	EZ-EMC	Frad	EMC-con3A1.1	/	/	/

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

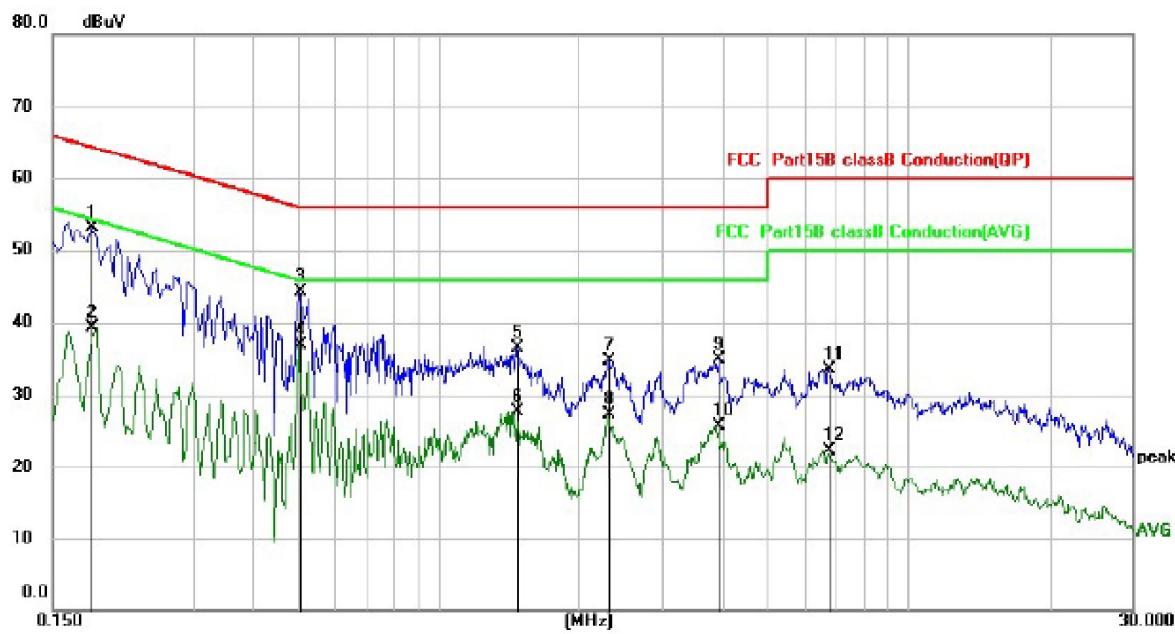
6.2 Limit

Table 4 – AC power-line conducted emissions limits

Frequency (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}
0.5 - 5	56	46
5 - 30	60	50

Note 1: The level decreases linearly with the logarithm of the frequency.

* Decreasing linearly with the logarithm of the frequency

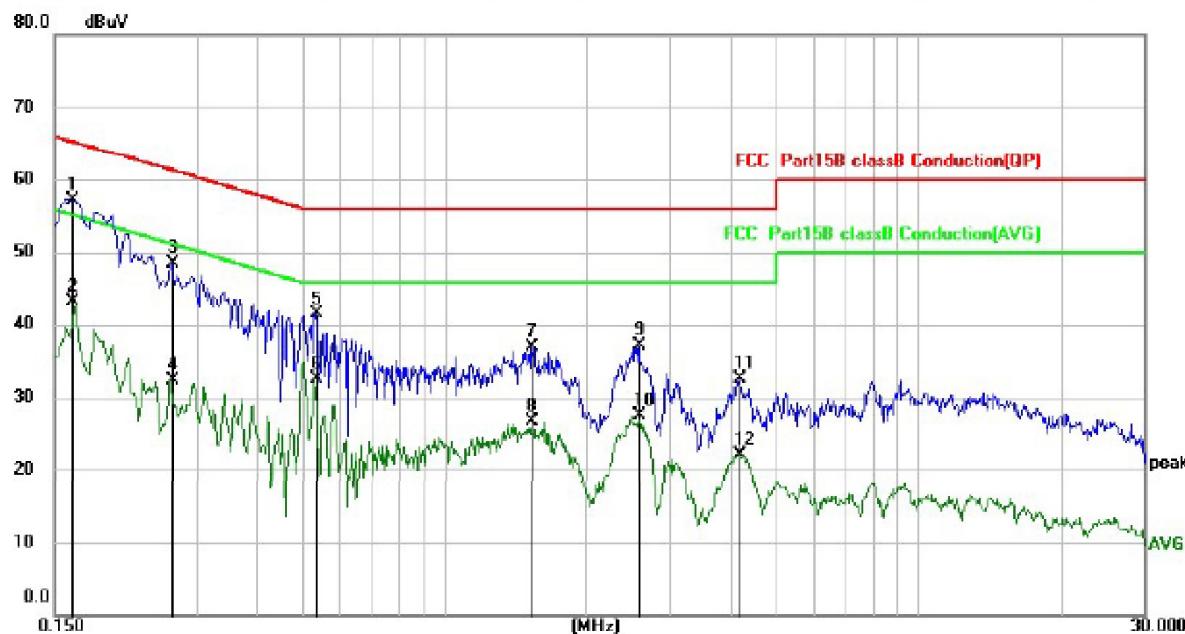

6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 6) All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 7) If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

6.4 Test Result

Test Specification: Neutral



No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	
			Level			dBuV	dB	Detector
1		0.1819	43.21	9.96	53.17	64.40	-11.23	QP
2		0.1819	29.34	9.96	39.30	54.40	-15.10	AVG
3		0.5060	34.36	9.96	44.32	56.00	-11.68	QP
4 *		0.5060	26.90	9.96	36.86	46.00	-9.14	AVG
5		1.4659	26.47	9.98	36.45	56.00	-19.55	QP
6		1.4659	17.81	9.98	27.79	46.00	-18.21	AVG
7		2.3179	24.76	10.03	34.79	56.00	-21.21	QP
8		2.3179	17.21	10.03	27.24	46.00	-18.76	AVG
9		3.9380	24.72	10.11	34.83	56.00	-21.17	QP
10		3.9380	15.68	10.11	25.79	46.00	-20.21	AVG
11		6.7419	23.04	10.39	33.43	60.00	-26.57	QP
12		6.7419	11.95	10.39	22.34	50.00	-27.66	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement – Limit

Test Specification: Line

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV	dB	Detector	
1	*	0.1640	47.20	9.96	57.16	65.26	-8.10	QP
2		0.1640	33.26	9.96	43.22	55.26	-12.04	AVG
3		0.2660	38.60	9.96	48.56	61.24	-12.68	QP
4		0.2660	22.40	9.96	32.36	51.24	-18.88	AVG
5		0.5340	31.62	9.96	41.58	56.00	-14.42	QP
6		0.5340	22.48	9.96	32.44	46.00	-13.56	AVG
7		1.5260	26.82	9.99	36.81	56.00	-19.19	QP
8		1.5260	16.64	9.99	26.63	46.00	-19.37	AVG
9		2.5939	26.98	10.04	37.02	56.00	-18.98	QP
10		2.5939	17.37	10.04	27.41	46.00	-18.59	AVG
11		4.1817	22.41	10.13	32.54	56.00	-23.46	QP
12		4.1817	11.98	10.13	22.11	46.00	-23.89	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement – Limit

7. RADIATED EMISSION

7.1 Block Diagram Of Test Setup

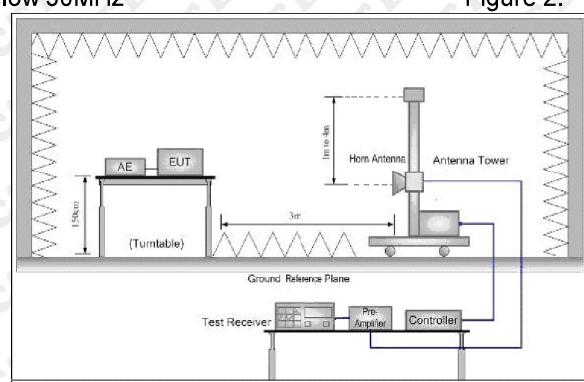
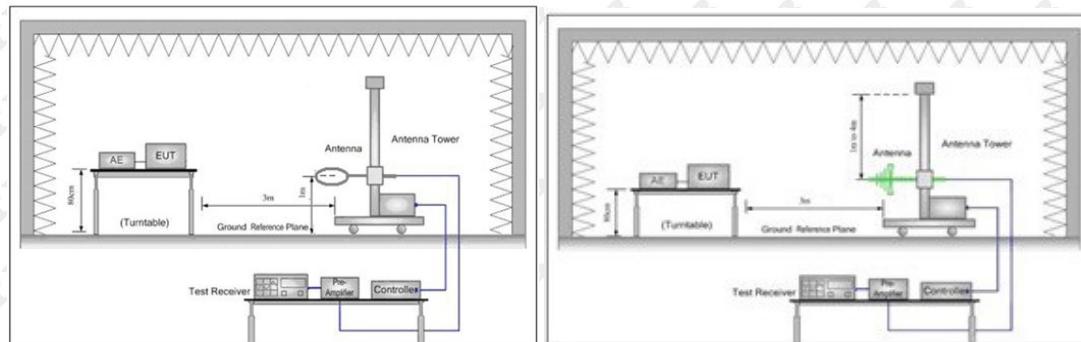



Figure 3. Above 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (dB μ V/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	$20\log 2400/F$ (kHz) + 80	Quasi-peak	3
0.490MHz-1.705MHz	$20\log 24000/F$ (kHz) + 40	Quasi-peak	3
1.705MHz-30MHz	$20\log 30 + 40$	Quasi-peak	3
30MHz-88MHz	40.0	Quasi-peak	3
88MHz-216MHz	43.5	Quasi-peak	3
216MHz-960MHz	46.0	Quasi-peak	3
960MHz-1GHz	54.0	Quasi-peak	3
Above 1GHz	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Field Strength of Fundamental Limit:

- The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters. 15,848 microvolts/meter at 3 meters=124 dB μ V/m.
- Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters. 334 microvolts/meter at 3 meters=94.47 dB μ V/m.
- Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not

exceed 334 microvolts/meter at 30 meters.

7.3 Test procedure

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- j. Repeat above procedures until all frequencies measured was complete.

Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

7.4 Test Result

9kHz-30MHz

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Horizontal
<u>Test Voltage</u> :	DC3.7V	Test Mode :	RFID 125KHz

Freq. (KHz)	Detector Mode (PK/QP/AV)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
25.9500	PEAK	36.47	20.18	56.65	139.32	-82.67
25.9500	AV	36.37	20.15	56.52	119.32	-62.8
58.3500	PEAK	50.13	20.13	70.26	132.28	-62.02
58.3500	AV	46.25	20.32	66.57	112.28	-45.71
125.6500	PEAK	68.14	20.19	88.33	125.62	-37.29
125.6500	AV	63.38	20.25	83.63	105.62	-21.99
688.7500	QP	31.03	20.44	51.47	70.84	-19.37
968.6700	QP	35.50	20.26	55.76	67.88	-12.12

Note:

Pre-scan in the all of mode, the worst case in of was recorded.

Factor = antenna factor + cable loss – pre-amplifier.

Margin = Limit - Emission Level.

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement