

Report No.: FCS202202015W01

FCC RF Exposure

EUT Description: Digital Night Vision

ModelNo.:N9

FCC ID: 2A3PO-N9

Equipment type: fixed equipment

1. Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)	
	(A) Limi	ts for Occupational/Controlled E	xposures		
0.3-3.0	614	1.63	*(100)	6	
3.0–30	1842/f	4.89/f	*(900/f ²)	6	
30–300	61.4	0.163	1.0	6	
300–1500			f/300	6	
1500-100,000			5	6	
	(B) Limits fo	r General Population/Uncontroll	ed Exposure		
0.3-1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f ²)	30	
30–300	27.5	0.073	0.2	30	
300-1500			f/1500	30	
1500-100,000			1.0	30	

F = frequency in MHz

Formula: Pd = $(Pout*G)/(4*\pi*r^2)$

Where:

Pd = power density in mW/cm²,

Pout = output power to antenna in mW;

G = gain of antenna in linear scale,

 $\pi = 3.14$;

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Report No.: FCS202202015W01

Turn-up power				
Mode	Peak power range(dBm)			
WIFI	7.00-10.00			

WIFI	Output power (dBm/ mW)	Antenna Gain(dBi)	Power Density at R=20cm	Limit (mW/cm²)	Result
			(mW/cm ²)		
	10/10.00	1.0	0.00251	1.0	Pass

Conclusion: No SAR is required