Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202202-0035-2

Page: 1 of 63

Radio Test Report

FCC ID: 2A3GI-EDGW1302S1

Report No. : TBR-C-202202-0035-2

Applicant : EDA Technology Shanghai Co., Ltd

Equipment Under Test (EUT)

EUT Name : LoRaWan Concentrator Gateway Module

Model No. : ED-GW1302S-915M

Series Model No. : ----

Brand Name : EDATEC

Sample ID : C-202202-0035-1#& C-202202-0035-2#

Receipt Date : 2022-02-11

Test Date : 2022-02-11 to 2022-02-18

Issue Date : 2022-02-18

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : WWW SV

Engineer Manager : ******

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	9
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT	13
5.	CONDUCTED EMISSION	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	14
	5.3 Test Procedure	14
	5.4 Deviation From Test Standard	15
	5.5 EUT Operating Mode	15
	5.6 Test Data	15
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	16
	6.1 Test Standard and Limit	16
	6.2 Test Setup	17
	6.3 Test Procedure	18
	6.4 Deviation From Test Standard	19
	6.5 EUT Operating Mode	
	6.6 Test Data	
7.	EMISSIONS IN NONRESTRICTED FREQUENCY BANDS	20
	7.1 Test Standard and Limit	
	7.2 Test Setup	20
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	99% OCCUPIED AND 20DB BANDWIDTH	
	8.1 Test Standard and Limit	22
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	23

	8.6 Test Data	23
9.	PEAK OUTPUT POWER TEST	24
	9.1 Test Standard and Limit	24
	9.2 Test Setup	24
	9.3 Test Procedure	24
	9.4 Deviation From Test Standard	25
	9.5 EUT Operating Mode	25
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY	26
	10.1 Test Standard and Limit	26
	10.2 Test Setup	
	10.3 Test Procedure	26
	10.4 Deviation From Test Standard	26
	10.5 Antenna Connected Construction	26
	10.6 Test Data	26
11.	CARRIER FREQUENCY SEPARATION	27
	11.1 Test Standard and Limit	27
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 Antenna Connected Construction	28
	11.6 Test Data	28
12.	TIME OF OCCUPANCY (DWELL TIME)	29
	12.1 Test Standard and Limit	
	12.2 Test Setup	29
	12.3 Test Procedure	
	12.4 Deviation From Test Standard	30
	12.5 Antenna Connected Construction	30
	12.6 Test Data	30
13.	NUMBER OF HOPPING FREQUENCIES	31
	13.1 Test Standard and Limit	31
	13.2 Test Setup	31
	13.3 Test Procedure	
	13.4 Deviation From Test Standard	32
	13.5 Antenna Connected Construction	32
	13.6 Test Data	32
14.	HOPPING FUNCTION REQUIREMENTS	33
	14.1 Test Standard and Limit	33
	14.4 Deviation From Test Standard	
	14.6 Test Data	33
15.	ANTENNA REQUIREMENT	34
	15.1 Test Standard and Limit	
	15.2 Deviation From Test Standard	

Report No.: TBR-C-202202-0035-2 Page: 4 of 63

15.3 Antenna Connected Construction	34
15.4 Test Data	34
ATTACHMENT A CONDUCTED EMISSION TEST DATA	35
ATTACHMENT BUNWANTED EMISSIONS DATA	37
ATTACHMENT C—EMISSIONS IN NONRESTRICTED FREQUENCY DATA	49
ATTACHMENT D—99% OCCUPIED AND 20DB BANDWIDTH DATA	53
ATTACHMENT E—PEAK OUTPUT POWER DATA	57
ATTACHMENT F—POWER SPECTRAL DENSITY DATA	59
ATTACHMENT G—CARRIER FREQUENCY SEPARATION DATA	61
ATTACHMENT H—TIME OF OCCUPANCY(DWELL TIME) DATA	62
ATTACHMENT I—NUMBER OF HOPPING FREQUENCY	63

Report No.: TBR-C-202202-0035-2 Page: 5 of 63

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202202-0035-2	Rev.01	Initial issue of report	2022-02-18
The same	WU DA	MODE	The
100	33	TODA TO	3
MILEY	4000		
7000			4000
		CONTRACTOR OF THE PARTY OF THE	
ED.			100
		MODE TO TO	The Carlo
		TO TO	
TOBY	(10)37)		

Page: 6 of 63

1. General Information about EUT

1.1 Client Information

Applicant		EDA Technology Shanghai Co.,Ltd
Address		Room 301, Building 24, Shengchuang Enterprise Park, No.1661 Jialuo Road, Jiading District, Shanghai, PRC
Manufacturer		EDA Technology Shanghai Co.,Ltd
Address	•	Room 301, Building 24, Shengchuang Enterprise Park, No.1661 Jialuo Road, Jiading District, Shanghai, PRC

1.2 General Description of EUT (Equipment Under Test)

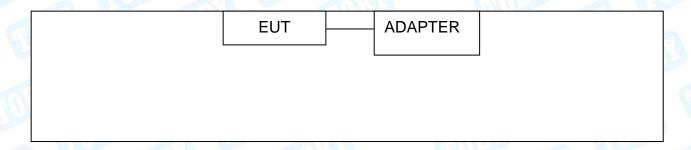
EUT Name		LoRaWan Concentrator Gateway Module				
Models No.):	ED-GW1302S-915M				
Model Different						
Product		Operation Frequency:	LoRa(125KHz): 902.3MHz-914.9MHz			
		Number of Channel:	64 channels			
Description		Antenna Gain:	2.5dBi Dipole Antenna			
MOBIL		Bit Rate of Transmitter:	50kbps			
Power Rating		Input: DC 3.3V/500mA				
Software Version	÷	N/A				
Hardware Version : V1.0						
	l					

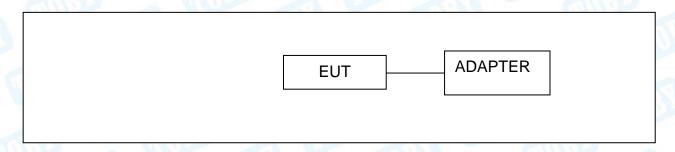
Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant. And the type of antenna please see the external photos.

Report No.: TBR-C-202202-0035-2 Page: 7 of 63

(4) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	902.3	23	906.7	45	911.1
02	902.5	24	906.9	46	911.3
03	902.7	25	907.1	47	911.5
04	902.9	26	907.3	48	911.7
05	903.1	27	907.5	49	911.9
06	903.3	28	907.7	50	912.1
07	903.5	29	907.9	51	912.3
08	903.7	30	908.1	52	912.5
09	903.9	31	908.3	53	912.7
10	904.1	32	908.5	54	912.9
11	904.3	33	908.7	55	913.1
12	904.5	34	908.9	56	913.3
13	904.7	35	909.1	57	913.5
14	904.9	36	909.3	58	913.7
15	905.1	37	909.5	59	913.9
16	905.3	38	909.7	60	914.1
17	905.5	39	909.9	61	914.3
18	905.7	40	910.1	62	914.5
19	905.9	41	910.3	63	914.7
20	906.1	42	910.5	64	914.9
21	906.3	43	910.7	2.1	
22	906.5	44	910.9		


Page: 8 of 63

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

		Equipment Inform	nation				
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"			
	(3)						
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
			133				

Page: 9 of 63

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1	TX Mode Channel 01				
	For Radiated Test				
Final Test Mode	Description				
Mode 1	TX Mode Channel 01				
Mode 2	TX Mode Channel 01/32/64				
Mode 3	Hopping Mode				

Note:

- (1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.
 - According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 63

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version		Windows PowerSI	nell
Frequency	902.3MHz	908.5MHz	914.9MHz
LoRa	2	2	2

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2_{\tau}$ providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 11 of 63

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202202-0035-2 Page: 12 of 63

2. Test Summary

Standard Section	To ad 14 a	T (O 1 - (-)		_	
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	C-202202-0035-1#	PASS	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	C-202202-0035-1#	PASS	N/A	
FCC 15.203	Antenna Requirement	C-202202-0035-2#	PASS	N/A	
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	C-202202-0035-2#	PASS	N/A	
FCC 15.247(b)(1)	Peak Output Power	C-202202-0035-2#	PASS	N/A	
FCC 15.247(f)	Power Spectral Density	C-202202-0035-2#	PASS	N/A	
FCC 15.247(a)(1)	Carrier frequency separation	C-202202-0035-2#	PASS	N/A	
FCC 15.247(f)	Time of occupancy	C-202202-0035-2#	PASS	N/A	
FCC 15.247(b)(1)	Number of Hopping Frequency	C-202202-0035-2#	PASS	N/A (2)	
FCC 15.247(d)	Band Edge	C-202202-0035-2#	PASS	N/A	
FCC 15.207(a)	Conducted Unwanted Emissions	C-202202-0035-2#	PASS	N/A	
FCC 15.205	Emissions in Restricted Bands	C-202202-0035-2#	PASS	N/A	
FCC 15.247(a)(1)	Hopping function Requirements	C-202202-0035-2#	PASS	N/A	
	On Time and Duty Cycle	C-202202-0035-2#	/	N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202202-0035-2 Page: 13 of 63

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted E	mission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
/ector Signal Generator	Agilent	N5182A	MY50141294	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
DE Dower Conser	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022

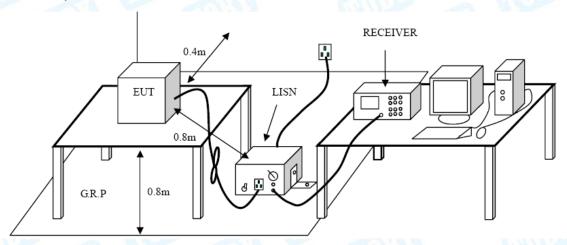
Page: 14 of 63

5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Eraguanav	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- ●The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 15 of 63

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

TOBY

Report No.: TBR-C-202202-0035-2 16 of 63

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz				
Frequency Field Strength Field Strength Measurement				
(MHz)	(μ Α/m)*	(microvolt/meter)**	Distance (meters)	
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300	
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30	
1.705~30.0	0.08	30	30	

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

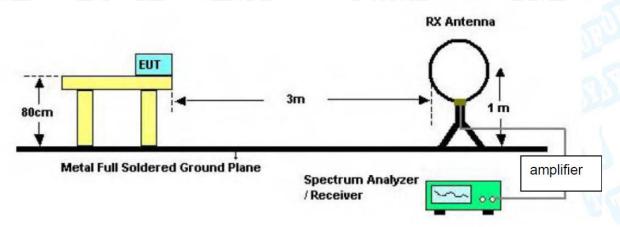
2, *is for RSS Standard, **is for FCC Standard.

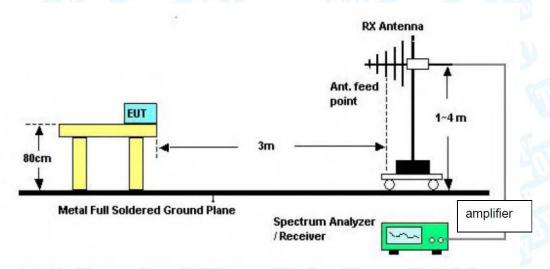
General field strength limits at frequencies above 30 MHz			
Frequency	Field strength	Measurement Distance	
(MHz)	(µV/m at 3 m)	(meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

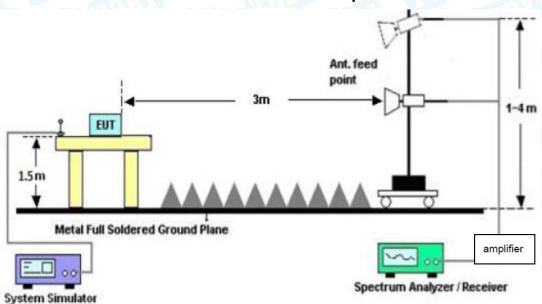
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

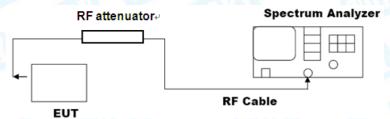

Page: 17 of 63

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Page: 18 of 63

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 19 of 63

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Please refer to the Attachment B.

Page: 20 of 63

7. Emissions in nonrestricted frequency bands

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

Conducted measurement

7.3 Test Procedure

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ [3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Page: 21 of 63

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW ≥ [3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

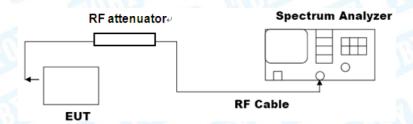
7.6 Test Data

Please refer to the Attachment C.

Page: 22 of 63

8. 99% Occupied and 20dB Bandwidth

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

There are no limits for 20dB bandwidth and 99% occupied bandwidth.

8.2 Test Setup

8.3 Test Procedure

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring

Page: 23 of 63

instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

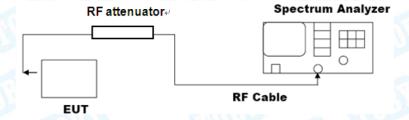
8.6 Test Data

Please refer to the Attachment D.

Page: 24 of 63

9. Peak Output Power Test

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
	f≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
Peak Output Power	t ch ≤ 0.4 s for $T = 20$ s	902~928
reak Output Fower	$P_{\text{max-pk}} \le 0.25 \text{W}$	902~928
	25≤ <i>Nch</i> <50	Ulin a
	f ≥ MAX { 25 kHz, BW _{20dB} }	
010	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	
t_{ch} = average time of occ	supancy; $T = period$; $N_{ch} = \# hopping$	frequencies; BW = bandwidth;
f =	= hopping channel carrier frequency	separation

9.2 Test Setup

9.3 Test Procedure

- ●This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
- a) Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW≥ RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

Page: 25 of 63

e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

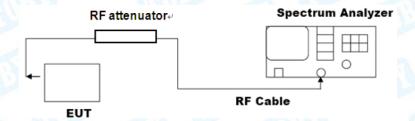
9.6 Test Data

Please refer to the Attachment E.

Page: 26 of 63

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(f)

10.1.2 Test Limit

Test Item	Limit
Power Spectral Density	8dBm(in any 3 kHz)

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

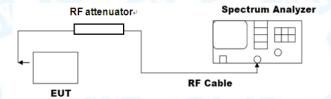
10.6 Test Data

Please refer to the Attachment F.

Page: 27 of 63

11. Carrier frequency separation

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.247(a)(1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
	P _{max-pk} ≤ 1 W		
	<i>N_{ch}</i> ≥ 50		
	f ≥ MAX { 25 kHz, BW _{20dB} }		
Carrier frequency	BW _{20dB} ≤250KHz		
	t ch ≤ 0.4 s for $T = 20$ s	902~928	
separation	<i>P</i> _{max-pk} ≤ 0.25W	902~926	
	25≤ <i>Nch</i> <50	The state of the s	
	f ≥ MAX { 25 kHz, BW _{20dB} }		
0.0	250KHz <bw<sub>20dB ≤500KHz</bw<sub>		
	t ch ≤ 0.4 s for $T = 10$ s	1:33	
tch = average time of occ	t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth;		
f:	= hopping channel carrier frequency	separation	

11.2 Test Setup

11.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Page: 28 of 63

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

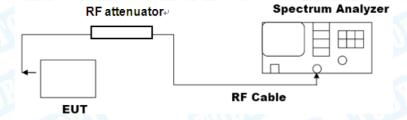
11.6 Test Data

Please refer to the Attachment G.

Page: 29 of 63

12. Time of occupancy (Dwell time)

12.1 Test Standard and Limit


FCC Part 15.247(f)

12.1.1 Test Standard

12.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	<i>P</i> _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
Time of occupancy	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
	t ch ≤ 0.4 s for $T = 20$ s	902~928
(dwell time)	<i>P</i> _{max-pk} ≤ 0.25W	
	25≤ <i>N</i> _{ch} <50	The state of the s
MILLER	f ≥ MAX { 25 kHz, BW _{20dB} }	
	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	1,373 × 0.107.

12.2 Test Setup

12.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \Box channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping

Page: 30 of 63

channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

12.4 Deviation From Test Standard

No deviation

12.5 Antenna Connected Construction

Please refer to the description of test mode.

12.6 Test Data

Please refer to the Attachment H.

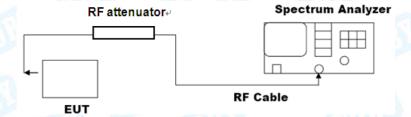
Page: 31 of 63

13. Number of hopping frequencies

13.1 Test Standard and Limit

13.1.1 Test Standard

FCC Part 15.247(b)(1)


13.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	Nch ≥ 50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
Carrier frequency	t ch ≤ 0.4 s for $T = 20$ s	002 028
separation	<i>P</i> _{max-pk} ≤ 0.25W	902~928
TO TO THE	25≤ <i>Nch</i> <50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	250KHz <bw20db td="" ≤500khz<=""><td></td></bw20db>	
	t ch ≤ 0.4 s for $T = 10$ s	

 t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth; f = hopping channel carrier frequency separation

There is no minimum number of hopping channels associated with this type of hybrid system. While there is not a specific minimum limit, the hop sequence is required to appear as pseudorandom per Section 15.247(a)(1) (see Section 3 of this document).

13.2 Test Setup

13.3 Test Procedure

- ●The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.

Page: 32 of 63

g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

13.4 Deviation From Test Standard

No deviation

13.5 Antenna Connected Construction

Please refer to the description of test mode.

13.6 Test Data

Please refer to the Attachment I.

Page: 33 of 63

14. Hopping function Requirements

14.1 Test Standard and Limit

14.1.1 Test Standard FCC Part 15.247(a)(1)

14.1.2 Test Limit

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

14.4 Deviation From Test Standard

No deviation

14.6 Test Data

The transmitter follows the LoRa alliance protocol which complies with the pseudo-random hop sequence, equal use of each frequency, and receiver matching bandwidth and synchronization requirements.

Page: 34 of 63

15. Antenna Requirement

15.1 Test Standard and Limit

15.1.1 Test Standard

FCC Part 15.203

15.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.2 Deviation From Test Standard

No deviation

15.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.5dBi, and the antenna de-signed with Unique connector antenna and consideration of replacement. Please see the EUT photo for details.

15.4 Test Data

The EUT antenna is a external antenna. It complies with the standard requirement.

	Antenna Type	
100	☐Permanent attached antenna	00
a Course	⊠Unique connector antenna	
2)	Professional installation antenna	000

Page: 35 of 63

Attachment A-- Conducted Emission Test Data

			9123										
emperature:	24.4℃		Rel	ative Humid	ity: 4	4%							
est Voltage:	AC 120	AC 120V/60Hz											
erminal:	Line		THE STATE OF THE S		CM.	11.70							
est Mode:	Mode 1	Mode 1											
Remark:	Only w	Only worse case is reported.											
80.0 dBuV						QP:	_						
						AVG:							
30	N _w Mayor												
VIVV	Mary Mary	avaranaminanani Mahampahampani	MANTENANTAN ANTONIO	and for the specifical burners	pullen esta de la participa de	Market Market	peak						
-20													
0.150	0.5		(MHz)	5			30.000						
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over							
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector						
1	0.2020	31.81	11.67	43.48	63.52	-20.04	QP						
2	0.2020	12.70	11.67	24.37	53.52	-29.15	AVG						
3 *	0.3620	27.90	11.53	39.43	58.68	-19.25	QP						
4	0.3620	12.01	11.53	23.54	48.68	-25.14	AVG						
5	0.4660	14.96	11.53	26.49	56.58	-30.09	QP						
6	0.4660	0.44	11.53	11.97	46.58	-34.61	AVG						
7	2.2139	2.71	10.61	13.32	56.00	-42.68	QP						
8	2.2139	-2.62	10.61	7.99	46.00	-38.01	AVG						
9	5.9100	8.45	10.12	18.57	60.00	-41.43	QP						
10	5.9100	1.83	10.12	11.95	50.00	-38.05	AVG						
11	13.9700	12.95	10.52	23.47	60.00	-36.53	QP						
	Fest Voltage: Ferminal: Fest Mode: Remark: 80.0 dBuV -20 0.150 No. Mk. 1 2 3 * 4 5 6 7 8 9 10	Remark: Only w 80.0 dBuv 80.0 dBuv No. Mk. Freq. MHz 1 0.2020 2 0.2020 3 * 0.3620 4 0.3620 5 0.4660 6 0.4660 7 2.2139 8 2.2139 9 5.9100 10 5.9100	Reading No. Mk. Freq. Level MHz dBuV 1 0.2020 31.81 2 0.2020 12.70 3 * 0.3620 27.90 4 0.3620 12.01 5 0.4660 14.96 6 0.4660 0.44 7 2.2139 2.71 8 2.2139 -2.62 9 5.9100 8.45 10 5.9100 1.83	Test Voltage: Line Test Mode: Mode 1 Remark: Only worse case is reported. 80.0 dBuV Test Mode: Mode 1 Remark: Only worse case is reported. Remark: Reading Correct Factor MHz dBuV dB 1 0.2020 31.81 11.67 2 0.2020 12.70 11.67 3 * 0.3620 27.90 11.53 4 0.3620 12.01 11.53 5 0.4660 14.96 11.53 6 0.4660 0.44 11.53 7 2.2139 2.71 10.61 8 2.2139 -2.62 10.61 9 5.9100 8.45 10.12 10 5.9100 1.83 10.12	No. Mk. Freq. Reading Correct Measure-ment MHz dBuV dB dBuV	No. Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dB	No. Mk. Freq. Reading Level Factor Measure Measure						

10.52

16.95

Remark:

12

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

6.43

13.9700

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

AVG

50.00 -33.05

Tempe	rature:	24.4°C			Relative Hui	midity:	44%				
Test Vo	ltage:	AC 120V/60Hz									
Termin	al:	Neutral									
Test Mo	ode:	Mode 1									
Remarl	K:	Only v	vorse case	is reported.				MID P			
30	MANA A	M. Maryon	And March March	bhaff hor het seed ha bha so con	Market	Linnen	QP: AVG:	peak			
-20 0.150	Mk. F	o.5	Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000			
		164. 1Hz	dBuV	dB	dBuV	dBuV	dB	Detector			
		780	33.06	11.65	44.71		-19.86	QP			
$-\frac{1}{2}$		780	13.18	11.65	24.83		-29.74	AVG			
3		660	27.82	11.52	39.34		-19.25	QP			
4		660	12.51	11.52	24.03		-24.56	AVG			
5		100	7.93	11.50	19.43		-36.57	QP			
6		100	-3.12	11.50	8.38		-37.62	AVG			
	17			10.04	16.49	56 00	-39.51	QP			
7	4.7	220	6.45	10.01							
7 8		220 220	-0.36	10.04	9.68		-36.32	AVG			
	4.7					46.00	-36.32 -41.36	AVG QP			
8	4.7 9.6	220	-0.36	10.04	9.68	46.00 60.00					
8	4.7 9.6	220 820 820	-0.36 8.41	10.04 10.23	9.68 18.64	46.00 60.00 50.00	-41.36	QP			

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 37 of 63

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

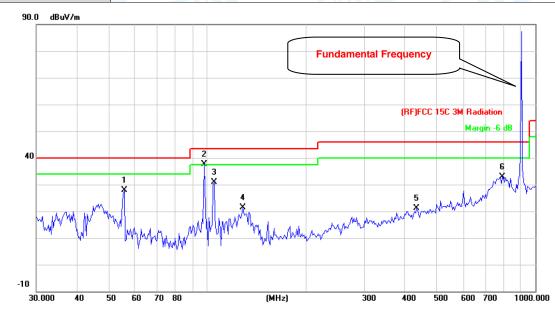
30MHz~1GHz

emperat	ure:	23.4	\mathbb{C}			The same	Relative H	lumidity:	45	5%		
est Volta	ige:	AC	120V	//60H	łz		CHILL		1		A PER	
nt. Pol.		Hori	zont	al		100						1
est Mod	е:	Mod	le 2 ((902.	3MHz	2)			A	1	10	
emark:		Only	/ WOI	rse ca	ase is	reported.	MEDI		197			
90.0 dBuV	/m											
							Fundame	ental Frequen	су			
										\nearrow		
								(RF)FC	C 15C 3	M Rad	liation	
										Mar	gin -6 c	iB
40			+							5 *	6	Щ
			Т	\sqcup				3 4 X X		1	WY.	l II
			×					4 ''		-	R	*W
			يا. ا			2	~ MM	May It	MM	W.W	<i>J</i> *	
many of the same	~¶Mr			who	how	2 /*\ _W W _W W	Muserman	Maynamal	MM	WW.	<i>y</i>	
many	ng M	~~*********		WW	lyw	2 M ^X VWWWWW	Mary Mary	Mymmal	MM	WW	JY	
	w.Mw			WW	how	2 // ^X \ _W / _W / _W	Market	Myman	MM	Whw		
	40		A May	80	hoyu	2 // ^X \/ _W // _W /// (MHz)	Manufacture of the second of t	300 400	500	600	700	1000
-10		~~/ ^M / _M	A May	80		(MHz)		300 400	500	600	700	1000
30.000		50 60	70	80 Rea	iding vel	MX WWW.W	Measure- ment	300 400	500 Ove		700	1000
30.000	40	50 60	70 :	Rea Le	nding	(MHz)	Measure-	300 400		er	700 Dete	_
30.000	40	50 60 Fred	70 :	Rea Le	iding vel	(MHz) Correct Factor	Measure- ment	300 400 Limit	Ove	er		ctor
30.000 No.	40	50 60 Frec	70 : 1. :	Rea Le ^o	ading vel	(MHz) Correct Factor dB/m	Measure- ment	300 400 Limit dBuV/m	Ove	er 3	Dete	ctor ak
30.000 No.	40	50 60 Fred MHz	70 : 1. : 62	Rea Lev dB 53	ading vel BuV	(MHz) Correct Factor dB/m -24.04	Measure- ment dBuV/m 29.22	300 400 Limit dBuV/m 40.00	Ove	er .78	Dete pe	ctor ak ak
No. 10 2	40	Frec MHz 66.266 132.68	70 :: 	Rea Le ^v dB 53 42	iding vel 8uV .26	(MHz) Correct Factor dB/m -24.04 -22.59	Measure- ment dBuV/m 29.22 19.80	Limit dBuV/m 40.00 43.50	Ove dB -10.	er .78 .70	Dete pe	ctor ak ak ak
No. 10 2 30.000	40	Fred MHz 66.268 132.68 309.99	70 : ::::::::::::::::::::::::::::::::::	Rea Lev dB 53 42 46 43	ading vel .26 .39	(MHz) Correct Factor dB/m -24.04 -22.59 -15.97	Measure- ment dBuV/m 29.22 19.80 30.75	Limit dBuV/m 40.00 43.50 46.00	Ove dB -10. -23. -15.	er .78 .70 .25	Dete pe pe	ak ak ak

*:Maximum data

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

x:Over limit !:over margin

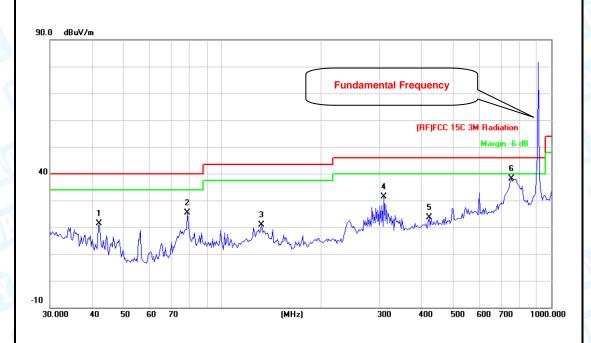

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 38 of 63

Temperature:	23.4 ℃	Relative Humidity:	45%
Test Voltage:	AC 120V/60Hz		White and the second
Ant. Pol.	Vertical		NO.
Test Mode:	Mode 2 (902.3MHz)		
Remark:	Only worse case is repo	rted.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		55.6094	52.13	-24.14	27.99	40.00	-12.01	peak
2	*	97.4560	59.73	-22.21	37.52	43.50	-5.98	peak
3		104.5361	53.29	-22.40	30.89	43.50	-12.61	peak
4		128.1130	43.83	-22.55	21.28	43.50	-22.22	peak
5		434.0651	33.27	-12.17	21.10	46.00	-24.90	peak
6		793.3960	38.48	-5.69	32.79	46.00	-13.21	peak

^{*:}Maximum data x:Over limit !:over margin

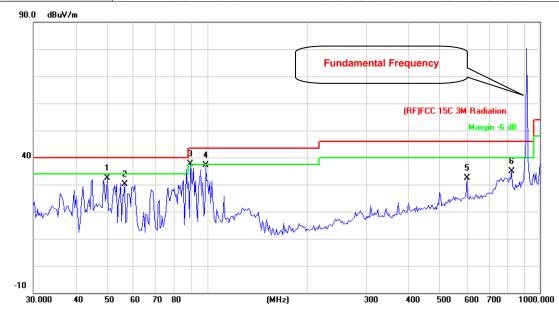

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 39 of 63

	Temperature:	23.4°C	Relative Humidity:	45%
V	Test Voltage:	AC 120V/60Hz		CHILD'S
	Ant. Pol.	Horizontal		
F	Test Mode:	Mode 2 (908.5MHz)		
3	Remark:	Only worse case is reporte	ed.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		42.3022	42.06	-20.59	21.47	40.00	-18.53	peak
2		78.4133	48.16	-22.82	25.34	40.00	-14.66	peak
3		131.7577	43.44	-22.58	20.86	43.50	-22.64	peak
4		309.9977	47.26	-15.97	31.29	46.00	-14.71	peak
5		425.0280	35.81	-12.24	23.57	46.00	-22.43	peak
6	*	755.3873	44.53	-6.44	38.09	46.00	-7.91	peak

^{*:}Maximum data x:Over limit !:over margin

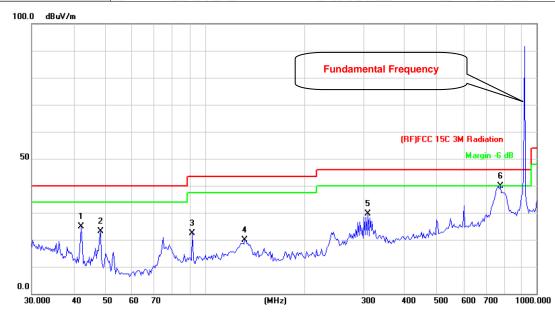

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 40 of 63

Temperature:	23.4℃	Relative Humidity:	45%					
Test Voltage:	AC 120V/60Hz	120V/60Hz						
Ant. Pol.	Vertical	ertical						
Test Mode:	Mode 2 (908.5MHz)		W. S.					
Remark:	Only worse case is report	ed.						

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		50.0566	55.98	-23.56	32.42	40.00	-7.58	peak
2		56.3948	54.36	-24.24	30.12	40.00	-9.88	peak
3	*	88.9639	59.75	-22.17	37.58	43.50	-5.92	peak
4		98.8326	59.42	-22.23	37.19	43.50	-6.31	peak
5		603.5392	40.66	-8.38	32.28	46.00	-13.72	peak
6		821.7103	40.38	-5.50	34.88	46.00	-11.12	peak

^{*:}Maximum data x:Over limit !:over margin

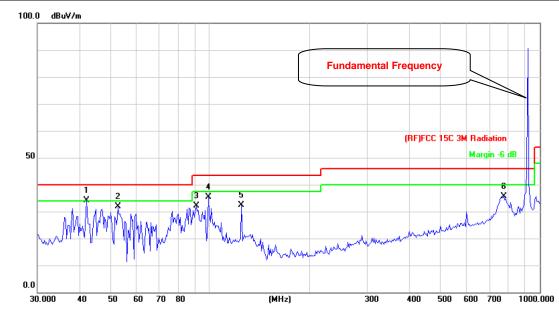

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 41 of 63

•	Temperature:	23.4℃	Relative Humidity:	45%				
V	Test Voltage:	AC 120V/60Hz						
-	Ant. Pol.	Horizontal	prizontal					
9	Test Mode:	Mode 2 (914.9MHz)						
	Remark:	Only worse case is reported	d.					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		42.3022	45.41	-20.59	24.82	40.00	-15.18	peak
2		48.3318	46.23	-23.00	23.23	40.00	-16.77	peak
3		91.4949	44.58	-22.13	22.45	43.50	-21.05	peak
4		131.7577	42.37	-22.58	19.79	43.50	-23.71	peak
5		309.9977	45.52	-15.97	29.55	46.00	-16.45	peak
6	*	776.8778	45.86	-6.02	39.84	46.00	-6.16	peak

^{*:}Maximum data x:Over limit !:over margin


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 42 of 63

•	Temperature:	23.4℃	Relative Humidity:	45%				
V	Test Voltage:							
-	Ant. Pol.	Vertical	ertical					
F	Test Mode:	Mode 2 (914.9MHz)	Mode 2 (914.9MHz)					
	Remark:	Only worse case is reported	ed.					

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	42.3022	54.72	-20.59	34.13	40.00	-5.87	peak
2	2		52.5753	55.74	-23.82	31.92	40.00	-8.08	peak
3	}		90.8554	54.27	-22.12	32.15	43.50	-11.35	peak
4	ļ		98.8326	57.65	-22.23	35.42	43.50	-8.08	peak
5)		124.5690	54.98	-22.50	32.48	43.50	-11.02	peak
6)		776.8778	41.67	-6.02	35.65	46.00	-10.35	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 43 of 63

Above 1GHz

Temperature:	23.4℃	Relative Humidity:	45%
Test Voltage:	AC 120V/60Hz	THE PARTY OF THE P	A Alle
Ant. Pol.	Horizontal		11:32
Test Mode:	TX 902.3MHz	O	
Remark:	Only worse case is reported	d. CONTO	3

N	lo. M	lk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2	706.490	43.24	2.97	46.21	54.00	-7.79	AVG
2		2	706.680	59.14	2.97	62.11	74.00	-11.89	peak

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	45%					
Test Voltage:	AC 120V/60Hz	WURR -	MAG					
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 902.3MHz	TX 902.3MHz						
Remark:	Only worse case is repo	rted.						

No	. Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2706.596	60.15	2.97	63.12	74.00	-10.88	peak
2	*	2706.960	43.24	2.98	46.22	54.00	-7.78	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 44 of 63

Temperature:	23.4℃	Relative Humidity:	45%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX 908.5MHz	TX 908.5MHz						
Remark:	Only worse case is reported							

1	Vo.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			2725.042	59.29	2.95	62.24	74.00	-11.76	peak
2		*	2725.636	43.16	2.95	46.11	54.00	-7.89	AVG

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	45%
Test Voltage:	AC 120V/60Hz	WILLIAM STATE	THUL
Ant. Pol.	Vertical		
Test Mode:	TX 908.5MHz	7	TO V
Remark:	Only worse case is report	ed.	

No). N	Λk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2	2725.496	41.17	2.95	44.12	54.00	-9.88	AVG
2		2	2725.938	58.30	2.95	61.25	74.00	-12.75	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

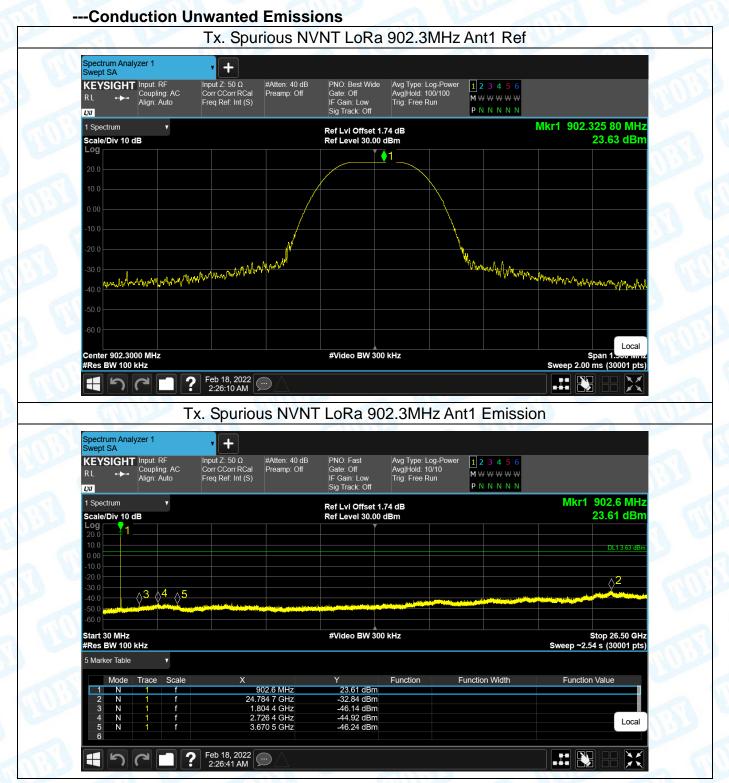
Page: 45 of 63

Temperature:	23.4℃	Relative Humidity:	45%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX 914.9MHz	TX 914.9MHz						
Remark:	Only worse case is reported	ed.						

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2744.362	60.26	2.95	63.21	74.00	-10.79	peak
2	*	2744.658	49.19	2.95	52.14	54.00	-1.86	AVG

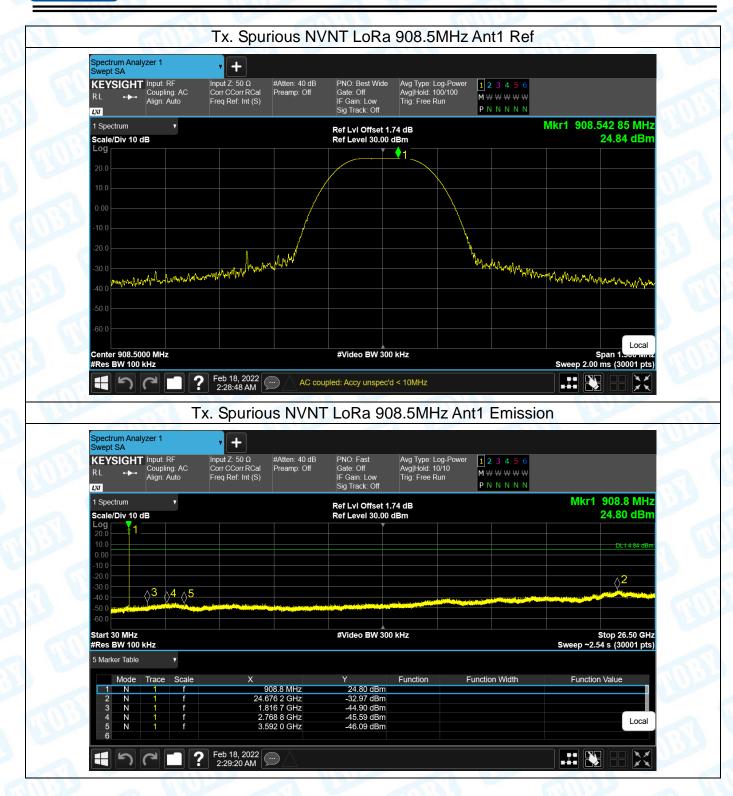
Remark:

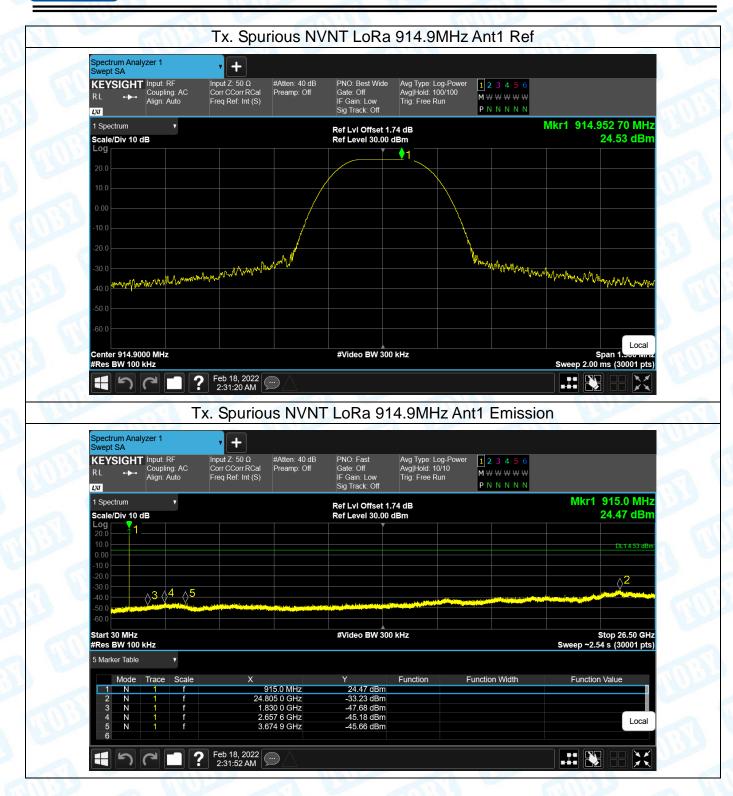
- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.


Temperature:	23.4 °C	Relative Humidity:	45%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 914.9MHz	TX 914.9MHz						
Remark:	Only worse case is repo	rted.						

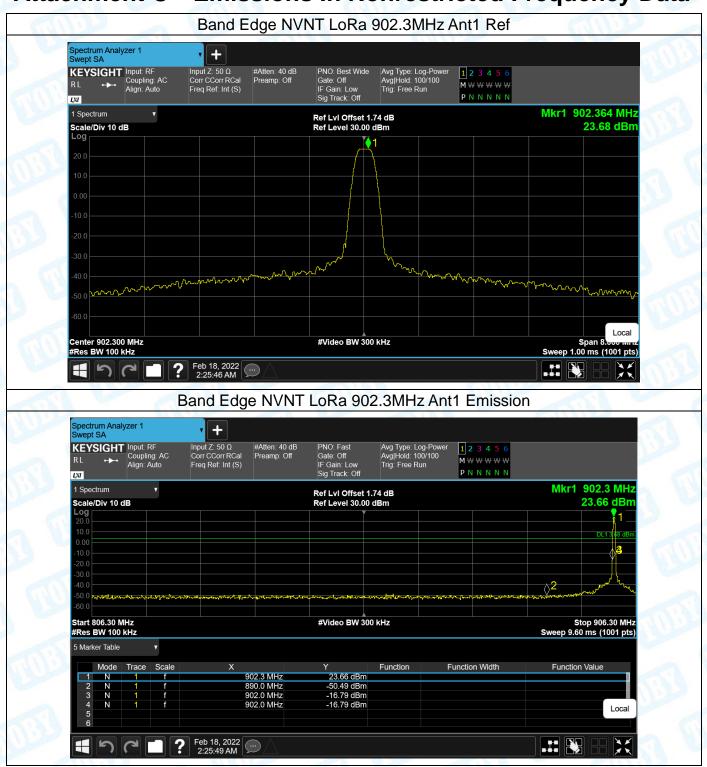
No	o. MI	K. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2744.312	48.27	2.95	51.22	54.00	-2.78	AVG
2		2745.040	62.16	2.94	65.10	74.00	-8.90	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

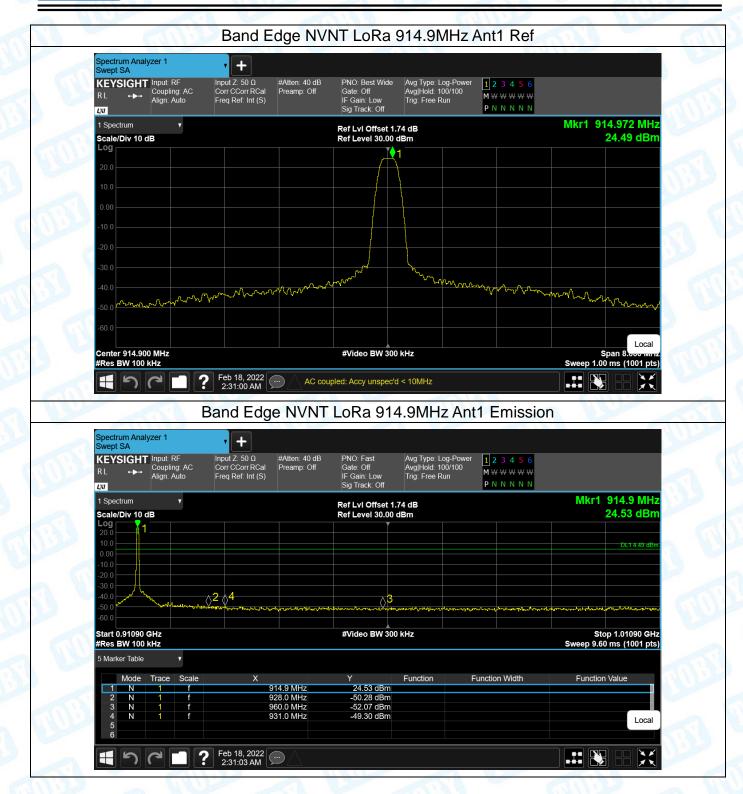

Page: 46 of 63


Page: 47 of 63

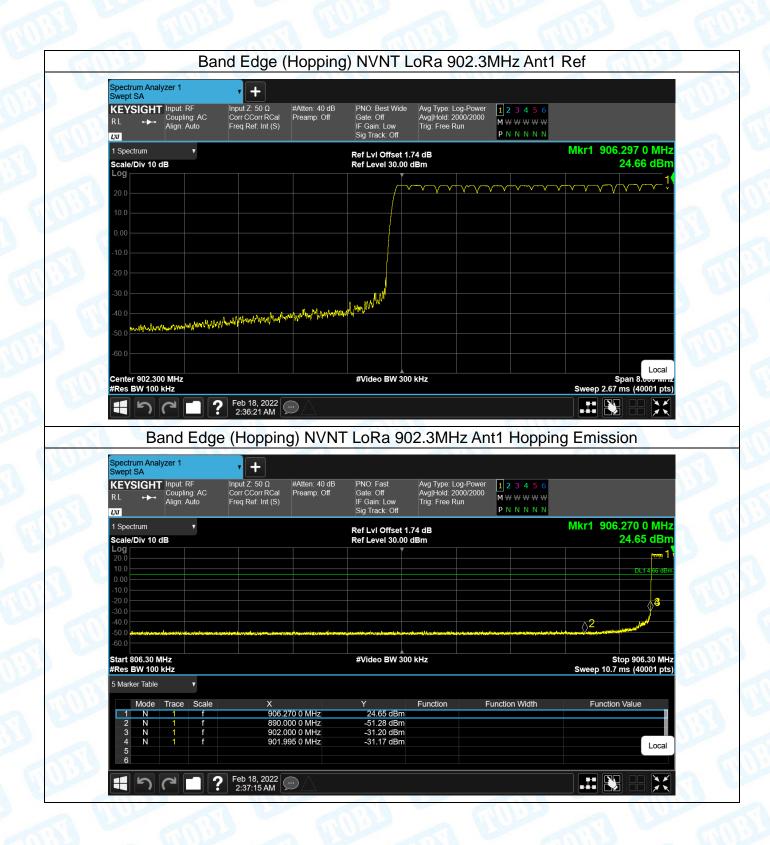
Page: 48 of 63

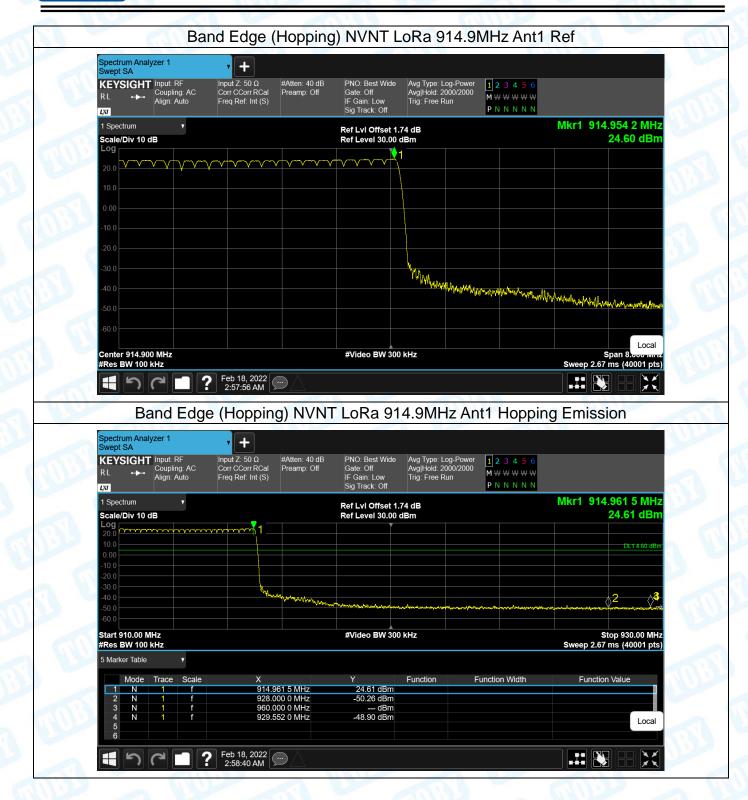


Page: 49 of 63

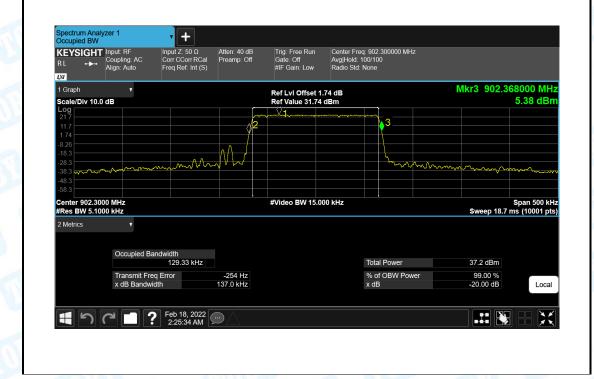

Attachment C—Emissions In Nonrestricted Frequency Data

Page: 50 of 63




Page: 51 of 63

Page: 52 of 63



Page: 53 of 63

Attachment D—99% Occupied and 20dB Bandwidth Data

25℃		Relative Humidity:	55%			
DC 3	3.3V					
TX N	lode		Oliver Control			
ency	20dB Bandwidth	20dB Bandwidth	Limit			
	(kHz)	*2/3 (kHz)	(kHz)			
902.3 137.0		91.3				
908.5		908.5 137.8		908.5 137.8 91.8		/
914.9		92.5				
	DC 3	(kHz) 137.0	DC 3.3V TX Mode ency 20dB Bandwidth (kHz) *2/3 (kHz) 137.0 91.3 137.8 91.8			


902.3MHz

Page: 54 of 63

		r°0			Dalat	dana III.		EE0/	3
mperature		5°C		2.0	Kelat	ive Hu	midity:	55%	
st Voltage	: D	C 3.3V			1	100			
st Mode:	T	X Mode	100		(193			Militar	
hannel fre	quenc	у		99% Ba	ndwid	th			Limit
(MHz	:)			(k	Hz)				(kHz)
902.3	3			120	6.34				
908.	5			128	3.92				/
914.9	9			128	3.77				
				902.31	VIHz				
Spectrum Analyze	er 1	+							
KEYSIGHT In	put: RF	Input Z: 50 Ω	Atten: 40 dB		n Center F	req: 902.300000	MHz		
RL →→ Al	oupling: AC lign: Auto	Corr CCorr RC Freq Ref: Int (Cal Preamp: Off (S)	Gate: Off #IF Gain: Low	Avg Hold Radio Sto	d: None			
1 Graph Scale/Div 10.0 di	•			Ref LvI Offse Ref Value 31.					
Log 21.7				Rei value 31.	.74 dbm	~~~			
11.7									
-8.26 -18.3									
000		a amad	Mhh			- N	$\sim\sim\sim\sim$	- 02 A m	
-38.3	$\sim \sim \sim$	A. A					~ 0.0		mark was
	~~~~						3 017		
-38.3 -48.3 -58.3 <b>Center 902.3000</b>	MHz			#Video BW 1	5.000 kHz		3 0,0		Span 500 kHz
-38.3 -48.3 -58.3	MHz			#Video BW 1	5.000 kHz		7 010		Span 500 kHz 7 ms (10001 pts)
-38.3 -48.3 -58.3 Center 902.3000 #Res BW 5.1000	MHz kHz			#Video BW 1:	5.000 kHz		3 017		Span 500 kHz 7 ms (10001 pts)
-38.3 -48.3 -58.3 Center 902.3000 #Res BW 5.1000	MHz kHz			#Video BW 1:	5.000 kHz	Total Powe			Span 500 kHz 7 ms (10001 pts)
-38.3 -48.3 -58.3 Center 902.3000 #Res BW 5.1000	MHz kHz v	andwidth 126.34 kHz eq Error	z 1.361 kHz	#Video BW 1:	5.000 kHz	% of OBW		Sweep 18.	7 ms (10001 pts)
-38.3 -48.3 -58.3 Center 902.3000 #Res BW 5.1000	MHz kHz v	andwidth 126.34 kHz eq Error	z	#Video BW 1	5.000 kHz			Sweep 18.	Span 500 kHz 7 ms (10001 pts)
-38.3 -48.3 -58.3 Center 902.3000 #Res BW 5.1000	MHz kHz v	andwidth 126.34 kHz eq Error ridth	z 1.361 kHz 134.8 kHz	#Video BW 1:	5.000 kHz	% of OBW		Sweep 18.	7 ms (10001 pts)

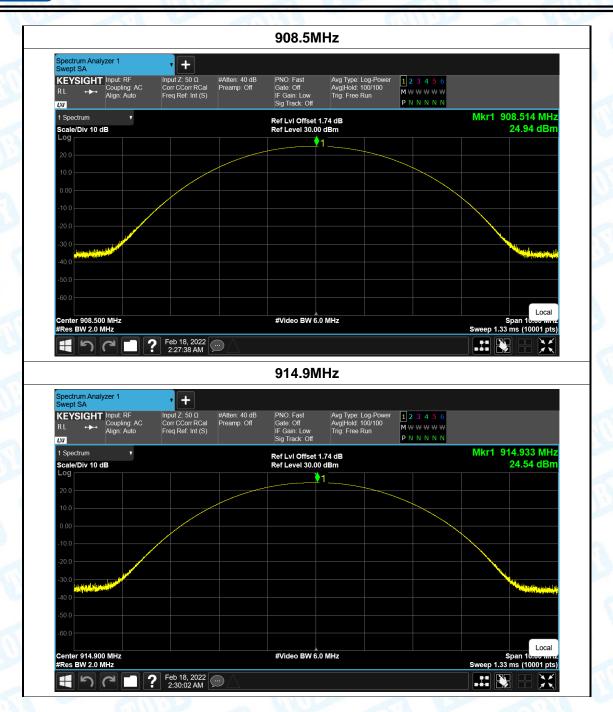




Page: 56 of 63








# **Attachment E—Peak Output Power Data**

mperature:	25°C Relative Humid			nidity:	55%		
st Voltage:	DC 3.3V	MID				1	1 Comment
st Mode:	TX Mode	100	an'			MAR	-
hannel frequen	Test Result (dBm)			Limit (dBm)			
902.3	23.78			30			
908.5	24.94						
914.9			24.54				
			902.3M	Hz			
Spectrum Analyzer 1 Swept SA	+						
RL Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	#Atten: 40 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Avg Hold: 100/100 Trig: Free Run	1 2 3 4 5 6 M W W W W W P N N N N N		
1 Spectrum ▼ Scale/Div 10 dB			Ref Lvl Offset 1. Ref Level 31.74			Mkr1	902.228 MHz 23.78 dBm
21.7			•1				
11.7							
1.74							
-8.26							
-18.3						1	u ₁ ,
-38.3							A Control of the Cont
-48.3							
-58.3							Local
Center 902,300 MHz			#Video BW 6.0	MUz			Span 10,000 mmz



Page: 58 of 63



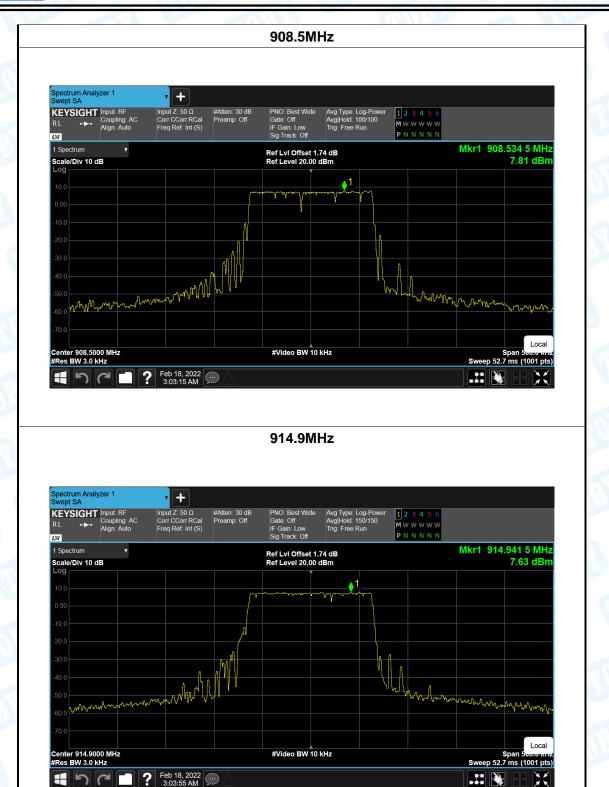




Page: 59 of 63

# **Attachment F—Power Spectral Density Data**

25℃ Relative Hu			midity: 55%			
DC 3.3V	4000			57	1	
TX Mode	600	133	- EM	11500		
Channel Frequency (MHz)		Power Density (dBm/3kHz)		t	Result	
				(dBm/3kHz)		
	6.08	3				
	7.81		8		PASS	
	7.63	3				
	DC 3.3V TX Mode	DC 3.3V  TX Mode  Jency Power Do  (dBm/3)  6.08  7.86	TX Mode  Power Density (dBm/3kHz)  6.08	DC 3.3V  TX Mode  Limit (dBm/3kHz)  6.08  7.81  8	DC 3.3V  TX Mode  uency	

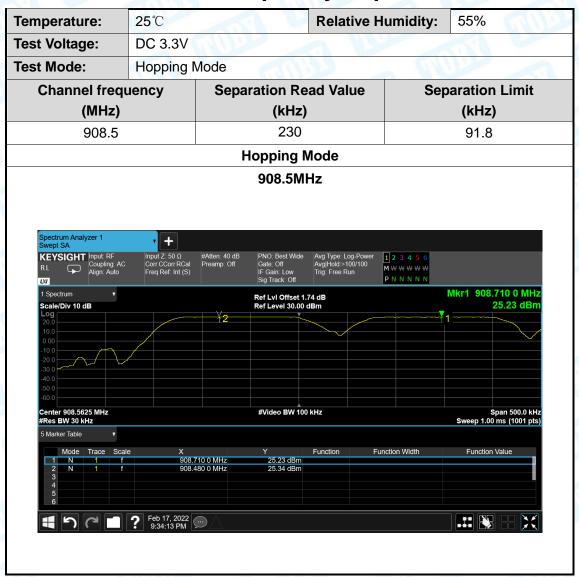

902.3MHz







Page: 60 of 63








Page: 61 of 63

# **Attachment G—Carrier Frequency Separation Data**





TOBY

Page: 62 of 63

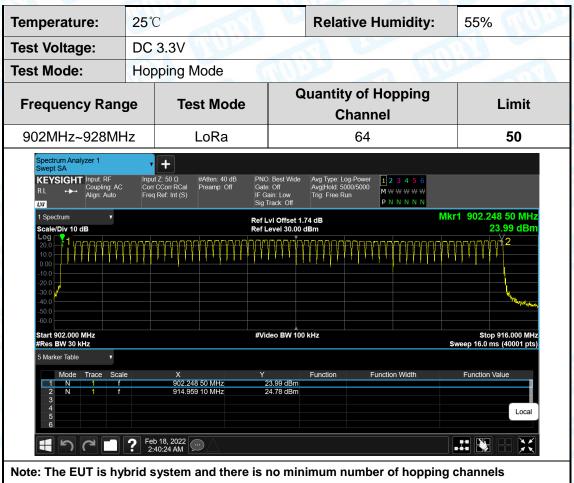
# Attachment H—Time of Occupancy(Dwell Time) Data

Test Mode	Number of Channel	Observation Period (0.4s* Number of Channel) (s)	Max. Duration of  Each Bust (s)	Number of Burst Repetition During Observation Period	Average Time of Occupancy on any Channel	Limit (s)
Hopping Mode	64	25.6	0.0378	5	0.189	0.4

#### **Burst Duration**



### **Burst Repetition During Observation Period Duration**








Page: 63 of 63

## **Attachment I—Number of Hopping Frequency**



Note: The EUT is hybrid system and there is no minimum number of hopping channels associated with this type of hybrid system.

----END OF REPORT-----