

FCC TEST REPORT

Test report
On Behalf of
MAX LEAD INTERNATIONAL LIMITED
For
SAKEE Bumper Car
Model No.: SAKEE Bumper Car

FCC ID: 2A3NW-BUMPERCAR

Prepared for: MAX LEAD INTERNATIONAL LIMITED

Unit 503, 5/F., Silvercord Tower 2, 30 Canton Rd., Tsimshatsui, Kowloon, Hong

Kong

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Apr. 01, 2022 ~ Apr. 12, 2022

Date of Report: Apr. 12, 2022

Report Number: HK2204061399-E

TEST RESULT CERTIFICATION

Applicant's name...... MAX LEAD INTERNATIONAL LIMITED

Address Unit 503, 5/F., Silvercord Tower 2, 30 Canton Rd., Tsimshatsui,

Kowloon, Hong Kong

Manufacture's Name Yiwu Qishang Outdoor Products Co., LTD

1 / F, No. 5, Building 1, Tongdian New Village, Choujiang Street,

Yiwu City, Zhejiang Province (Independent declaration), China

Report No.: HK2204061399-E

Product description

Trade Mark: SAKEE

Product name SAKEE Bumper Car

Model and/or type reference .: SAKEE Bumper Car

FCC Rules and Regulations Part 15 Subpart C Section 15.249

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test.....

Date (s) of performance of tests Apr. 01, 2022 ~ Apr. 12, 2022

Date of Issue Apr. 12, 2022

Test Result Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

		Table of Con	itents	Page
1.	TEST SUMMARY			5
2.	GENERAL INFORMA	TION		6
	2.1 GENERAL DESCR	IPTION OF EUT		6
	2.2 Carrier Frequency	of Channels		7
	2.3 Operation of EUT d	HOM		TESTING 7
	2.4 DESCRIPTION OF		HUAK I	HUAK 7
	2.5 MEASUREMENT II		IST	8
3.	CONDUCTED EMIS		TESTING (9
	3.1 Conducted Power I	ine Emission Lin	IIT HUAK	9
	3.2 Test Setup 3.3 Test Procedure			9
	3.4 Test Result			10
	ADIATED EMISSION	I TEST		1 11
	4.1 Radiation Limit	I ILOI		11
	4.2 Test Setup			- 11
	4.3 Test Procedure			12 HUMATES I
	4.4 Test Result			12
5 B	AND EDGE			16
	5.1 Limits			16
	5.2 Test Procedure			16
	5.3 Test Result			17
6 C	CCUPIED BANDWID	TH MEASURE	MENT	18
	6.1 Test Setup			18
	6.2 Test Procedure			18
	6.3 Measurement Equi	pment Used		18
	6.4 Test Result			18
7 A	NTENNA REQUIREN	MENT		19
8 P	HOTOGRAPH OF TE	EST TAK TESTING		20
	8.1 Radiated Emission			20
9 P	HOTOS OF THE FU	Т		21

Page 4 of 21

Report No.: HK2204061399-E

** Modified History **

Revisio	n	Description		Issued	Data	Remark
Revision	1.0	Initial Test Report R	elease	Apr. 12,	2022	Jason Zhou
TESTING	TEST	ING TESTING		ESTING	TESTING	TESTING
HUAIC	HUAL	HIM	HUAN		HUAR	HUAN

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	Dla Dla	RESULT
CONDUCTED EMISSIONS TEST	§ 15.207	N/A
RADIATED EMISSION TEST	§ 15.249 (a) / §15.209	COMPLIANT
BAND EDGE	§ 15.249 (d)/ §15.209	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	§ 15.215 (c)	COMPLIANT
ANTENNA REQUIREMENT	§ 15.203	COMPLIANT

1.2 INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

-C-V"			
Equipment	SAKEE Bumper Car		
Model Name	SAKEE Bumper Car		
Serial Model	N/A	"IAK TESTII"	PANE
Model Difference	N/A	0,	HUAK TES
FCC ID	2A3NW-BUMPERCAR	STAG	9
Antenna Type	Internal Antenna	HUAK	O THE
Antenna Gain	0dBi	- YUAK TEST	HUAKTES
Equipment	SAKEE Bumper Car	0	
Operation frequency	2444MHz		
Number of Channels	1CH	OK TESTING	AK TESTING
Modulation Type	GFSK	O HO	O M
Power Source	DC 3V from Battery	TESTING	
Power Rating	DC 3V from Battery	HUAK	KTESTING.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 7 of 21 Report No.: HK2204061399-E

2.2 Carrier Frequency of Channels

Desc	Description of Channel:							
Channel	Frequency (MHz)							
1	2444							

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode

Channel: 2444MHz

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing:

EUT

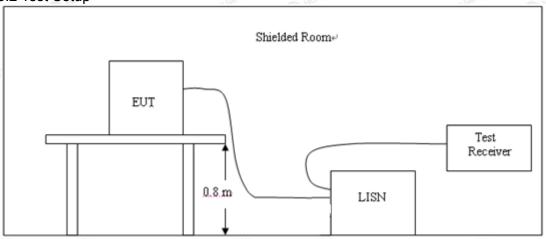
The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
KTESTING	L.I.S.N.	YTESTING	V TEST	ijG	STING	TESTING
1.	Artificial Mains	R&S	ENV216	HKE-002	Feb. 18, 2022	1 Year
TING	Network	TING		TIN		
2.	Receiver	R&S	ESR-7	HKE-010	Feb. 18, 2022	⁰ 1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 18, 2022	1 Year
7. TMC	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Feb. 18, 2022	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 18, 2022	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 18, 2022	1 Year
11.	Pre-amplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	1 Year
13.	EMI Test Software	Tonscend	JY3120-B Version	HKE-083	Feb. 18, 2022	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Feb. 18, 2022	¹ Year
17.	Signal Generator	Agilent	83630A	HKE-028	Feb. 18, 2022	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 17, 2020	3 Year
19.	High gain antenna	Schewarzbeck	LB-180400KF	HKE-054	Feb. 18, 2022	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. CONDUCTED EMISSIONS TEST


3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

F	M	aximum RF Li	ine Voltage (d	BμV)	
Frequency (MHz)	CLAS	SS A	CLASS B		
(11112)	Q.P.	Ave.	Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

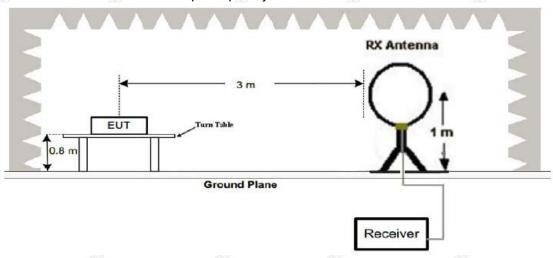
Not applicable

Note: EUT powers supply by DC Power, so this test item not applicable.

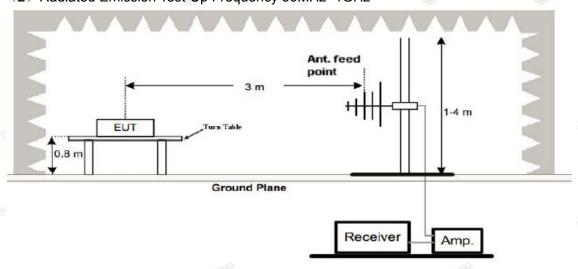
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4 RADIATED EMISSION TEST

4.1 Radiation Limit

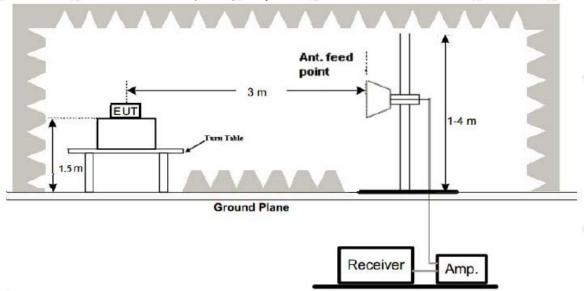

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

(1) Radiated Emission Test-Up Frequency Below 30MHz


(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

(3) Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

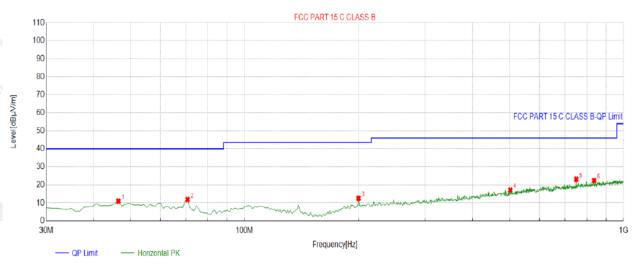
- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).

Note

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

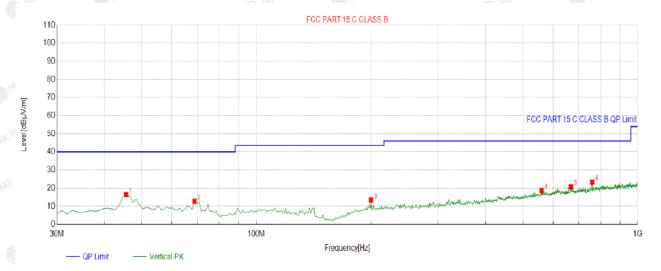
PASS



W TESTING

Below 1GHz Test Results:

Antenna polarity: H



QP Detector

्	Suspected List												
	NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolovity			
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
	1	46.5065	-13.65	24.65	11.00	40.00	29.00	100	252	Horizontal			
	2	70.7808	-17.81	29.65	11.84	40.00	28.16	100	110	Horizontal			
	3	199.9199	-15.07	27.65	12.58	43.50	30.92	100	161	Horizontal			
	4	502.8629	-8.22	25.38	17.16	46.00	28.84	100	30	Horizontal			
	5	750.4605	-3.71	26.77	23.06	46.00	22.94	100	217	Horizontal			
	6	835.9059	-2.51	24.97	22.46	46.00	23.54	100	272	Horizontal			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Antenna polarity: V

QP Detector

Suspe	Suspected List												
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dalawita				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	45.5355	-13.65	30.09	16.44	40.00	23.56	100	206	Vertical				
2	68.8388	-17.38	30.14	12.76	40.00	27.24	100	360	Vertical				
3	199.9199	-15.07	28.47	13.40	43.50	30.10	100	80	Vertical				
4	560.1502	-6.68	25.36	18.68	46.00	27.32	100	274	Vertical				
5	668.8989	-4.63	25.43	20.80	46.00	25.20	100	24	Vertical				
6	760.1702	-3.48	26.75	23.27	46.00	22.73	100	187	Vertical				

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin =Limit - Level

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Page 15 of 21 Report No.: HK2204061399-E

Above 1 GHz Test Results: CH Middle (2444MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datasta
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2444	103.21	-5.71	97.5	114	-16.5	peak
2444	86.66	-5.71	80.95	94	-13.05	AVG
4888	58.72	-3.51	55.21	74	-18.79	peak
4888	45.32	-3.51	41.81	54 s ^{711/6}	-12.19	AVG
7332	56.14	-0.82	55.32	74	-18.68	peak
7332	42.98	-0.82	42.16	54	-11.84	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2444	102.78	-5.71	97.07	114	-16.93	peak
2444	86.52	-5.71	80.81	94	-13.19	AVG
4888	59.72	-3.51	56.21	74	-17.79	peak
4888	78.45	-3.51	74.94	54	20.94	AVG
7332	56	-0.82	55.18	74	-18.82	peak
7332	41.25	-0.82	40.43	54	-13.57	AVG
Remark: Factor	r = Antenna Fa	ctor + Cable I	oss – Pre-amplifier.			

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz •
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4)The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak

detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Page 16 of 21 Report No.: HK2204061399-E

5 BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 1MHz and VBW to 3MHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Radiated Band Edge Test:

Operation Mode: TX CH Low (2444MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310	55.82	-5.81	50.01	74	-23.99	peak	
2310	NATESTING OF HE	-5.81	ESTING / WTESTING	54	TESTING/	AVG	
2390	54.18	-5.84	48.34	74	-25.66	peak	
2390	1	-5.84	/	54	/	AVG	
2400	56.21	-5.84	50.37	74	-23.63	peak	
2400	HOW	-5.84	D HOM	54	1	AVG	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.41	-5.81	50.6	74	-23.4	peak
2310	I	-5.81	1	54	1	AVG
2390	55.02	-5.84	49.18	74	-24.82	peak
2390	I	-5.84		54	1	AVG
2400	54	-5.84	48.16	74	-25.84	peak
2400	1	-5.84	HUAYTES	54	1 HUA	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Setup

Same as Radiated Emission Measurement

6.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW= 39KHz. VBW= 120 KHz, Span=8MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

6.3 Measurement Equipment Used

Same as Radiated Emission Measurement

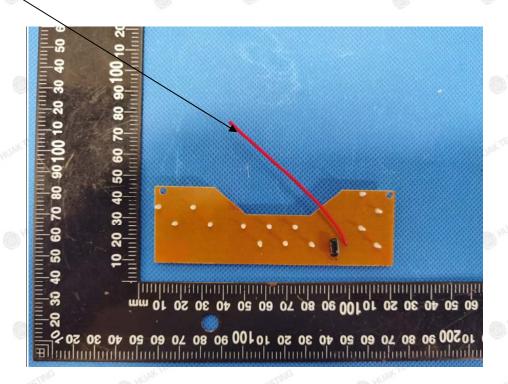
6.4 Test Result

PASS

Frequency	20dB Bandwidth (MHz)	Result	
2444 MHz	2.163	PASS	

CH: 2444MHz

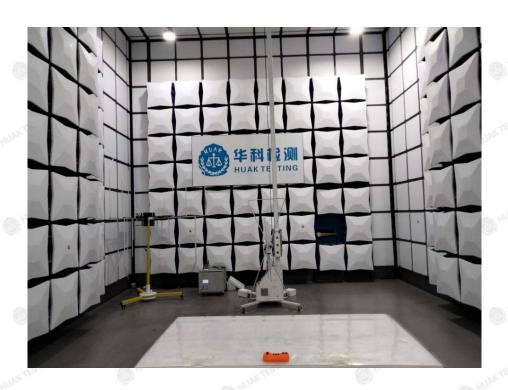
7 ANTENNA REQUIREMENT


Standard Applicable

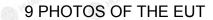
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna which permanently attached. It conforms to the standard requirements, The directional gains of antenna used for transmitting is 0dBi.


ANTENNA

8 PHOTOGRAPH OF TEST


8.1 Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

-----End of test report-----