

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

SZSAR-TRF-01-A03 Rev. A/0 Aug 16,2024

Report No.: SZCR250600239908

Page: 1 of 11

Appendix A

Detailed System Check Results

1. System Performance Check
System Performance Check 750 MHz Head
System Performance Check 835 MHz Head
System Performance Check 1750 MHz Head
System Performance Check 1950 MHz Head
System Performance Check 2450 MHz Head
System Performance Check 2600 MHz Head

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate perfects to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, foregry or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Sednor, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

Test Laboratory: SGS-SAR Lab

System Performance Check 750MHz Head

DUT: D750V3; Type: Dipole; Serial: 1132

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL750; Medium parameters used: f = 750 MHz; $\sigma = 0.905 \text{ S/m}$; $\varepsilon_r = 40.509$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

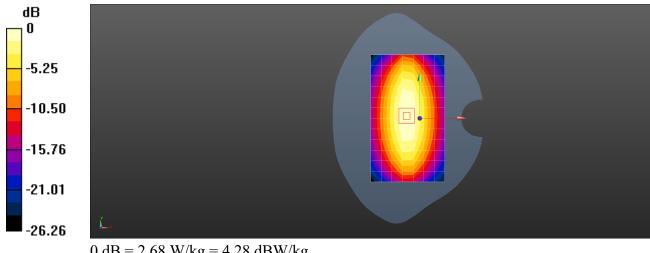
• Probe: EX3DV4 - SN3836; ConvF(9.43, 9.43, 9.43); Calibrated: 2024/9/19

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 2024/8/15
- Phantom: SAM5; Type: SAM Twin; Serial: 1673
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/d=15mm, Pin=250mW/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.68 W/kg

Configuration/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.44 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.4 W/kg

Smallest distance from peaks to all points 3 dB below = 16.1 mm

Ratio of SAR at M2 to SAR at M1 = 63.3%

Maximum value of SAR (measured) = 3.08 W/kg

0 dB = 2.68 W/kg = 4.28 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 750 MHz Head

DUT: D750V3; Type: D750V3; Serial: 1132

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL750; Medium parameters used: f = 750 MHz; $\sigma = 0.896 \text{ S/m}$; $\varepsilon_r = 40.309$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

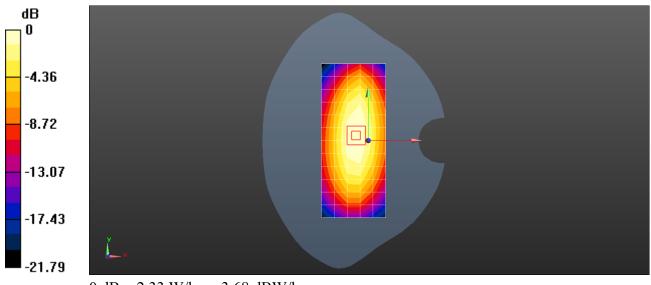
• Probe: EX3DV4 - SN7620; ConvF(10.1, 10.82, 10.65); Calibrated: 2024/7/29

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1267; Calibrated: 2025/1/20
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Body/d=15mm, Pin=250mW/Area Scan (6x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.33 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.03 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 2.73 W/kg

SAR(1 g) = 1.97 W/kg; SAR(10 g) = 1.36 W/kg

Smallest distance from peaks to all points 3 dB below = 22.6 mm

Ratio of SAR at M2 to SAR at M1 = 71.8%

Maximum value of SAR (measured) = 2.50 W/kg

0 dB = 2.33 W/kg = 3.68 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835MHz Head

DUT: D835V2; Type: Dipole; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.931$ S/m; $\varepsilon_r = 40.212$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

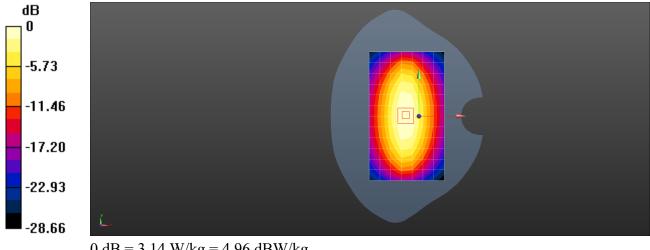
• Probe: EX3DV4 - SN3836; ConvF(9.03, 9.03, 9.03); Calibrated: 2024/9/19

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 2024/8/15
- Phantom: SAM5; Type: SAM Twin; Serial: 1673
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/d=15mm, Pin=250mW/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.14 W/kg

Configuration/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.36 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 4.06 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.65 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 62.8%

Maximum value of SAR (measured) = 3.49 W/kg

0 dB = 3.14 W/kg = 4.96 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Head

DUT: D835V2; Type: Dipole; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.925$ S/m; $\varepsilon_r = 40.082$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN7620; ConvF(9.87, 10.58, 10.42); Calibrated: 2024/7/29

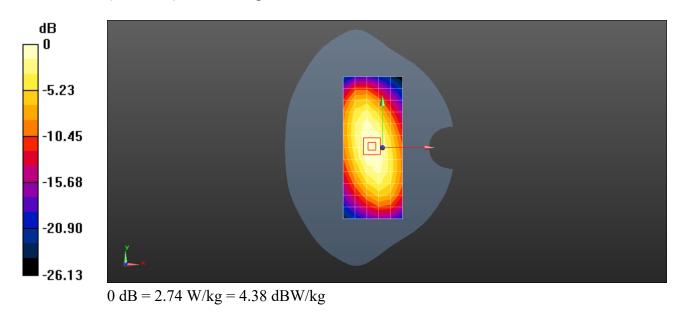
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1267; Calibrated: 2025/1/20
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Body/d=15mm, Pin=250mW/Area Scan (6x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.74 W/kg

Waxiinuiii value of SAR (illeasured) – 2.74 W/Kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.82 V/m; Power Drift = -0.14 dB


Peak SAR (extrapolated) = 3.41 W/kg

SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.61 W/kg

Smallest distance from peaks to all points 3 dB below = 16.7 mm

Ratio of SAR at M2 to SAR at M1 = 69.5%

Maximum value of SAR (measured) = 3.09 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1750MHz Head

DUT: D1750V2; Type: Dipole; Serial: 1111

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.358 \text{ S/m}$; $\varepsilon_r = 40.909$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

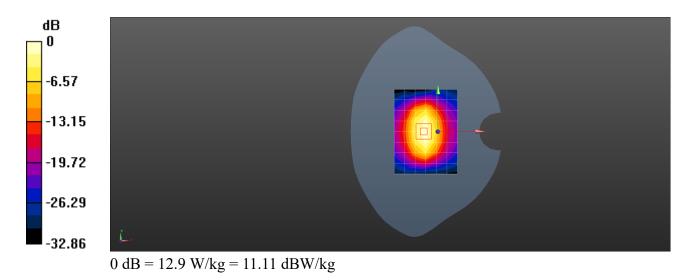
• Probe: EX3DV4 - SN3836; ConvF(8.02, 8.02, 8.02); Calibrated: 2024/9/19

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 2024/8/15
- Phantom: SAM5; Type: SAM Twin; Serial: 1673
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/d=10mm, Pin=250mW/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 12.9 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.43 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 9.11 W/kg; SAR(10 g) = 5.05 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 57.1%

Maximum value of SAR (measured) = 13.6 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1950MHz Head

DUT: D1950V3; Type: Dipole; Serial: 1138

Communication System: UID 0, CW (0); Frequency: 1950 MHz; Duty Cycle: 1:1

Medium: HSL1950; Medium parameters used: f = 1950 MHz; $\sigma = 1.438$ S/m; $\varepsilon_r = 40.256$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

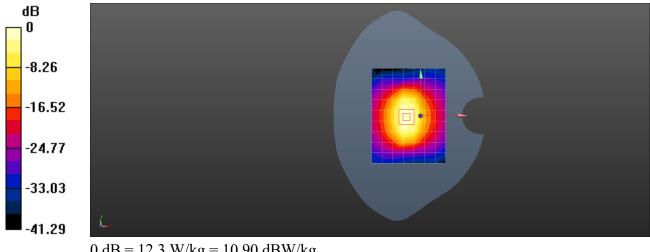
• Probe: EX3DV4 - SN3836; ConvF(7.69, 7.69, 7.69); Calibrated: 2024/9/19

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 2024/8/15
- Phantom: SAM5; Type: SAM Twin; Serial: 1673
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/d=10mm, Pin=250mW/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 12.3 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 86.86 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.52 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 54.8%

Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 12.3 W/kg = 10.90 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: Dipole; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.787 \text{ S/m}$; $\varepsilon_r = 38.417$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

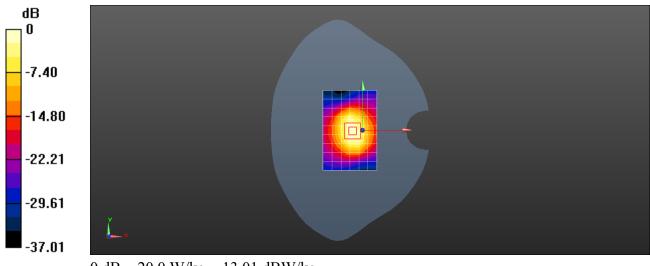
• Probe: EX3DV4 - SN7620; ConvF(7.32, 7.85, 7.73); Calibrated: 2024/7/29

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1267; Calibrated: 2025/1/20
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Body/d=10mm, Pin=250mW/Area Scan (7x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 20.0 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.16 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 22.3 W/kg

SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.86 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 54.8%

Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 20.0 W/kg = 13.01 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: Dipole; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.806 \text{ S/m}$; $\varepsilon_r = 38.557$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

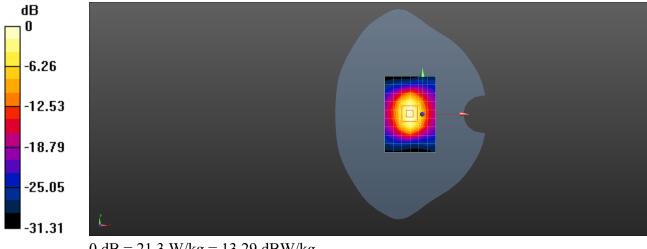
• Probe: EX3DV4 - SN3836; ConvF(7.35, 7.35, 7.35); Calibrated: 2024/9/19

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 2024/8/15
- Phantom: SAM5; Type: SAM Twin; Serial: 1673
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/d=10mm, Pin=250mW/Area Scan (7x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 21.3 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.20 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 48%

Maximum value of SAR (measured) = 22.7 W/kg

0 dB = 21.3 W/kg = 13.29 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Head

DUT: D2600V2; Type: Dipole; Serial: 1058

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 1.879 \text{ S/m}$; $\varepsilon_r = 38.238$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

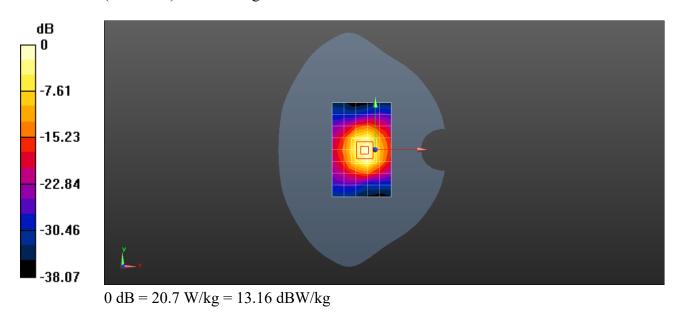
• Probe: EX3DV4 - SN7620; ConvF(7.26, 7.78, 7.66); Calibrated: 2024/7/29

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1267; Calibrated: 2025/1/20
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Body/d=10mm, Pin=250mW/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 20.7 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.04 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 28.7 W/kg

SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.71 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 50.6%

Maximum value of SAR (measured) = 23.8 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Head

DUT: D2600V2; Type: Dipole; Serial: 1058

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 1.905 \text{ S/m}$; $\varepsilon_r = 38.418$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

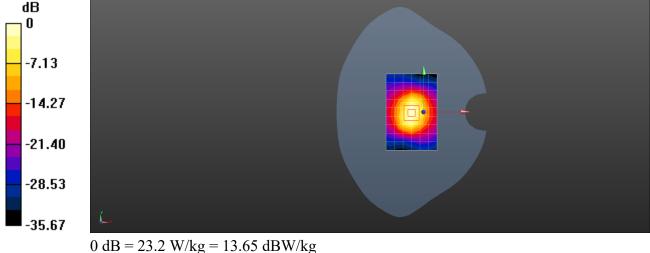
• Probe: EX3DV4 - SN3836; ConvF(7.18, 7.18, 7.18); Calibrated: 2024/9/19

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 2024/8/15
- Phantom: SAM5; Type: SAM Twin; Serial: 1673
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/d=10mm, Pin=250mW/Area Scan (7x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 23.2 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.35 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.59 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 52.4%

Maximum value of SAR (measured) = 22.6 W/kg

