

TEST REPORT

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR24-SRF0131-A Page (1) of (41)	 KCTL
---	---	--

1. Client

- Name : HL Klemove Corp.
- Address : 10-74, 224, Harmony-ro, Yeonsu-gu, Incheon, Republic of Korea
- Date of Receipt : 2024-06-17

2. Use of Report : Certification

3. Name of Product / Model : Vehicle Radar / SRR4IS

4. Manufacturer / Country of Origin : HL Klemove Corp. / Korea

5. FCC ID : 2A3OZ-SRR4IS

6. IC : 27992-SRR4IS

7. Date of Test : 2024-07-22 to 2024-08-09

8. Location of Test : Permanent Testing Lab On Site Testing
 (Address: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea)

9. Test method used : FCC Part 2, FCC Part 95 Subpart M

RSS-251 Issue 2 July 2018

RSS-Gen Issue 5 February 2021

10. Test Result : Refer to the test result in the test report

Affirmation	Tested by Name : Seongil Choi	Technical Manager Name : Hyeonsu Jang
-------------	--	--

2024-10-16

Eurofins KCTL Co.,Ltd.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by Eurofins KCTL Co.,Ltd.

REPORT REVISION HISTORY

Date	Revision	Page No
2024-10-01	Originally issued	-
2024-10-16	Updated	1,6,21,23

This report shall not be reproduced except in full, without the written approval of Eurofins KCTL Co.,Ltd. This document may be altered or revised by Eurofins KCTL Co.,Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by Eurofins KCTL Co.,Ltd. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR24-SRF0131 is superseded by the report No. KR24-SRF0131-A.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests

(may be required by the product standard or client)

Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

CONTENTS

1. General information	4
2. Device information	4
2.1. Frequency/channel operations.....	4
2.2. Far field distance	5
3. Summary of tests.....	6
4. Measurement uncertainty	6
5. Test results	7
5.1. Occupied bandwidth	7
5.2. The Maximum Power(EIRP) & Maximum Peak Power(EIRP)	9
5.3. Undesirable emissions.....	14
5.4. Frequency stability.....	35
6. Measurement equipment	40

1. General information

Client : HL Klemove Corp.
Address : 10-74, 224, Harmony-ro, Yeonsu-gu, Incheon, Republic of Korea
Manufacturer : HL Klemove Corp.
Address : 10-74, 224, Harmony-ro, Yeonsu-gu, Incheon, Republic of Korea
Laboratory : Eurofins KCTL Co.,Ltd.
Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132
VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
CAB Identifier: KR0040, ISED Number: 8035A
KOLAS No.: KT231

2. Device information

Equipment under test : Vehicle Radar
Model : SRR4IS
Modulation technique : FMCW
Frequency range : 76 500 MHz
Power source : DC 12 V
Antenna specification : Waveguide Antenna
Antenna gain : 9.2 dBi
Software version : 1.00
Hardware version : 1.00
Operation temperature : -40 °C ~ 85 °C
Test device serial No. : N/A

2.1. Frequency/channel operations

This device contains the following capabilities:

FMCW

Ch.	Frequency (GHz)
01	76.5

Table 2.1.1. FMCW

2.2. Far field distance

Far field distance(R_m)

Freq range [MHz]	Speed of light	Freq [MHz]	wavelength(λ) [m]	Largest Antenna Dimension [m]		Far Field Distance [m]	Measurement Distance [m]
				Measurement Antenna	EUT		
40000 - 60000	300	60000	0.0050	<u>0.0582</u>	-	1.35	3
60000 - 90000	300	90000	0.0033	<u>0.0378</u>	-	0.86	1
90000 - 140000	300	140000	0.0021	<u>0.0248</u>	-	0.57	3
140000 - 220000	300	220000	0.0014	<u>0.0158</u>	-	0.37	3
220000 - 250000	300	250000	0.0012	<u>0.0105</u>	-	0.18	3
76000 - 81000	300	81000	0.0037	0.0378	<u>0.0485</u>	1.27	3

Note: EUT antenna dimension was provided by customer.

Note: Far-Field (Rayleigh) distance formula used is shown below (According to ANSI C63.26-2015 Section 4.4.3 Note f) $R_m = 2D^2 / \lambda$,where the R_m is the Rayleigh (far-field) distance, D is the largest dimension of the antenna aperture and λ is the free-space wavelength in meters at the frequency of measurement (calculated by speed of light divided by frequency).

Note: Measurements in report were made at distances greater than calculated far-field distances shown in table.

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR24-SRF0131-A Page (6) of (41)	 KCTL
---	---	--

3. Summary of tests

FCC Part section(s)	IC Rule reference	Parameter	Test condition	Test results
2.1049	RSS-251(7), RSS-GEN(6.7)	Occupied Bandwidth	Radiated	Pass
95.3367(a)	RSS-251(8)	Maximum power(EIRP)		Pass
95.3367(b)	RSS-251(9)	Maximum peak power(EIRP)		Pass
2.1053 95.3379(a)	RSS-251(10) RSS-GEN(6.13)	Undesirable Emissions		Pass
2.1055 95.3379(b)	RSS-251(11) RSS-GEN(8.11)	Frequency Stability		Pass

Notes:

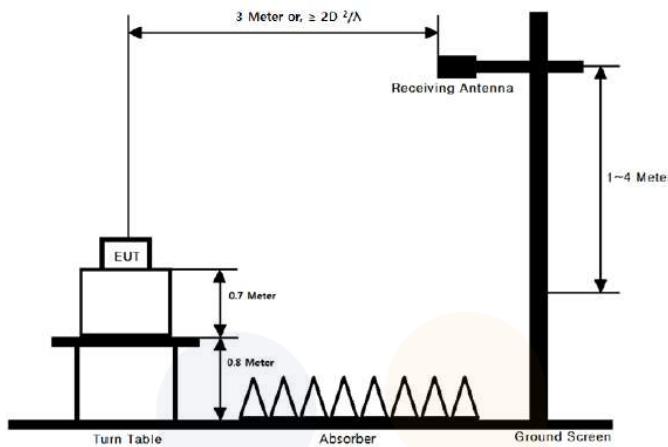
1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
2. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation.
4. The test procedure(s) in this report were performed in accordance as following.
 - ◆ ANSI C63.10-2020
 - ◆ ANSI C63.26-2015
 - ◆ KDB 653005 D01v01r02
5. Test Mode

Test Mode	Ramp Type Operation
TM1	I → II
TM2	III → IV
TM3	I → II → III → IV

4. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicated a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.


Parameter	Expanded uncertainty (\pm)	
Bandwidth	0.1 %	
Frequency Stability	344.1 kHz	
Radiated spurious emissions	9 kHz ~ 30 MHz	2.3 dB
	30 MHz ~ 1 000 MHz	2.5 dB
	1 000 MHz ~ 18 000 MHz	4.7 dB
	Above 18 000 GHz	4.8 dB

5. Test results

5.1. Occupied bandwidth

Test setup

Above 1 GHz

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plance and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Limit

FCC

Within the designated 76 ~ 81 GHz frequency band

According to §2.1049, The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

IC

According to RSS-GEN(6.7), The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained.

The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

Test procedure

ANSI C63.10-2020 - Section 9.4

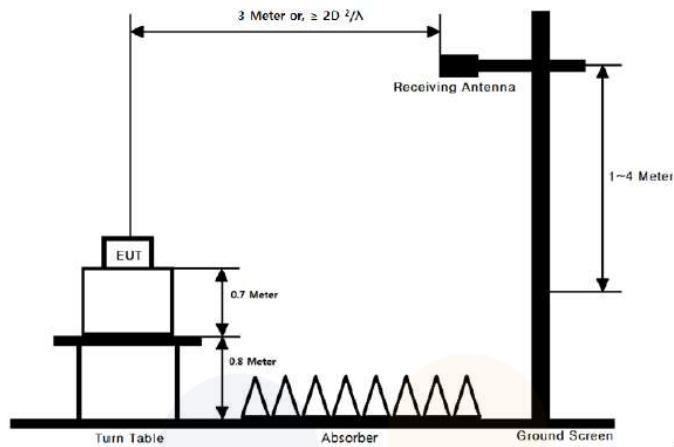
The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

Test settings

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. Span equal to approximately 1.5 times the OBW, centered on the carrier frequency
3. RBW = 1 ~ 5% of the expected OBW & VBW $\geq 3 \times$ RBW
4. Detector = Peak
5. Trace mode = Max hold
6. Sweep = Auto couple
7. The trace was allowed to stabilize
8. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 ~ 5 % of the 99 % occupied band width observed in step 6.

Note: The RBW and VBW were setting up to the limitations of the test equipment.

Test results


Mode	Test Condition	Frequency Range(MHz)	Occupied Bandwidth(MHz)
TM1	NTNV	76 500	806.78
TM2	NTNV	76 500	709.05
TM3	NTNV	76 500	773.79

5.2. The Maximum Power(EIRP) & Maximum Peak Power(EIRP)

Test setup

Above 1 GHz

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz , the absorbers are removed.

Limit

FCC

According to § 95.3367, The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

- (a) The maximum power(EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth(RBW).
- (b) The maximum peak power(EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

IC

According to RSS-251(8) Average equivalent isotropically radiated power (e.i.r.p.), The radar device's total average e.i.r.p. shall not exceed 50 dBm over the occupied bandwidth.

According to RSS-251(9) Peak e.i.r.p. spectral density,

The radar device's peak e.i.r.p. spectral density shall not exceed 55 dBm/MHz.

Test procedure

ANSI C63.10-2020 - Section 9

ANSI C63.26-2015 - Section 5

KDB 653005 D01v01r02 – Section 4

Test setting

-Maximum power(EIRP) – Averaging detector

Note: The maximum power(averaging detector) measurements are performed using the “channel power” measurement capability and integrated over the 99 % OBW to obtain the result.

1. Measurement capability of instrument = channel power
2. Set RBW = 1 MHz
3. Set VBW \geq 3 X RBW
4. span to 2 x to 3 x the OBW
5. Channel bandwidth setting of instrument \geq OBW
6. Detector = power averaging (rms)
7. Set number of points in sweep \geq 2 x span / RBW
8. Sweep time = auto-couple
9. Trace = averaging

-Maximum peak power(EIRP) – Peak detector

1. Set RBW = 1 MHz
2. Set VBW \geq 3 X RBW
3. span to 2 x to 3 x the OBW
4. Detector = Peak
5. Set number of points in sweep \geq 2 x span / RBW
6. Sweep time = auto-couple
7. Trace = max-hold

Note1.

Sample Calculation

$E(\text{dB}_{\mu\text{V}/\text{m}}) = \text{Measured level}(\text{dB}_{\mu\text{V}}) + 107 + \text{AFCL}(\text{dB}/\text{m})$

Where, E =field strength / AFCL= Antenna Factor(dB/m) + Cable Loss(dB/m)

The mixer loss was applied to the measured level by SA correction factor.

$\text{EIRP}(\text{dBm}) = E(\text{dB}_{\mu\text{V}/\text{m}}) + 20\log(D) - 104.8$; where, D is measurement distance(in the far field region) in m.

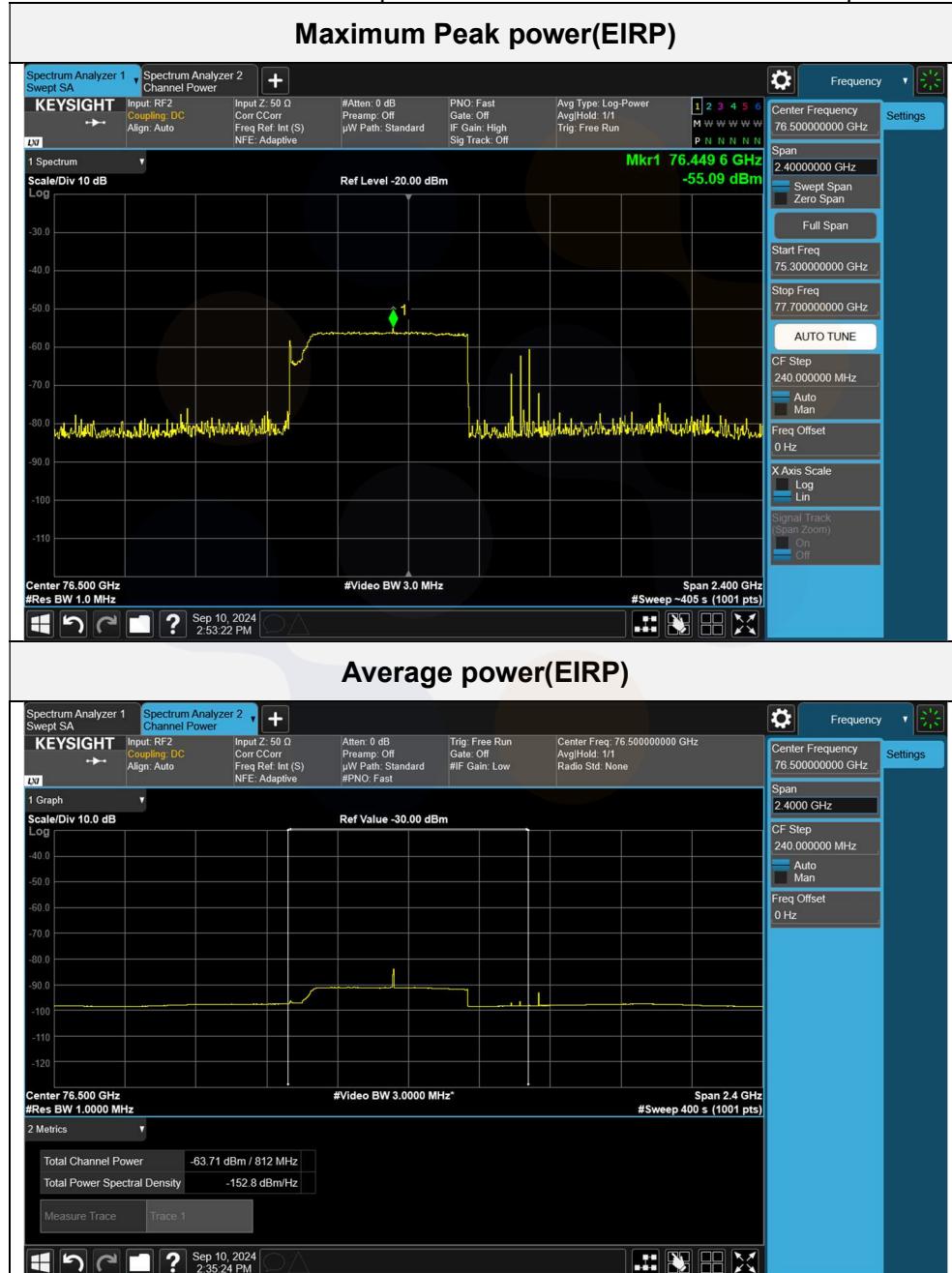
Note2.

P.C.F Calculation (P.C.F=Peak amplitude correction factor of the FMCW signal)

$$\text{P.C.F} = 20 * \log_{10}(1/\alpha) \approx 6.458 \text{ dB}$$

$$\alpha = \frac{1}{\sqrt[4]{1 + \left(\frac{2 \ln(2)}{\pi}\right)^2 \left(\frac{F_S}{T_S B^2}\right)^2}}$$

(P.C.F have been declared by the manufacturer.)

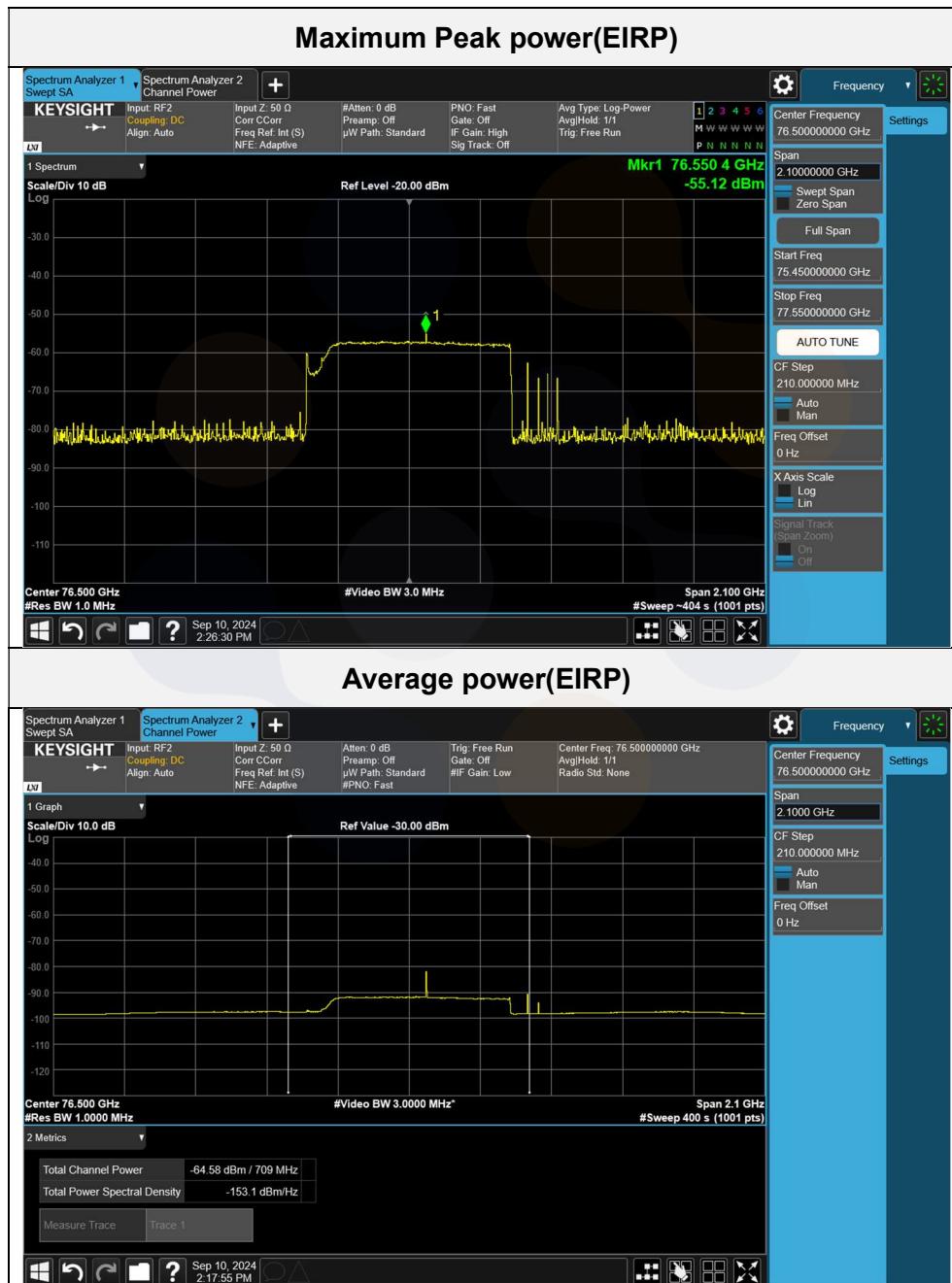

Test results

TM1

Measurement distance(D)	Frequency (GHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBm)	AFCL (dB/m)	P.C.F (dB)	E (dB μ V/m)	EIRP (dBm)	Limit (dBm)
3 m	76.45	V	X	Peak	-55.09	67.57	6.46	125.94	30.68	55.00
3 m	76.50	V	X	Average	-63.71	67.61	-	110.90	15.64	50.00

Note.

1. The EIRP was measured in each axis EUT positions and the worst case data was reported.

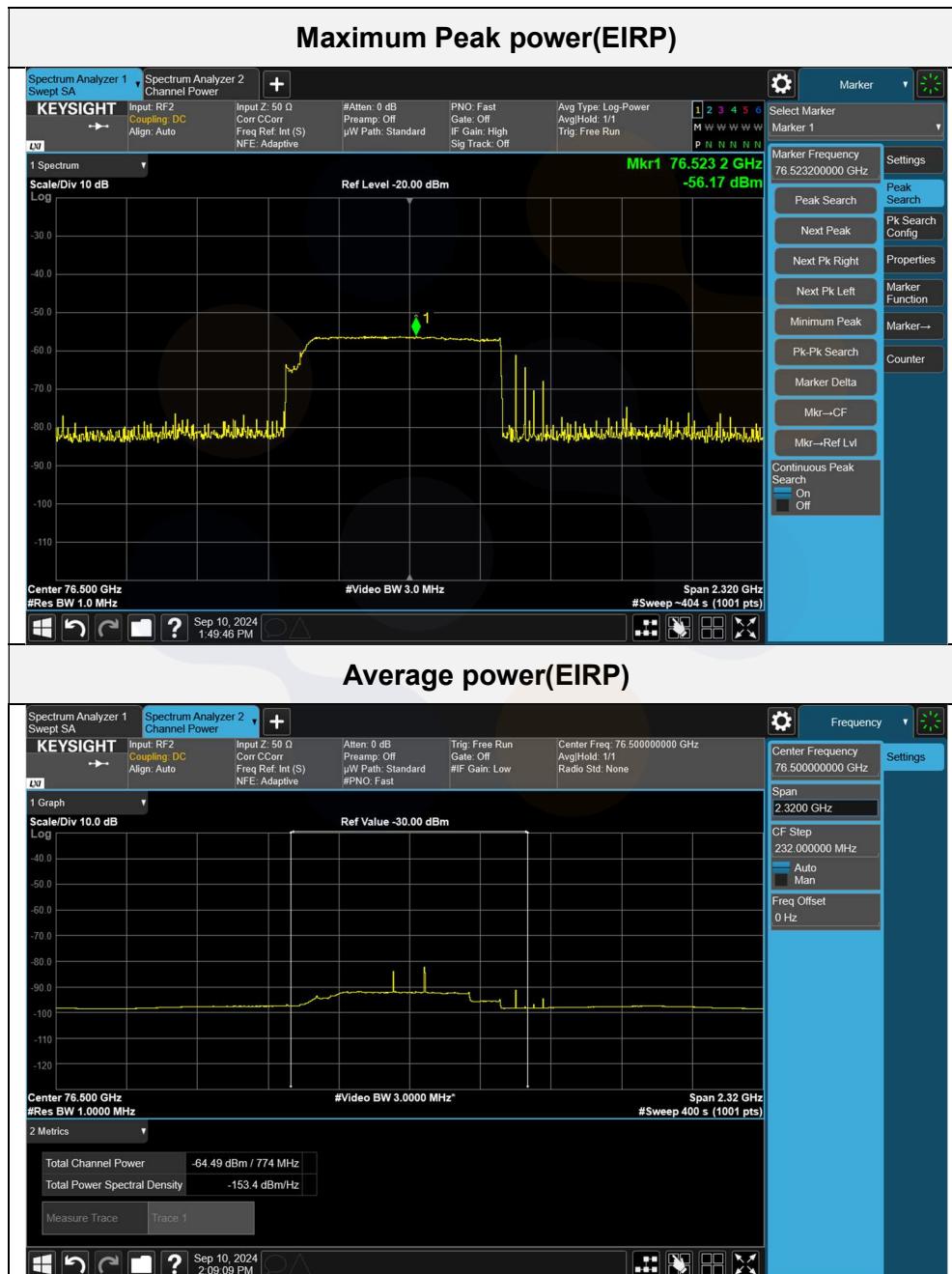


TM2

Measurement distance(D)	Frequency (GHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBm)	AFCL (dB/m)	P.C.F (dB)	E (dB μ V/m)	EIRP (dBm)	Limit (dBm)
3 m	76.55	V	X	Peak	-55.12	67.64	6.46	125.98	30.72	55.00
3 m	76.50	V	X	Average	-64.58	67.61	-	110.03	14.77	50.00

Note.

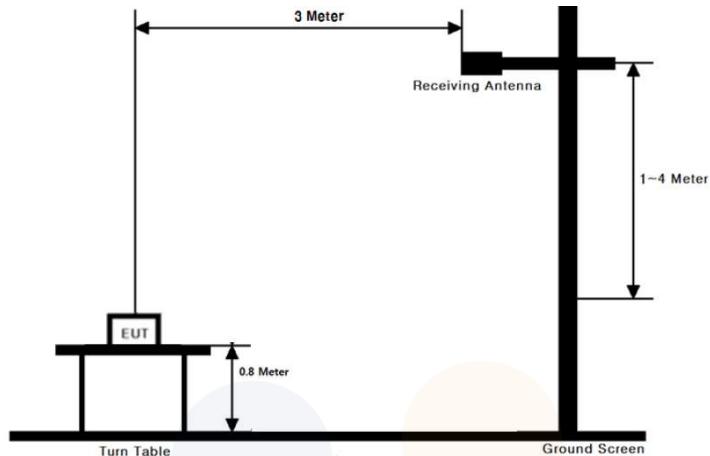
1. The EIRP was measured in each axis EUT positions and the worst case data was reported.

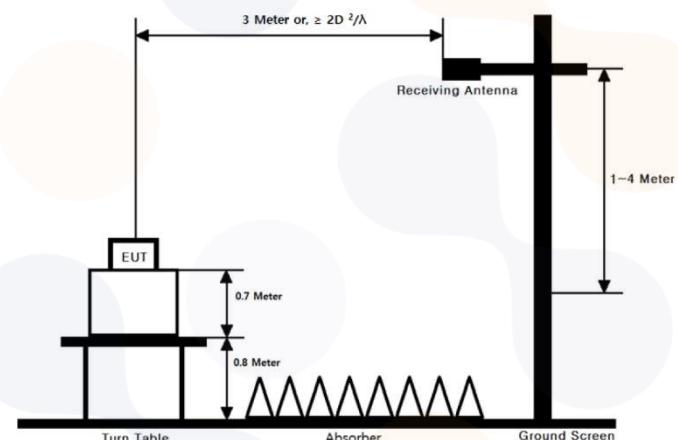


TM3

Measurement distance(D)	Frequency (GHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBm)	AFCL (dB/m)	P.C.F (dB)	E (dB μ V/m)	EIRP (dBm)	Limit (dBm)
3 m	76.45	V	X	Peak	-56.17	67.62	6.46	124.91	29.65	55.00
3 m	76.50	V	X	Average	-64.49	67.61	-	110.12	14.86	50.00

Note.


1. The EIRP was measured in each axis EUT positions and the worst case data was reported.


5.3. Undesirable emissions

Test setup

Below 1 GHz

Above 1 GHz

These measurements were performed at 3 test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters(for below 1 GHz: 0.8-m) from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Limit**FCC**

(a) The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

(i) In the emissions table in paragraph (a)(1) of this section, the tighter limit applies at the band edges.

(ii) The limits in the table in paragraph (a)(1) of this section are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(iii) The emissions limits shown in the table in paragraph (a)(1) of this section are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9.0-90.0 kHz, 110.0-490.0 kHz, and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector with a 1 MHz RBW.

(2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:

(i) For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(ii) For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(3) For field disturbance sensors and radar systems operating in the 76-81 GHz band, the spectrum shall be investigated up to 231.0 GHz.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 - 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 - 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 - 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 - 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 - 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 - 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 - 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 - 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 - 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	2 690 - 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	3 260 - 3 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	3 332 - 3 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 - 3 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 - 4 400	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

IC

According to RSS-251(10.2), The radar device's unwanted emissions outside the 76-81 GHz frequency band shall comply with the limits in table 1, below.

Table 1: Unwanted emissions limits outside the 76-81 GHz frequency band

Emission frequency range	Limit	Applicable detector
Below 40 GHz	RSS-Gen general field strength limits for licence-exempt radio apparatus	RSS-Gen requirements
40-162 GHz*	-30 dBm/MHz (e.i.r.p.)	RMS detector

Note:

* For radar devices that operate solely in the 76-77 GHz band (i.e. the occupied bandwidth is entirely contained in the 76-77 GHz band), an unwanted emissions limit of 0 dBm/MHz shall apply for the unwanted emission that fall in the 73.5-76 GHz band. Outside of the 73.5-76 GHz band, the unwanted emission limits prescribed in table 1 shall apply.

According to RSS-Gen(8.9), Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Table 5- General field strength limits at frequencies above 30 MHz

Frequency(MHz)	Field strength (μ V/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 6- General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H-Field) (μ A/m)	Measurement distance(m)
9 – 490 kHz ¹⁾	6.37/F (F in kHz)	300
490 – 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

According to RSS-Gen(8.10), Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).
- (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

Table 7- Restricted frequency bands*

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138	--	

* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Test procedure

ANSI C63.26-2015 - Section 5.5
 ANSI C63.10-2020 - Section 9.10

Test settings

Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector= Peak or Quasi Peak

1 ~ 40 GHz

Peak Measurement

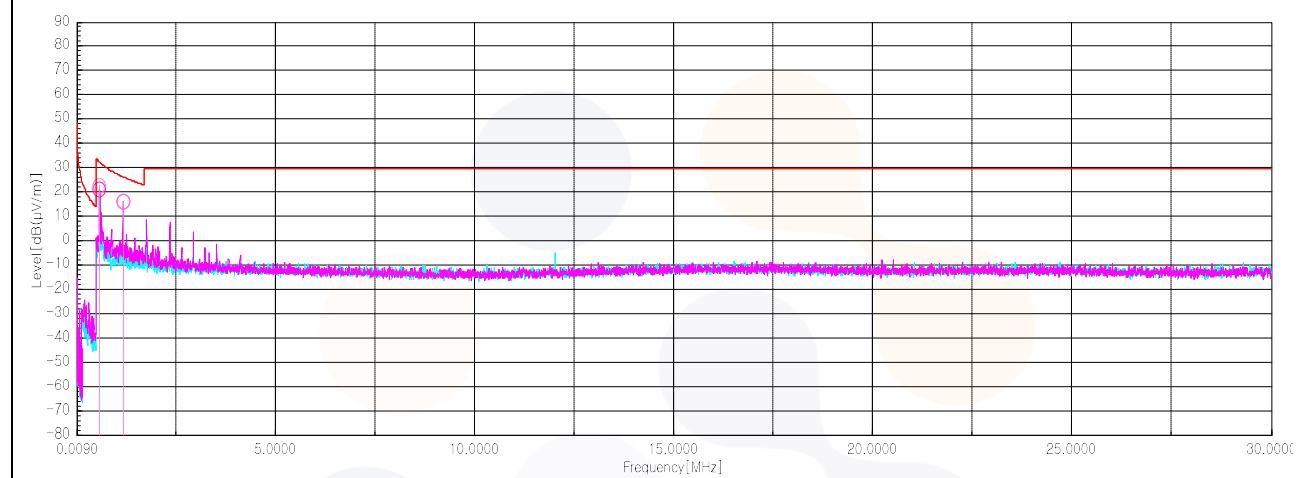
RBW: 1 MHz, VBW= 3 MHz, Detector = Peak, Sweep time = Auto,
Trace mode = Max Hold until the trace stabilizes

Average Measurement

RBW: 1 MHz, VBW= 3 MHz, Detector = RMS, Sweep time = Auto,
Trace mode = Averaging or Max Hold

Above 40 GHz

Average Measurement


RBW: 1 MHz, VBW= 3 MHz, Detector = RMS, Sweep time = N * Transmission Time*Span/RBW,
Trace mode = Averaging or Max Hold

The limits in CFR 47, part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dB μ V/m, which is equivalent to $Y - 51.5 = Z$ dB μ N/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209 (a) limit.

Test results**TM1**

Frequency Range: 9 kHz ~ 30 MHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	T.F (dB/m)	Distance Factor (dB)	Result (dB(μ V/m))	Limit (dB(μ V/m))	Margin (dB)
0.59	H	X	QP	75.10	-12.58	40.00	22.52	32.20	9.68
1.18	H	X	QP	68.30	-12.27	40.00	16.03	26.20	10.17

Horizontal/Vertical**Note.**

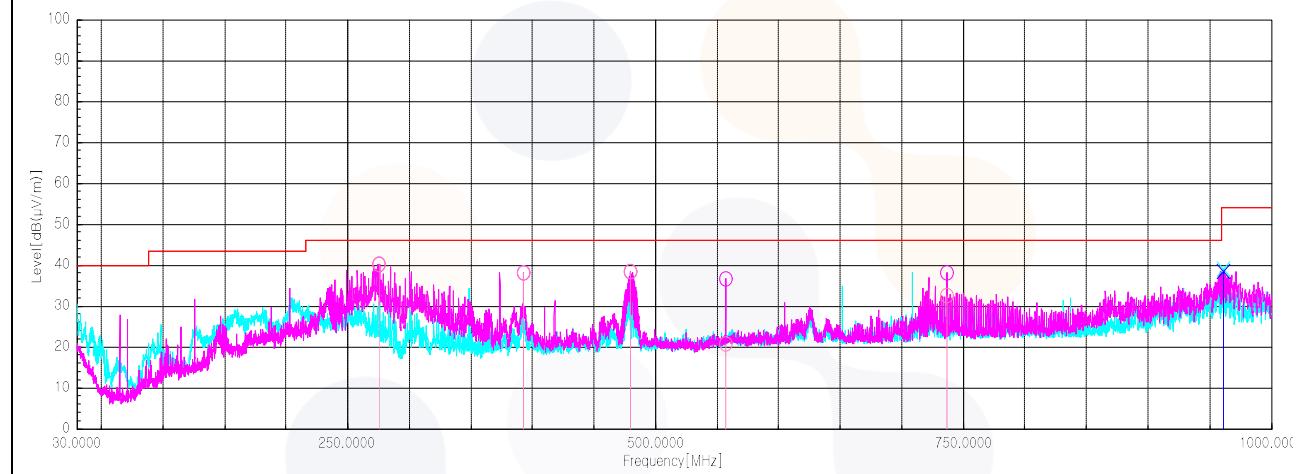
1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.


3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

Frequency Range: 30 MHz ~ 1 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	A.F (dB/m)	A.C (dB)	Result (dB(μ V/m))	Limit (dB(μ V/m))	Margin (dB)
*275.90	H		QP	52.50	18.70	-31.04	40.16	46.00	5.84
392.66	H		QP	47.40	21.43	-30.86	37.97	46.00	8.03
479.96	H		QP	46.10	23.10	-30.80	38.40	46.00	7.60
557.32	H		QP	26.30	24.80	-30.53	20.57	46.00	25.43
736.65	H		QP	37.10	25.40	-29.98	32.52	46.00	13.48
*961.44	V		QP	39.60	26.80	-28.07	38.33	54.00	15.67

Horizontal/Vertical**Note.**

1. No other spurious and harmonic emissions were found above listed frequencies.

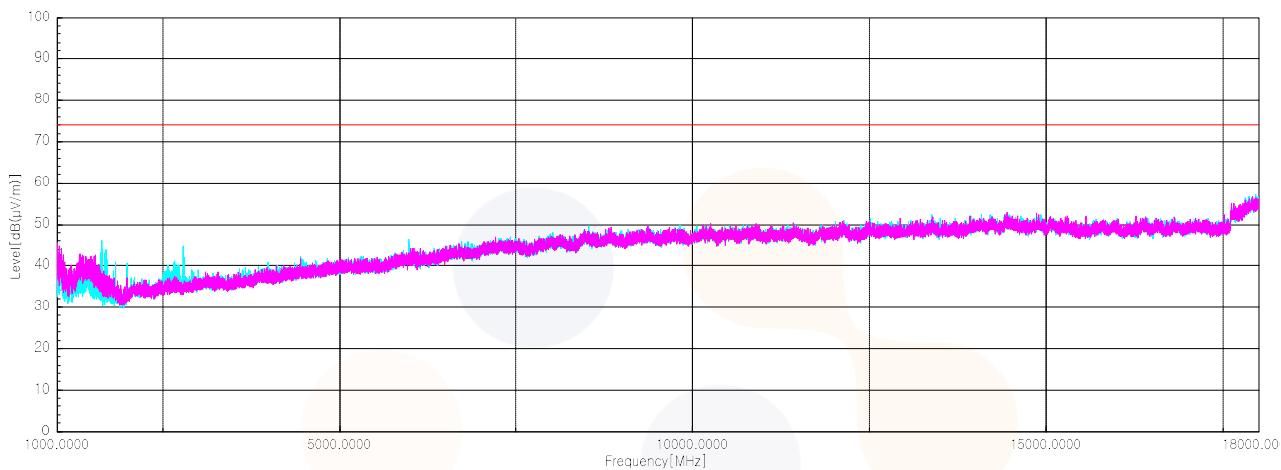
2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

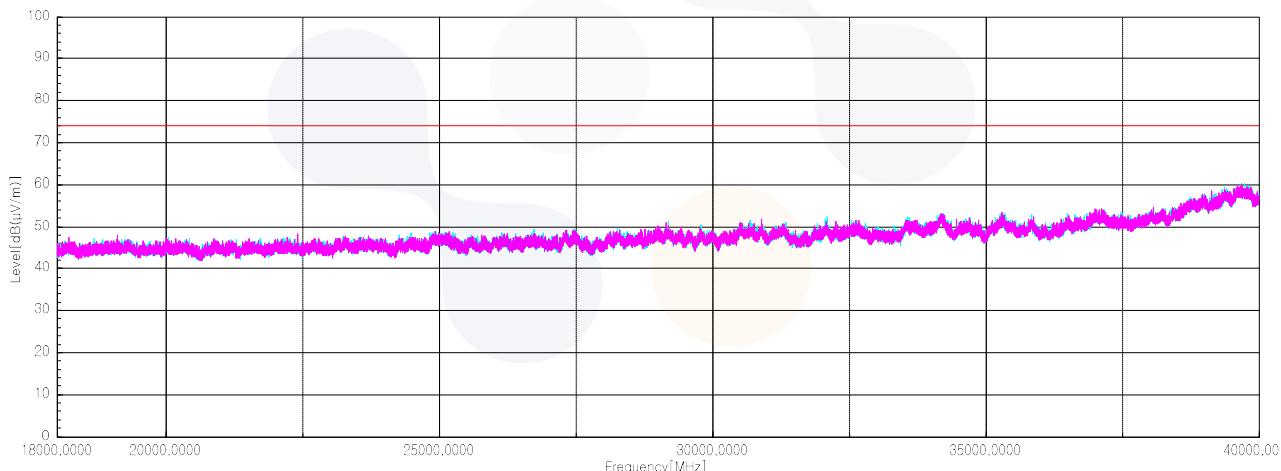
-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.


Margin=Limit - Result / Result = Measured Level + A.F + A.C

Where, T.F= Total Factor, A.F= Antenna Factor, A.C= Amp. + Cable Loss


Frequency Range: 1 GHz ~ 40 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB(μV))	T.F (dB/m)	Distance Factor (dB)	Result (dB(μV/m))	Limit (dB(μV/m))	Margin (dB)
No spurious emissions were detected.									

Horizontal/Vertical_1~18 GHz

Horizontal/Vertical_18~40 GHz

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

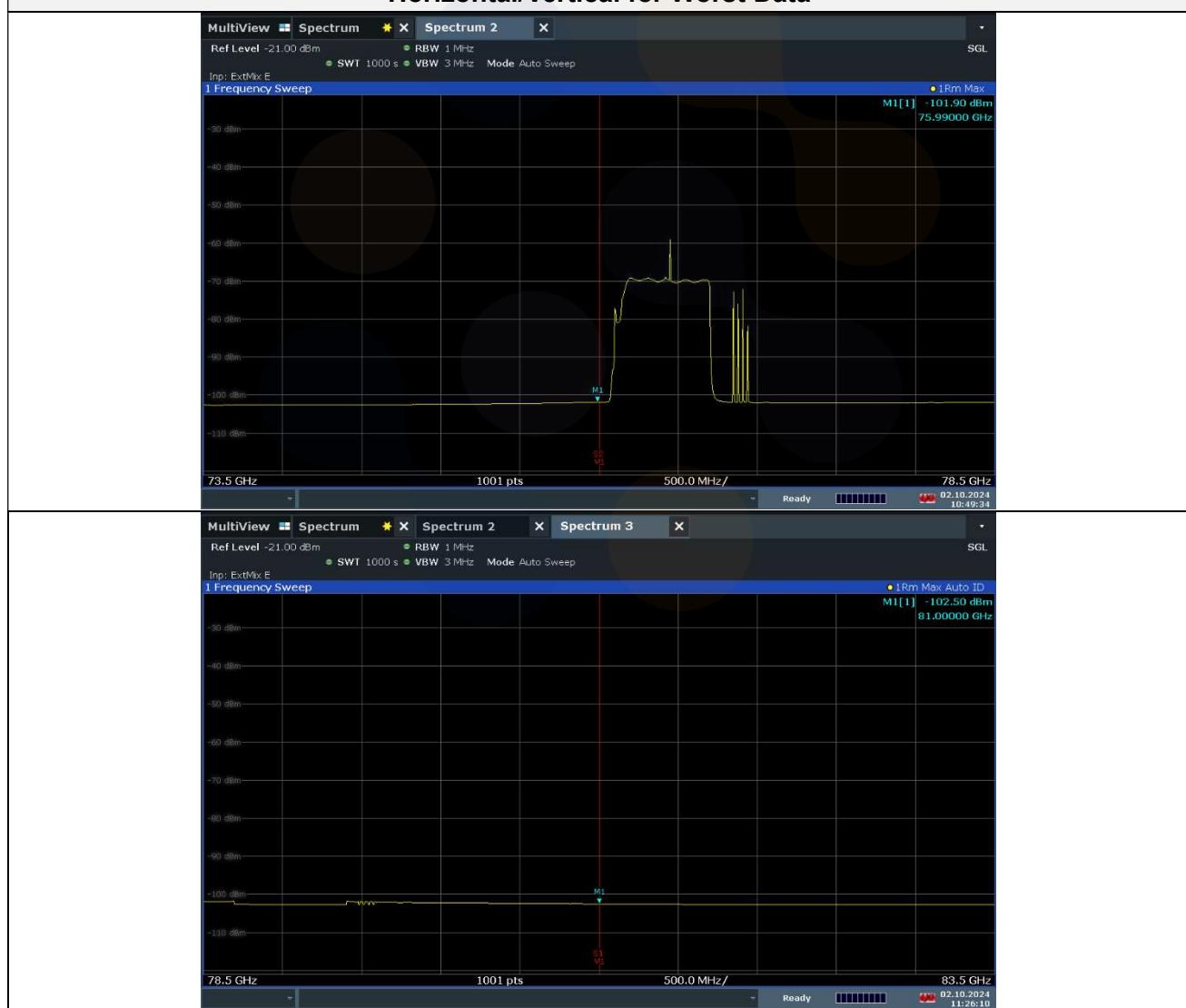
3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

4. *Noise floor.

Frequency Range: 40 GHz ~ 90 GHz


- FCC

Frequency (GHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
75.99	V	X	-101.90	58.31	63.41	-41.39	0.58	600.00
81.00	V	X	-102.50	58.02	62.52	-42.28	0.47	600.00

- IC

Frequency (GHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Limit (dBm)	Margin (dB)
75.99	V	X	-101.90	58.31	63.41	-41.39	-30.00	11.39
81.00	V	X	-102.50	58.02	62.52	-42.28	-30.00	12.28

Horizontal/Vertical for Worst Data

Note.

1. The radiated emissions were investigated up to 250 GHz. And no other spurious and harmonic emissions were found above listed frequencies.
2. Sample Calculation.

$$E(\text{dB}\mu\text{V}/\text{m}) = \text{Measured level (dBm)} + 107 + \text{AFCL(dB/m)}$$

The mixer loss was applied to the measured level by SA correction factor.

Where, E=field strength / AFCL = Antenna Factor(dB/m) + Cable Loss(dB/m)

EIRP(dBm) = E(dB μ V/m) + 20log(D) - 104.8; where, D is measurement distance(in the far field region) in m.

$$PD = EIRP_{\text{Linear}}/4\pi d^2$$

Where, PD = the power density at the distance specified by the limit, in W/m²

$$EIRP_{\text{Linear}} = \text{EIRP, in watts}$$

D= is the distance at which the power density limit is specified, in m

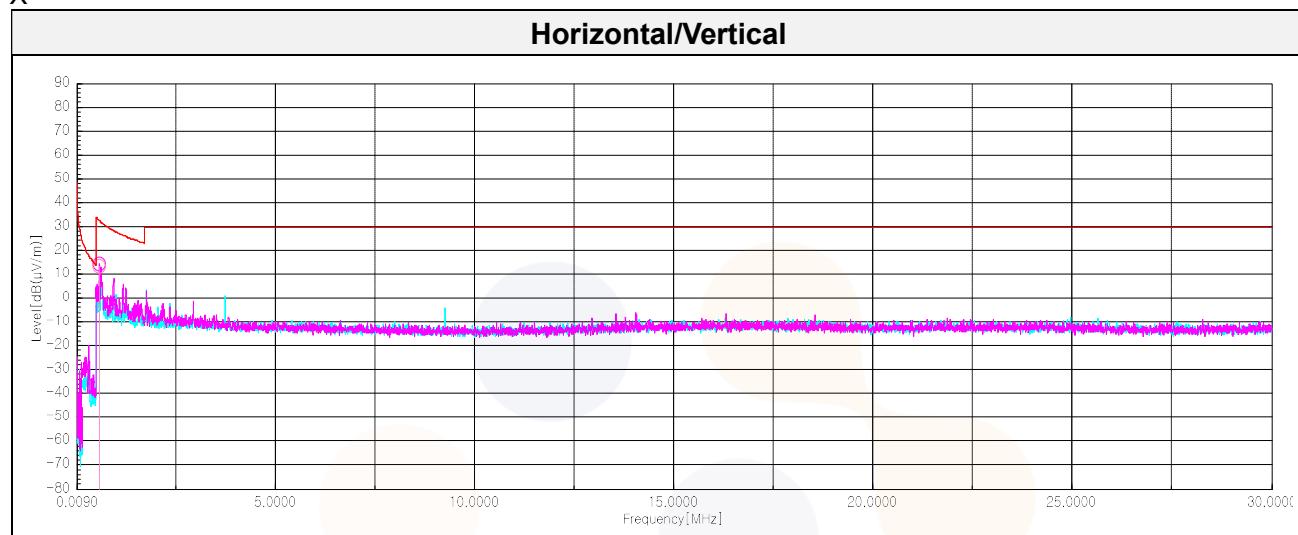
3.*Noise floor

4. Band edge test results.

Frequency Range: 90 GHz ~ 250 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μ V/m))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
No spurious emissions were detected.								

Note.


1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total = Reading Value + Antenna Factor + Cable Loss - Amplifier Gain + Distance Factor

TM2

Frequency Range: 9 kHz ~ 30 MHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	T.F (dB/m)	Distance Factor (dB)	Result (dB(μ V/m))	Limit (dB(μ V/m))	Margin (dB)
0.59	H	X	QP	65.80	-12.58	40.00	13.22	32.20	18.98

X

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

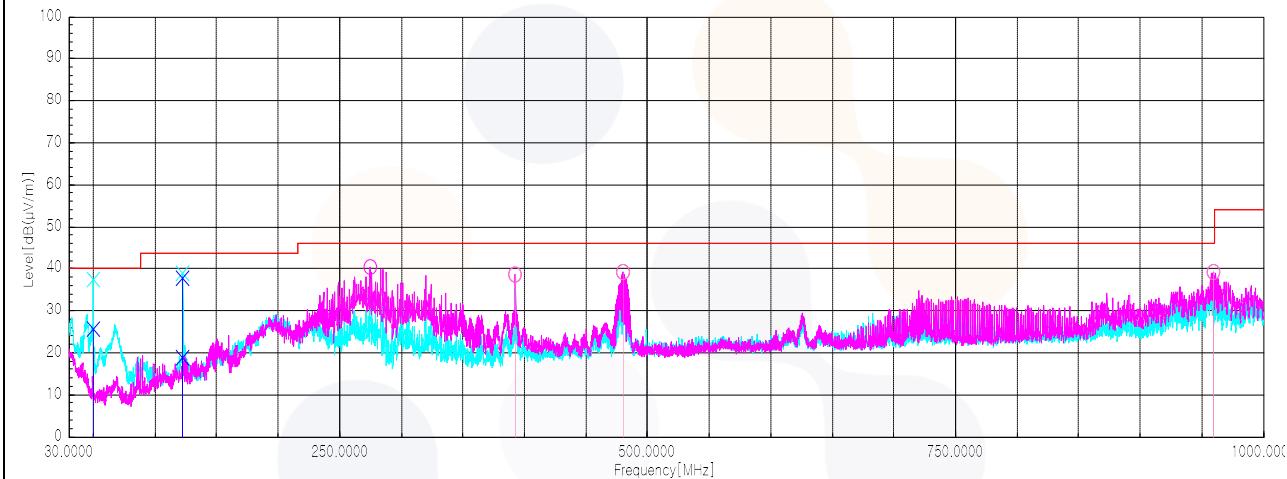
2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.


Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

Frequency Range: 30 MHz ~ 1 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	A.F (dB/m)	A.C (dB)	Result (dB(μ W/m))	Limit (dB(μ W/m))	Margin (dB)
50.13	V	X	QP	43.50	13.85	-31.75	25.60	40.00	14.40
122.76	V	X	QP	32.30	17.90	-31.33	18.87	43.50	24.63
122.76	V	X	QP	51.20	17.90	-31.33	37.77	43.50	5.73
392.66	H	X	QP	48.00	21.43	-30.86	38.57	46.00	7.43
479.96	H	X	QP	46.80	23.10	-30.80	39.10	46.00	6.90
959.62	H	X	QP	40.40	26.80	-28.10	39.10	46.00	6.90

Horizontal/Vertical

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

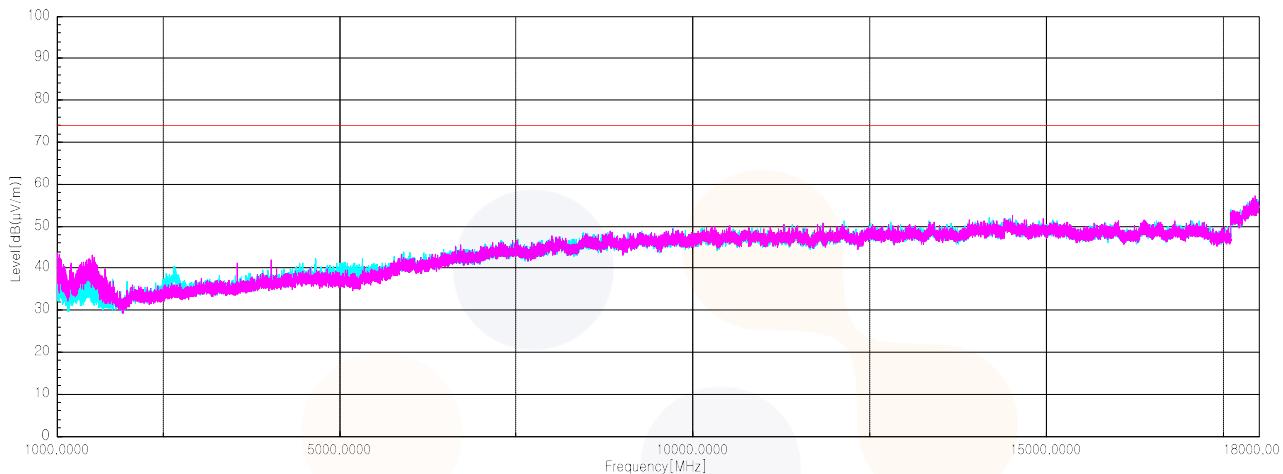
2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

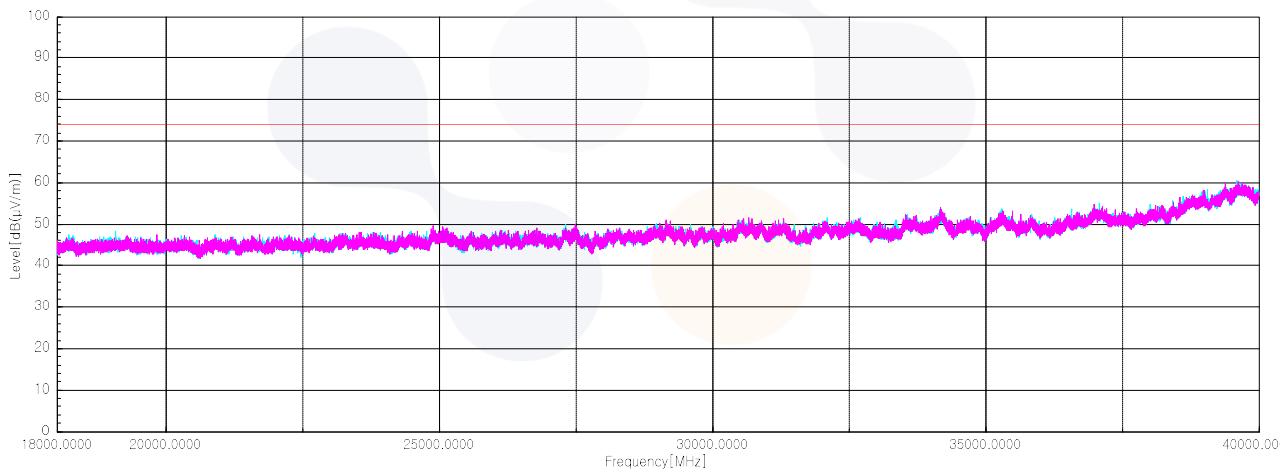
-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.


Margin=Limit - Result / Result = Measured Level + A.F + A.C

Where, T.F= Total Factor, A.F= Antenna Factor, A.C= Amp. + Cable Loss


Frequency Range: 1 GHz ~ 40 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB(μV))	T.F (dB/m)	Distance Factor (dB)	Result (dB(μV/m))	Limit (dB(μV/m))	Margin (dB)
No spurious emissions were detected.									

Horizontal/Vertical_1~18 GHz

Horizontal/Vertical_18~40 GHz

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

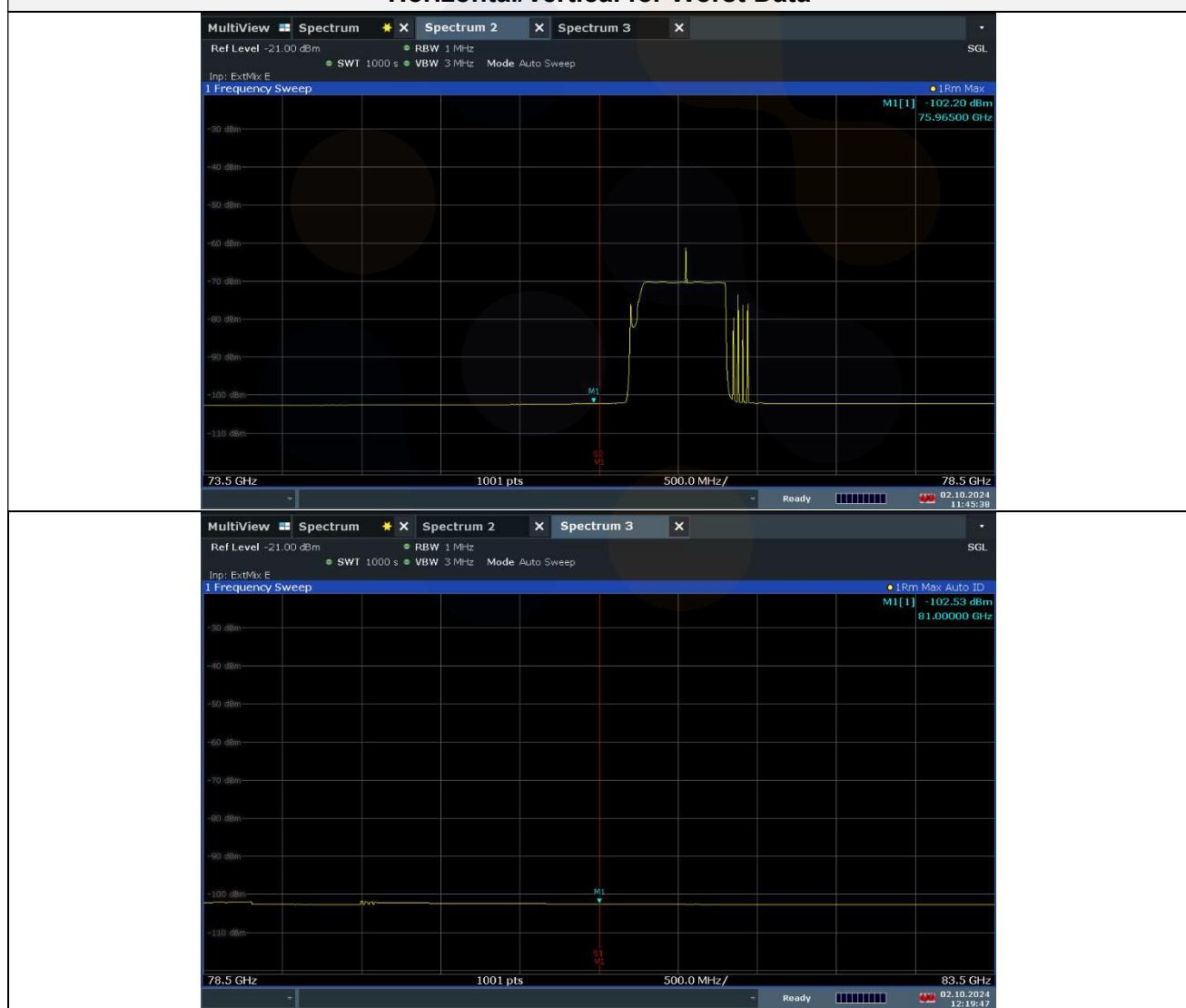
3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

4. *Noise floor.

Frequency Range: 40 GHz ~ 90 GHz


- FCC

Frequency (GHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
75.97	V	X	-102.20	58.31	63.11	-41.69	0.54	600.00
81.00	V	X	-102.53	58.02	62.49	-42.31	0.47	600.00

- IC

Frequency (GHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Limit (dBm)	Margin (dB)
75.97	V	X	-102.20	58.31	63.11	-41.69	-30.00	11.69
81.00	V	X	-102.53	58.02	62.49	-42.31	-30.00	12.31

Horizontal/Vertical for Worst Data

Note.

1. The radiated emissions were investigated up to 250 GHz. And no other spurious and harmonic emissions were found above listed frequencies.
2. Sample Calculation.

$E(\text{dB}\mu\text{V}/\text{m}) = \text{Measured level (dBm)} + 107 + \text{AFCL(dB/m)}$

The mixer loss was applied to the measured level by SA correction factor.

Where, E=field strength / AFCL = Antenna Factor(dB/m) + Cable Loss(dB/m)

$EIRP(\text{dBm}) = E(\text{dB}\mu\text{V}/\text{m}) + 20\log(D) - 104.8$; where, D is measurement distance(in the far field region) in m.

$PD = EIRP_{\text{Linear}}/4\pi d^2$

Where, PD = the power density at the distance specified by the limit, in W/m^2

$EIRP_{\text{Linear}} = EIRP$, in watts

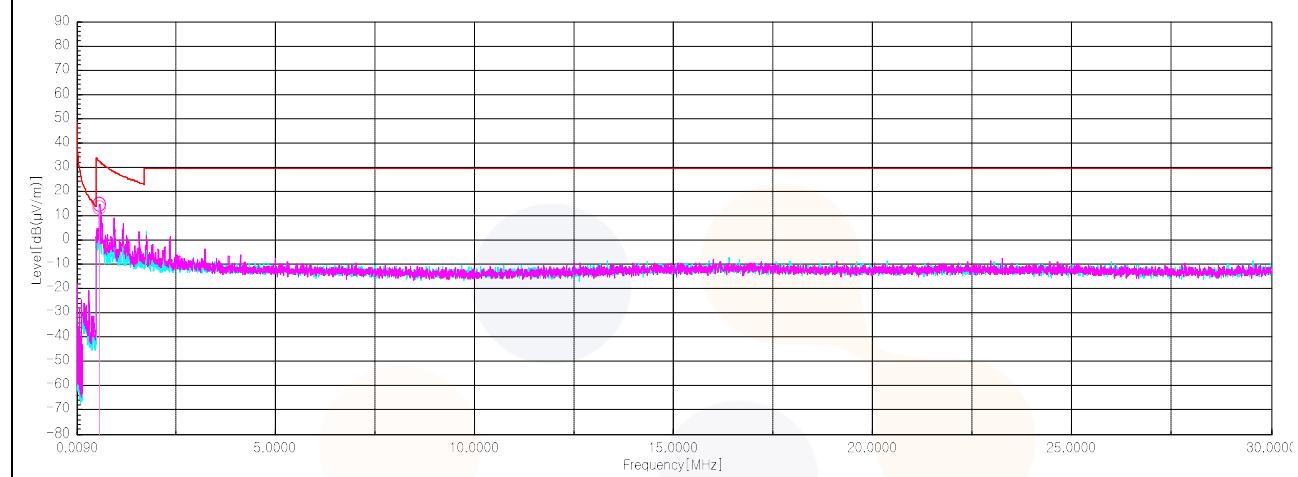
D= is the distance at which the power density limit is specified, in m

3.*Noise floor

4. Band edge test results.

Frequency Range: 90 GHz ~ 250 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB($\mu\text{V}/\text{m}$))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
No spurious emissions were detected.								


Note.

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total = Reading Value + Antenna Factor + Cable Loss - Amplifier Gain + Distance Factor

TM3

Frequency Range: 9 kHz ~ 30 MHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	T.F (dB/m)	Distance Factor (dB)	Result (dB(μ V/m))	Limit (dB(μ V/m))	Margin (dB)
0.59	H	X	QP	66.00	-12.58	40.00	13.42	32.20	18.78

Horizontal/Vertical**Note.**

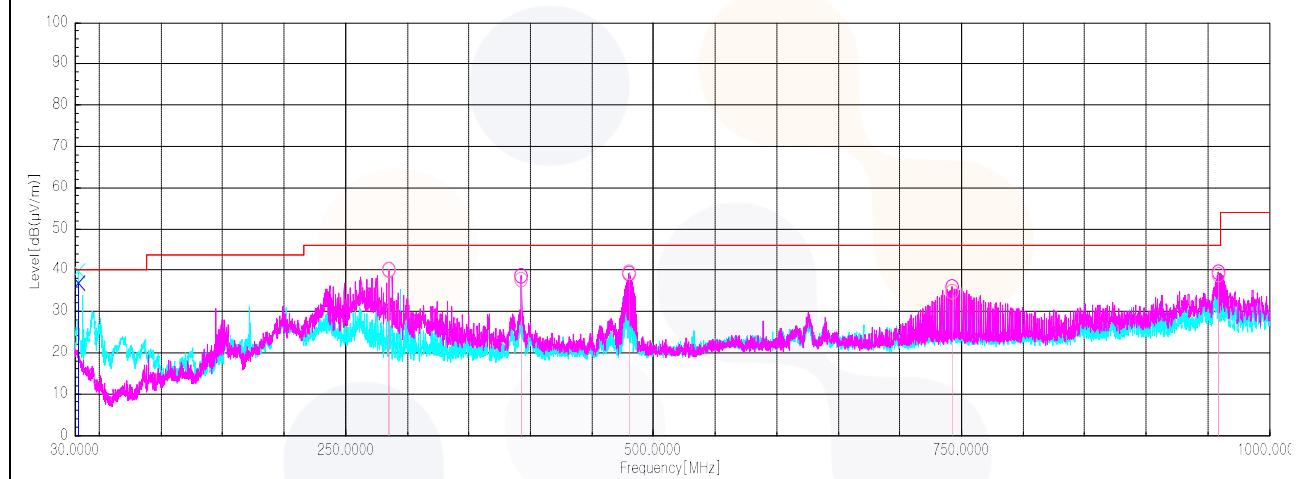
1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.


3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

Frequency Range: 30 MHz ~ 1 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	A.F (dB/m)	A.C (dB)	Result (dB(μ V/m))	Limit (dB(μ V/m))	Margin (dB)
33.15	V	X	QP	45.60	23.11	-31.79	36.92	40.00	3.08
*284.99	H	X	QP	52.20	18.80	-30.98	40.02	46.00	5.98
392.66	H	X	QP	47.20	21.43	-30.86	37.77	46.00	8.23
479.96	H	X	QP	47.30	23.10	-30.80	39.60	46.00	6.40
742.47	H	X	QP	39.50	25.42	-30.17	34.75	46.00	11.25
958.90	H	X	QP	40.30	26.80	-28.12	38.98	46.00	7.02

Horizontal/Vertical**Note.**

1. No other spurious and harmonic emissions were found above listed frequencies.

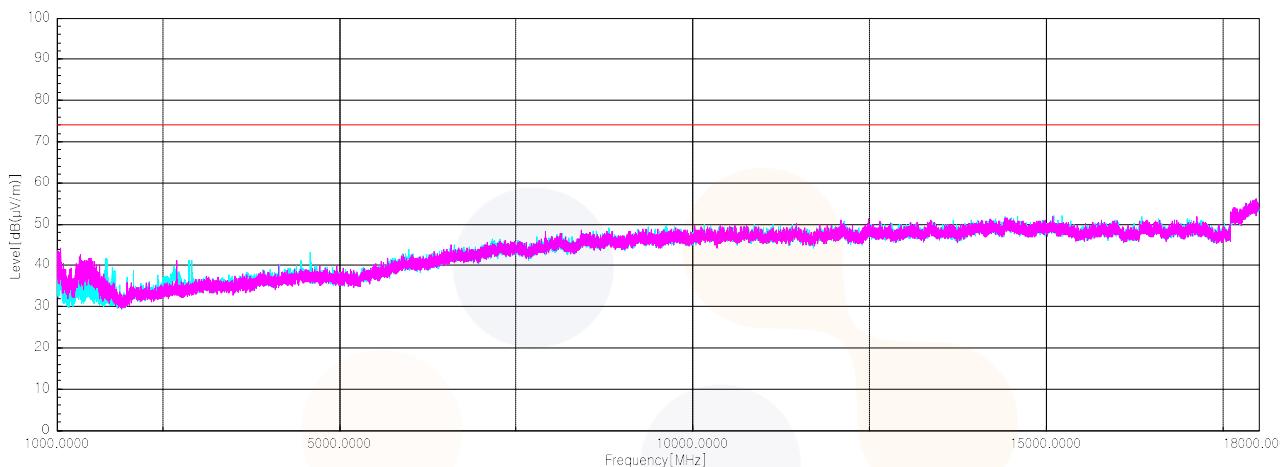
2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

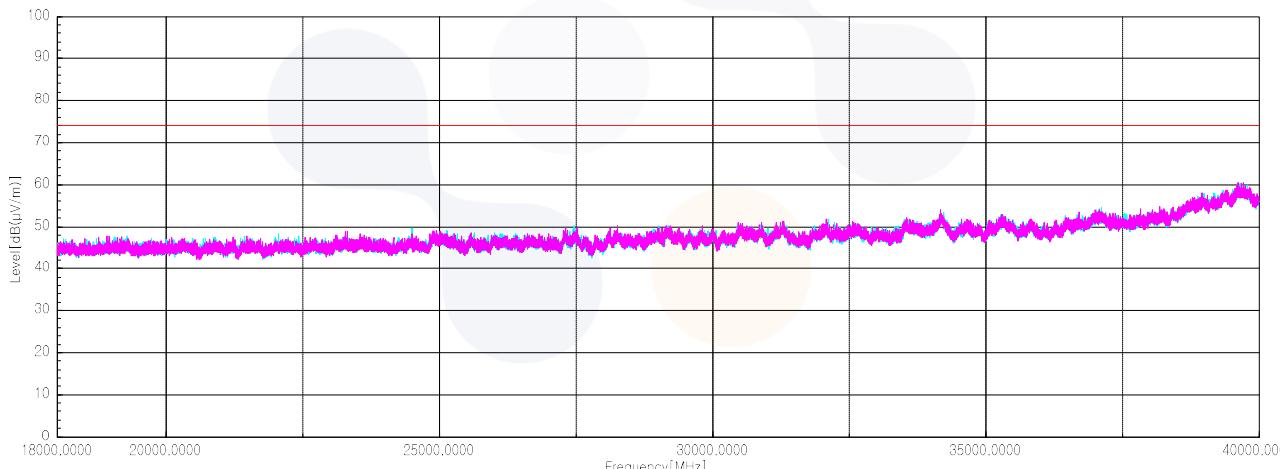
-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.


Margin=Limit - Result / Result = Measured Level + A.F + A.C

Where, T.F= Total Factor, A.F= Antenna Factor, A.C= Amp. + Cable Loss


Frequency Range: 1 GHz ~ 40 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB(μV))	T.F (dB/m)	Distance Factor (dB)	Result (dB(μV/m))	Limit (dB(μV/m))	Margin (dB)
No spurious emissions were detected.									

Horizontal/Vertical_1~18 GHz

Horizontal/Vertical_18~40 GHz

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

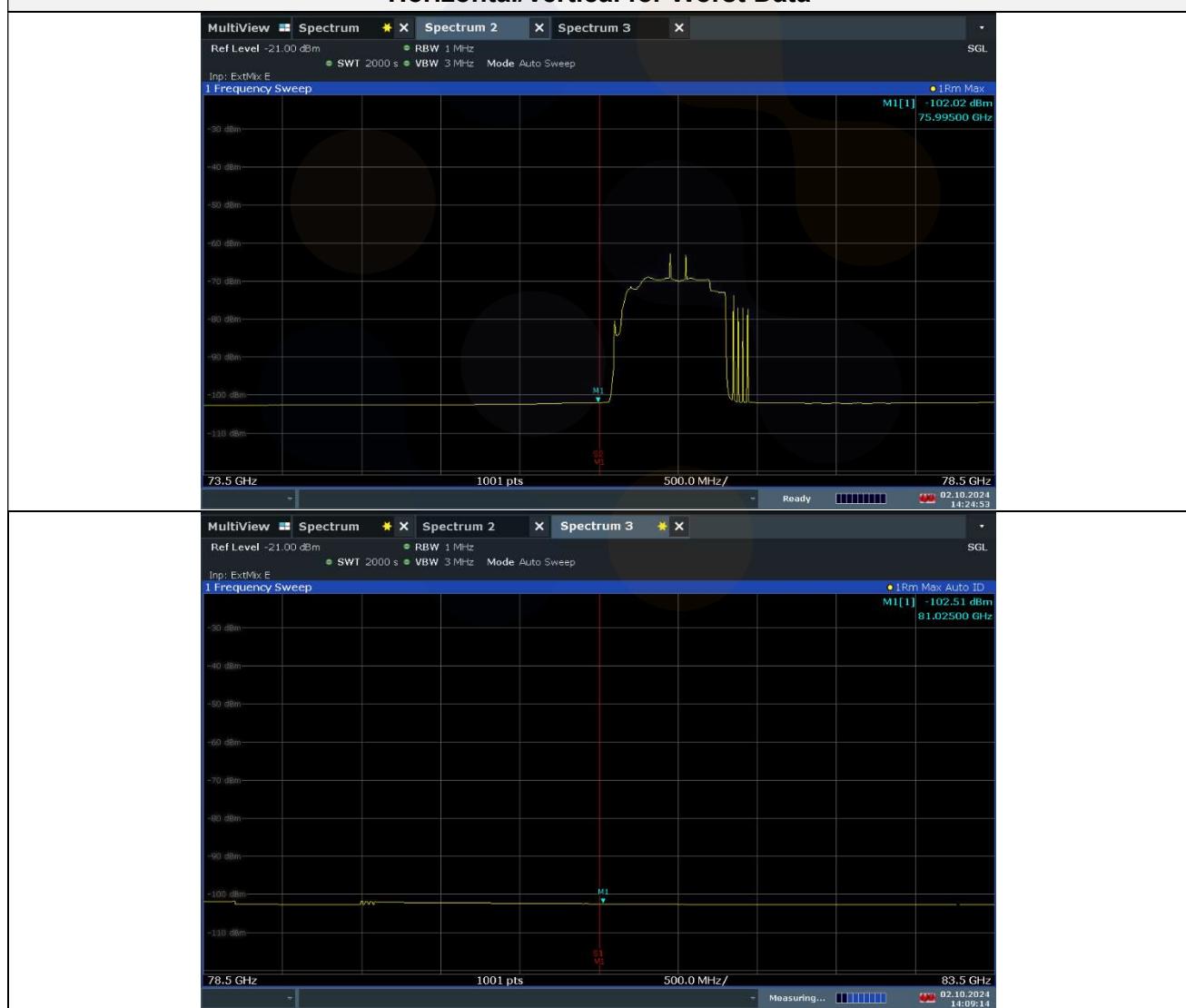
3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

4. *Noise floor.

Frequency Range: 40 GHz ~ 90 GHz


- FCC

Frequency (GHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
76.00	V	X	-102.02	58.31	63.29	-41.51	0.56	600.00
81.03	V	X	-102.51	58.04	62.53	-42.27	0.47	600.00

- IC

Frequency (GHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Limit (dBm)	Margin (dB)
76.00	V	X	-102.02	58.31	63.29	-41.51	-30.00	11.51
81.03	V	X	-102.51	58.04	62.53	-42.27	-30.00	12.27

Horizontal/Vertical for Worst Data

Note.

1. The radiated emissions were investigated up to 250 GHz. And no other spurious and harmonic emissions were found above listed frequencies.
2. Sample Calculation.

$E(\text{dB}\mu\text{V}/\text{m}) = \text{Measured level (dBm)} + 107 + \text{AFCL(dB/m)}$

The mixer loss was applied to the measured level by SA correction factor.

Where, E=field strength / AFCL = Antenna Factor(dB/m) + Cable Loss(dB/m)

$EIRP(\text{dBm}) = E(\text{dB}\mu\text{V}/\text{m}) + 20\log(D) - 104.8$; where, D is measurement distance(in the far field region) in m.

$PD = EIRP_{\text{Linear}}/4\pi d^2$

Where, PD = the power density at the distance specified by the limit, in W/m^2

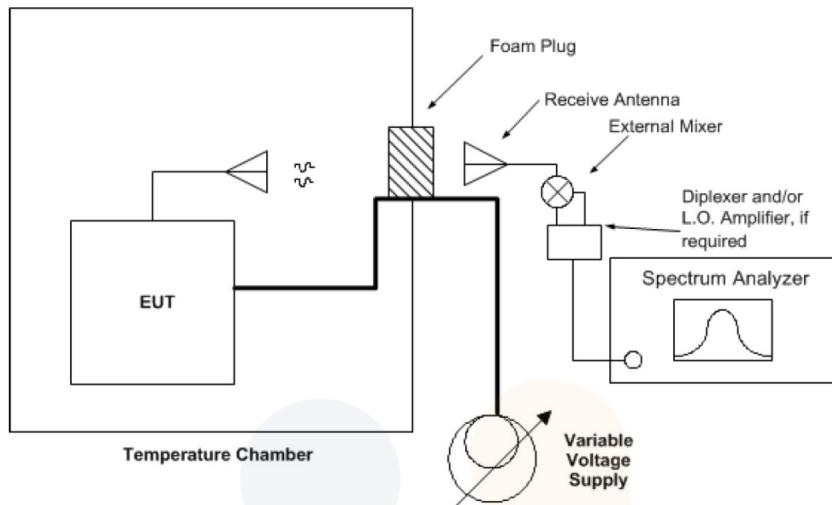
$EIRP_{\text{Linear}} = EIRP$, in watts

D= is the distance at which the power density limit is specified, in m

3.*Noise floor

4. Band edge test results.

Frequency Range: 90 GHz ~ 250 GHz


Frequency (MHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB($\mu\text{V}/\text{m}$))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
No spurious emissions were detected.								

Note.

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total = Reading Value + Antenna Factor + Cable Loss - Amplifier Gain + Distance Factor

5.4. Frequency stability

Test setup

Limit

FCC

According to § 95.3379(b), Fundamental emissions must be contained within the frequency bands specified in Part 95(M) during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

IC

According to RSS 251(11.2), The radar device's occupied bandwidth (i.e. 99% emission bandwidth) shall be maintained within the 76-81 GHz frequency band while subjected to all conditions of operation specified in RSS-Gen.

RSS GSN(8.11), If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation. In addition, its occupied bandwidth shall be entirely outside the restricted bands and the prohibited TV bands of 54-72 MHz, 76-88 MHz, 174-216 MHz, and 470-602 MHz, unless otherwise indicated.

Test procedure

ANSI C63.26-2015 – Section 5.6

The frequency stability of the transmitter is measured by:

1. At 10 °C intervals of temperatures between -30°C and +50°C at the manufacturer's rated supply voltage, and
2. At +20°C temperature and ± 15% supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

Time period and procedure:

1. The carrier frequency of the transmitter is measured at room temperature.
(20 °C to provide a reference)
2. The equipment is turned on in a “standby” condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C.
A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test results**TM1**

Voltage [%]	Voltage [V]	TEMP [°C]	Measure Frequency(F_L) [MHz]	Measure Frequency(F_H) [MHz]
100	12.00	20(Ref.)	76 101.40	76 908.27
		-40	76 108.11	76 881.55
		-30	76 105.38	76 885.59
		-20	76 104.06	76 709.89
		-10	76 104.05	76 879.67
		0	76 103.98	76 877.14
		10	76 103.08	76 713.07
		20	76 106.14	76 850.38
		30	76 103.74	76 882.28
		40	76 102.92	76 876.86
		50	76 102.35	76 877.32
		60	76 102.65	76 879.81
		70	76 104.01	76 854.41
		80	76 108.40	76 855.05
		85	76 106.58	76 848.32
115	13.80	20(Ref.)	76 102.18	76 909.06
85	10.20	20(Ref.)	76 101.52	76 908.34

Note: Fundamental emissions were contained within the frequency bands.

TM2

Voltage	Voltage	TEMP	Measure Frequency(F_L)	Measure Frequency(F_H)
[%]	[V]	[°C]	[MHz]	[MHz]
100	12.00	20(Ref.)	76 200.40	76 909.94
		-40	76 206.12	76 807.46
		-30	76 204.35	76 910.84
		-20	76 202.87	76 805.80
		-10	76 202.68	76 809.48
		0	76 203.36	76 809.64
		10	76 203.19	76 807.95
		20	76 203.47	76 848.42
		30	76 203.57	76 883.09
		40	76 200.81	76 878.63
		50	76 200.89	76 877.11
		60	76 202.07	76 880.56
		70	76 202.30	76 882.06
		80	76 202.71	76 914.91
		85	76 205.37	76 880.56
115	13.80	20(Ref.)	76 200.50	76 909.99
85	10.20	20(Ref.)	76 201.25	76 909.61

Note: Fundamental emissions were contained within the frequency bands.

TM3

Voltage	Voltage	TEMP	Measure Frequency(F_L)	Measure Frequency(F_H)
[%]	[V]	[°C]	[MHz]	[MHz]
100	12.00	20(Ref.)	76 105.61	76 877.85
		-40	76 101.88	76 806.25
		-30	76 103.31	76 805.67
		-20	76 102.37	76 807.07
		-10	76 103.72	76 807.86
		0	76 099.08	76 805.25
		10	76 100.28	76 805.44
		20	76 102.19	76 907.13
		30	76 101.73	76 884.01
		40	76 107.49	76 903.92
		50	76 101.44	76 882.35
		60	76 104.95	76 854.01
		70	76 099.81	76 809.03
		80	76 101.35	76 806.63
		85	76 104.07	76 938.78
115	13.80	20(Ref.)	76 104.21	76 879.75
85	10.20	20(Ref.)	76 105.23	76 876.05

Note: Fundamental emissions were contained within the frequency bands.

6. Measurement equipment

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
UXA Signal Analyzer	KEYSIGHT	N9041B	MY60100003	25.02.01
Spectrum Analyzer	R&S	FSW50	101013	25.07.02
DC Power Supply	AGILENT	E3632A	MY40016393	25.07.01
DC Power Supply	AGILENT	E3632A	MY40027567	25.04.24
Temp & Humid Chamber	Myeongseong R&P	CTHC-50P-DT	20150824-3	25.01.18
Millimeter Wave Source Module	OML, Inc.	S19MS-A	190725-1	25.01.30
Millimeter Wave Source Module	OML, Inc.	S12MS-A	190621-1	24.10.23
Millimeter Wave Source Module	OML, Inc.	S08MS-A	190621-1	24.10.23
Millimeter Wave Source Module	OML, Inc.	S05MS-A	190621-1	24.10.24
Millimeter Wave Source Module	OML, Inc.	S03MS-A	190621-1	24.10.24
Harmonic Mixer	OML, Inc.	M08HWD	190621-1	24.10.23
Harmonic Mixer	OML, Inc.	M05HWD	190621-1	24.10.24
Harmonic Mixer	OML, Inc.	M03HWD	190621-1	24.10.24
Horn Antenna	OML, Inc.	M19RH	190621-1	24.10.24
Horn Antenna	OML, Inc.	M12RH	190621-1	24.10.23
Horn Antenna	OML, Inc.	M08RH	190621-1	24.10.23
Horn Antenna	OML, Inc.	M05RH	190621-1	24.10.23
Horn Antenna	OML, Inc.	M03RH	190621-1	24.10.23
Horn Antenna	OML, Inc.	M19RH	190621-2	24.10.24
Horn Antenna	OML, Inc.	M12RH	190621-2	24.10.23
Horn Antenna	OML, Inc.	M08RH	190621-2	24.10.23
Horn Antenna	OML, Inc.	M05RH	190621-2	24.10.23
Horn Antenna	OML, Inc.	M03RH	190621-2	24.10.23
Horn Antenna	OML, Inc.	M12RH	190621-3	25.01.25
mmWave Down Converter	C&K Technologies, Inc.	DC6091FS-01A	1	25.02.02
Antenna Mast	Innco Systems	MA4640-XP-ET	MA4000/396/30810213/L	-
Controller	Innco Systems	CO3000	1175/45850319/P	-
Controller	INNCO SYSTEMS	CO3000	1442/54370322/P	-
Antenna Mast	INNCO SYSTEMS	MA4640-XP-ET	AM002	-
Turn Device	INNCO SYSTEMS	DS1200-S-1t	0002	-
Spectrum Analyzer	R&S	FSV40	100988	25.05.27

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
PSA Spectrum Analyzer	Agilent	E4440A	MY44303500	25.07.02
Low Noise Amplifier	TESTEK	TK-PA18H	220123-L	24.10.12
Horn Antenna	SCHWARZBECK	BBHA9120D	2764	24.10.18
Low Noise Amplifier	TESTEK	TK-PVA1840H	220234-L	24.10.17
Horn Antenna	SCHWARZBECK	BBHA9170	1266	24.10.16
High Pass Filter	Qotana	DBHF058004000A	23041800061	25.06.24
Amplifier	SONOMA INSTRUMENT	310N	421910	24.10.12
Bilog Antenna	Teseq GmbH	CBL 6112D	61521	24.11.17
Loop Antenna	R&S	HFH2-Z2	100355	26.06.25
DC Power Supply	POWERCOM	DCP-50100A	20220610-01	25.01.19
Signal Generator	R&S	SMB100A	176206	25.01.18
Vector Signal Generator	R&S	SMAV100A	257566	25.07.01
Horn Antenna	SCHWARZBECK	BBHA9120D	2764	24.10.18

End of test report