

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

Report No.: RFBVSW-WTW-P22080967-1

FCC ID: 2A3G3-WMX720X

Product: Wi-Fi 6E BT 5.2 M.2 2230 Module, Wi-Fi 6E BT 5.2 Mini PCIe Module

Brand: EmWicon Corporation

Model No.: WMX7205, WMX7203

Series Model: WMX7203-F

Received Date: 2022/8/30

Test Date: 2022/11/24 ~ 2023/1/17

Issued Date: 2023/2/21

Applicant: EmWicon Corporation

Address: 7F-5, No. 258, Liancheng Rd., Zhonghe Dist., New Taipei City, Taiwan 235


Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

FCC Registration / 723255 / TW2022

Designation Number:

Approved by: _____, **Date:** 2023/2/21
May Chen / Manager

This test report consists of 33 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Vivian Huang / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Supplementary Information	5
3 General Information	6
3.1 General Description of EUT	6
3.2 Antenna Description of EUT	8
3.3 Channel List.....	10
3.4 Test Mode Applicability and Tested Channel Detail.....	12
3.5 Duty Cycle of Test Signal.....	13
3.6 Test Program Used and Operation Descriptions.....	14
3.7 Connection Diagram of EUT and Peripheral Devices	14
3.8 Configuration of Peripheral Devices and Cable Connections	15
4 Test Instruments	16
4.1 Unwanted Emissions below 1 GHz	16
4.2 Unwanted Emissions above 1 GHz.....	17
5 Limits of Test Items.....	18
5.1 Unwanted Emissions below 1 GHz	18
5.2 Unwanted Emissions above 1 GHz.....	18
6 Test Arrangements.....	19
6.1 Unwanted Emissions below 1 GHz	19
6.1.1 Test Setup	19
6.1.2 Test Procedure.....	20
6.2 Unwanted Emissions above 1 GHz.....	21
6.2.1 Test Setup	21
6.2.2 Test Procedure.....	21
7 Test Results of Test Item	22
7.1 Unwanted Emissions below 1 GHz	22
7.2 Unwanted Emissions above 1 GHz.....	26
8 Pictures of Test Arrangements	32
9 Information of the Testing Laboratories	33

Release Control Record

Issue No.	Description	Date Issued
RFBVSW-WTW-P22080967-1	Original release.	2023/2/21

1 Certificate

Product: Wi-Fi 6E BT 5.2 M.2 2230 Module, Wi-Fi 6E BT 5.2 Mini PCIe Module

Brand: EmWicon Corporation

Test Model: WMX7205, WMX7203

Series Model: WMX7203-F

Sample Status: Engineering sample

Applicant: EmWicon Corporation

Test Date: 2022/11/24 ~ 2023/1/17

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

Measurement

procedure: ANSI C63.10-2013

KDB 789033 D02 General UNII Test Procedure New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)			
Clause	Test Item	Result	Remark
15.407(a)(2)	26 dB Bandwidth	NA	Refer to Note 1 below
	RF Output Power	NA	Refer to Note 1 below
	Power Spectral Density	NA	Refer to Note 1 below
15.407(e)	6 dB Bandwidth	NA	Refer to Note 1 below
---	Occupied Bandwidth	NA	Refer to Note 1 below
15.407(g)	Frequency Stability	NA	Refer to Note 1 below
15.407(b)(9)	AC Power Conducted Emissions	NA	Refer to Note 1 below
15.407(b)(9)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -6.2 dB at 34.87 MHz
	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -0.2 dB at 5147.09 MHz
15.203	Antenna Requirement	Pass	Antenna connector is ipex & RP-SMA not a standard connector.

Notes:

1. Unwanted Emissions Measurement were performed for this addendum. The others testing data refer to original test report. (Original FCC ID: J9C-QCNFA765, Report No.: RF201119E01-1).
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (\pm)
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	3.1 dB
	30 MHz ~ 1 GHz	5.5 dB
Unwanted Emissions above 1 GHz	1 GHz ~ 18 GHz	5.1 dB
	18 GHz ~ 40 GHz	5.3 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wi-Fi 6E BT 5.2 M.2 2230 Module, Wi-Fi 6E BT 5.2 Mini PCIe Module
Brand	EmWicon Corporation
Test Model	WMX7205, WMX7203
Series Model	WMX7203-F
Status of EUT	Engineering sample
Power Supply Rating	3.3Vdc from host equipment
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM 1024QAM for OFDM in 11ac mode 4096QAM for OFDMA in 11ax mode
Modulation Technology	OFDM, OFDMA
Transfer Rate	802.11a: up to 54Mbps 802.11n: up to 300Mbps 802.11ac: up to 2166.7Mbps 802.11ax: up to 2969.7Mbps
Operating Frequency	5.18 ~ 5.32GHz, 5.5 ~ 5.72GHz, 5.745 ~ 5.825GHz
Number of Channel	802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 25 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 12 802.11ac (VHT80), 802.11ax (HE80): 6 802.11ac (VHT160), 802.11ax (HE160): 2
Output Power	5.18 ~ 5.25GHz: 154.489mW 5.25 ~ 5.32GHz: 153.87mW 5.5 ~ 5.72GHz: 152.442mW 5.745 ~ 5.825GHz: 151.553mW

Note:

1. This report is prepared for FCC class II permissive change. The difference compared with the original design is as the following:
 - ◆ Added two models (refer to note 3).
 - ◆ Added new antenna (refer to section 3.2).
2. According to above conditions, only unwanted emissions needs to be performed. And all data are verified to meet the requirements.
3. The EUT has below model names which are identical to each other in all aspects except for the following table:

Original					
Model Name	Product Name	PCB size	Interface	IPEX	Difference
WMX7205	Wi-Fi 6E BT 5.2 M.2 2230 Module	Original size	M.2 E-Key M.2 AE-Key	i-pex (MHF 4L)	-
Newly					
Model Name	Product Name	PCB size	Interface	IPEX	Difference
WMX7203	Wi-Fi 6E BT 5.2	Bigger than original	mini PCIe	i-pex (MHF 1)	Market segment
WMX7203-F	Mini PCIe Module	Bigger than original	mini PCIe		

Note: From the above models, model: **WMX7205, WMX7203** was selected as representative model for the test and its data was recorded in this report.

4. This device of WLAN (2.4GHz & 5GHz U-NII-1 Band) can support hotspot mode.

5. Simultaneously transmission condition.

Condition	Technology	
1	WLAN(2.4GHz)	WLAN(6GHz)
2	WLAN(2.4GHz)	WLAN(5GHz)
3	WLAN(2.4GHz)	WLAN(5.9GHz)
4	WLAN(6GHz)	Bluetooth
5	WLAN(5GHz)	Bluetooth
6	WLAN(5.9GHz)	Bluetooth

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

6. The device of WLAN (2.4GHz) and Bluetooth technology can't transmit simultaneously, it was used timely shared coexistence technology.

7. The module (Model: WMX7205) has two variant designs as following table:

SKU No.	Description
SKU #1	M.2 2230 E-key
SKU #2	M.2 2230 AE-key

From the above variants designs, the worst case was found in **SKU #1**. Therefore only the test data of the mode was recorded in this report.

8. The product provides option to depopulate external LNA (Low-Noise amplifier) from 5GHz/6GHz receive path. This test report covers variation of with/without external LNA and test was conducted to confirm not change in RF compliance and EMC. And worst case was found in without external LNA.

9. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Original									
Antenna Set	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range	Cable Loss (dB)	Antenna Type	Connector Type	Cable Length
1	Chain0/1	HONGBO	260-25094	3.53 3.06 3.07 4.81 4.2	2.4~2.4835 GHz 5.15~5.25 GHz 5.25~5.35 GHz 5.47~5.725 GHz 5.725~5.850 GHz	0.76 1.16 1.18 1.2 1.27	PIFA	ipex(MHF 4L) ipex(MHF 1)	300mm
2	Chain0/1	HONGBO	260-25083	5.09 5.14 5.09 5.16 5.12	5.850~5.895 GHz 5.925~6.425 GHz 6.425~6.525 GHz 6.525~6.875 GHz 6.875~7.125 GHz	1.29 1.32 1.35 1.4 1.45	PIFA	ipex(MHF 4L) ipex(MHF 1)	300mm
3	Chain0/1	HONGBO	260-25084	3.22 3.35 3.42 4.77 4.72 4.71 4.75 4.29 4.81 4.74	2.4~2.4835 GHz 5.150~5.250 GHz 5.250~5.350 GHz 5.470~5.725 GHz 5.725~5.850 GHz 5.850~5.895 GHz 5.925~6.425 GHz 6.425~6.525 GHz 6.525~6.875 GHz 6.875~7.125 GHz	0.5 0.76 0.78 0.81 0.85 0.86 0.87 0.91 0.96 0.98	Monopole	ipex(MHF 4L) ipex(MHF 1)	200mm
Newly									
Antenna Set	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range	Cable Loss (dB)	Antenna Type	Connector Type	Cable Length
4	Chain0/1	emwicon	ATD7351	2.51 2.66 2.07 3.21 3.64 3.73 3.13 3.54 3.06	2400 MHz 2450 MHz 2500 MHz 5150 MHz 5500 MHz 5850 MHz 6125 MHz 6750 MHz 7125 MHz	0.64 0.64 0.64 1.27 1.27 1.27 1.24 1.24 1.24	Monopole	RP-SMA	0.15m

* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2. The EUT incorporates a MIMO function:

5GHz Band		
MODULATION MODE	TX & RX CONFIGURATION	
802.11a	2TX	2RX
802.11n (HT20)	2TX	2RX
802.11n (HT40)	2TX	2RX
802.11ac (VHT20)	2TX	2RX
802.11ac (VHT40)	2TX	2RX
802.11ac (VHT80)	2TX	2RX
802.11ac (VHT160)	2TX	2RX
802.11ax (HE20)	2TX	2RX
802.11ax (HE40)	2TX	2RX
802.11ax (HE80)	2TX	2RX
802.11ax (HE160)	2TX	2RX
802.11ax (RU26/52/106/242/484/996/1992)	2TX	2RX

Note:

1. The EUT support Beamforming and non-beamforming mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data (CDD mode) were presented in test report.
2. The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz), 802.11ac mode for 20MHz (40MHz, 80MHz, 160MHz) and 802.11ax mode for 20MHz (40MHz, 80MHz, 160MHz), therefore the manufacturer will control the power for 802.11n/ac mode is the same as the 802.11ax mode or more lower than it and investigated worst case to representative mode in test report.

3.3 Channel List

FOR 5180 ~ 5320MHz

8 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	52	5260 MHz
40	5200 MHz	56	5280 MHz
44	5220 MHz	60	5300 MHz
48	5240 MHz	64	5320 MHz

4 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
38	5190 MHz	54	5270 MHz
46	5230 MHz	62	5310 MHz

2 channel is provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency	Channel	Frequency
42	5210 MHz	58	5290 MHz

1 straddle channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency
50	5250 MHz

FOR 5500 ~ 5720MHz

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
100	5500 MHz	124	5620 MHz
104	5520 MHz	128	5640 MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz	144	5720 MHz

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
102	5510 MHz	126	5630 MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

3 channels are provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency	Channel	Frequency
106	5530 MHz	138	5690 MHz
122	5610 MHz		

1 straddle channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency
114	5570 MHz

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
151	5755 MHz	159	5795 MHz

1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80):

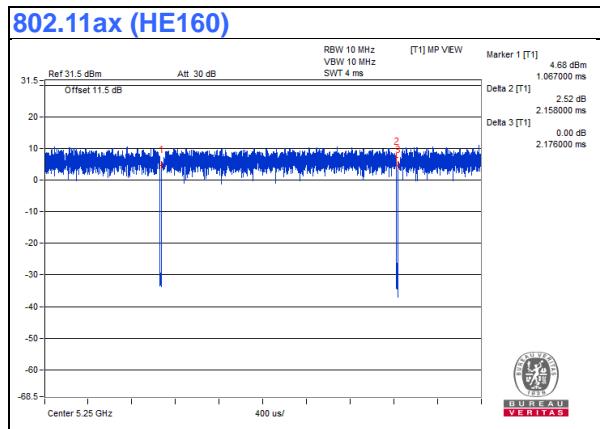
Channel	Frequency
155	5775 MHz

3.4 Test Mode Applicability and Tested Channel Detail

Pre-Scan:	1. EUT can be used in the following ways: X-axis/ Y-axis/ Z-axis. Pre-scan these ways and find the worst case as a representative test condition.
Worst Case:	1. X-axis/ Y-axis/ Z-axis Worst Condition: Y-axis for Unwanted Emissions Above 1GHz of Mode A; X-axis for Unwanted Emissions Below 1GHz of Mode A; Z-axis for Unwanted Emissions Above 1GHz of Mode B; X-axis for Unwanted Emissions Below 1GHz of Mode B

Following channel(s) was (were) selected for the final test as listed below:

Test Item	EUT Configure Mode	Mode	Tested Channel	Modulation	Data Rate Parameter
Unwanted Emissions below 1 GHz	A	802.11ax (HE160)	50	BPSK	MCS0
	B	802.11ax (HE160)	50	BPSK	MCS0
Unwanted Emissions above 1 GHz	A	802.11ax (HE160)	50	BPSK	MCS0
	B	802.11ax (HE160)	50	BPSK	MCS0
EUT Configure Mode:	A	Old Module + Antenna 4			
	B	New Module + Antenna 4			

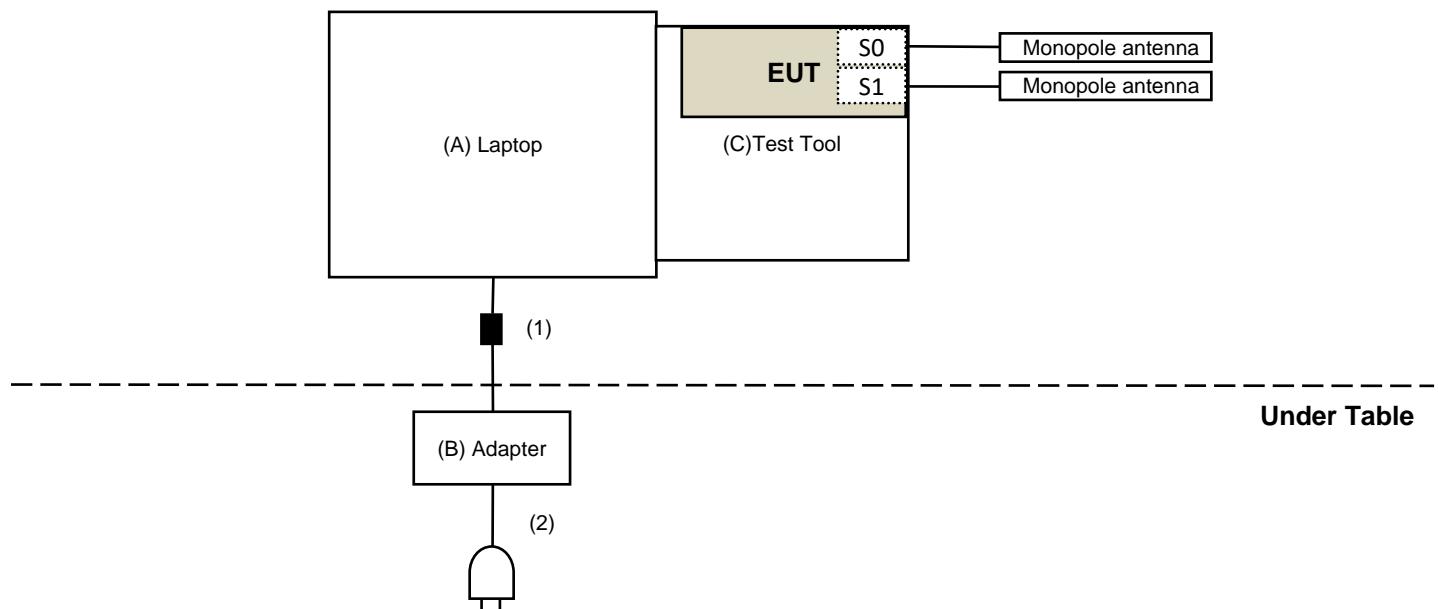

Note:

1. The EUT supports ax full RU and ax prital RU modes, so these two modes were investigated and the worst case was determined to be ax full RU mode. Worst case data are provided in the test report.
2. For the Unwanted Emission test mode, after evaluation, it is tested with the worst channel in all bandwidths, and finally tested with 11ax160 channel 50.

3.5 Duty Cycle of Test Signal

Duty cycle of test signal is $\geq 98\%$, duty factor is not required.

802.11ax (HE160): Duty cycle = $2.158\text{ ms}/2.176\text{ ms} = 0.992$



3.6 Test Program Used and Operation Descriptions

Controlling software (QRCT_v4.0-00182) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices

For Unwanted Emission test (Monopole)

3.8 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	Laptop	DELL	E6320	N/A	N/A	Supplied by applicant
B	Adapter	DELL	DA90PM111	N/A	N/A	Supplied by applicant
C	Test Tool	Phiyo	N/A	N/A	N/A	Supplied by applicant
D	Test Tool	EmWicon	N/A	N/A	N/A	Supplied by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DC Cable	1	1.8	No	1	Supplied by applicant
2	AC Cable	1	1.8	No	0	Supplied by applicant

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-03	2022/1/10 2022/12/28	2023/1/9 2023/12/27
LOOP ANTENNA Electro-Metrics	EM-6879	264	2022/3/18	2023/3/17
Pre_Amplifier Agilent	8447D	2944A10636	2022/3/19	2023/3/18
Pre_Amplifier EMCI	EMC330N	980701	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC	8D	966-4-1	2022/3/8	2023/3/7
		966-4-2	2022/3/8	2023/3/7
		966-4-3	2022/3/8	2023/3/7
RF Coaxial Cable JYEB0	5D-FB	LOOPCAB-001	2022/1/6 2022/12/19	2023/1/5 2023/12/18
		LOOPCAB-002	2022/1/6 2022/12/19	2023/1/5 2023/12/18
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer KEYSIGHT	N9030B	MY57142938	2022/4/26	2023/4/25
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-406	2022/10/21	2023/10/20

Notes:

1. The test was performed in 966 Chamber No. 4.
2. Tested Date: 2022/11/24 ~ 2023/1/17

4.2 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
Horn Antenna Schwarzbeck	BBHA 9120D BBHA 9170	9120D-783 9170-739	2022/11/13 2022/11/13	2023/11/12 2023/11/12
Pre_Amplifier EMCI	EMC12630SE EMC184045SE	980688 980387	2022/10/4 2022/1/10 2022/12/28	2023/10/3 2023/1/9 2023/12/27
RF Cable-Frequency Range : 1- 26.5GHz EMCI	EMC104-SM-SM-1200	160922	2021/12/24 2022/12/15	2022/12/23 2023/12/14
RF Cable-Frequency range: 1- 40GHz EMCI	EMC102-KM-KM-1200	160924	2022/1/10 2022/12/28	2023/1/9 2023/12/27
RF Coaxial Cable EMCI	EMC-KM-KM-4000 EMC104-SM-SM-2000 EMC104-SM-SM-6000	200214 180502 210704	2022/3/8 2022/4/25 2022/11/4	2023/3/7 2023/4/24 2023/11/3
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Keysight	N9020B	MY60112410	2022/3/13	2023/3/12
Spectrum Analyzer KEYSIGHT	N9030B	MY57142938	2022/4/26	2023/4/25

Notes:

1. The test was performed in 966 Chamber No. 4.
2. Tested Date: 2022/11/24 ~ 2023/1/17

5 Limits of Test Items

5.1 Unwanted Emissions below 1 GHz

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB μ V/m) = 20 log Emission level (uV/m).

5.2 Unwanted Emissions above 1 GHz

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3

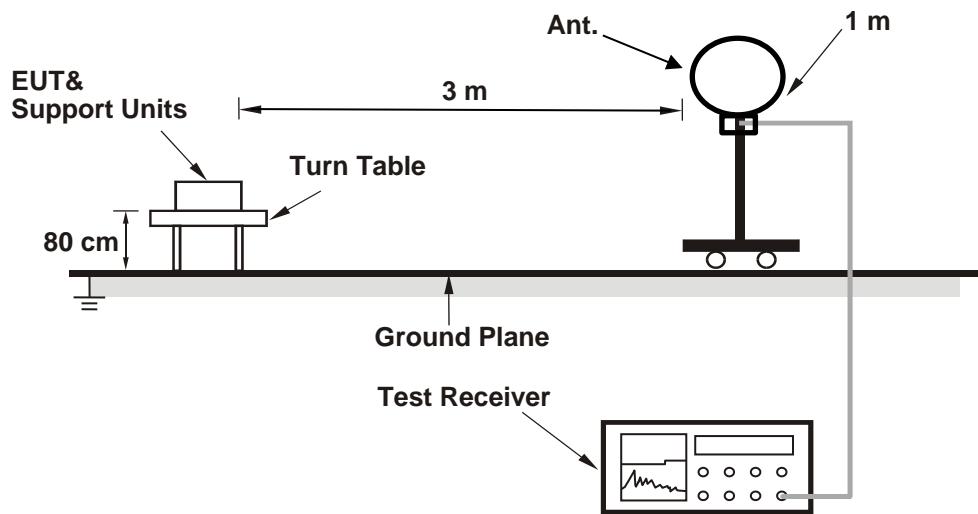
Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB μ V/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

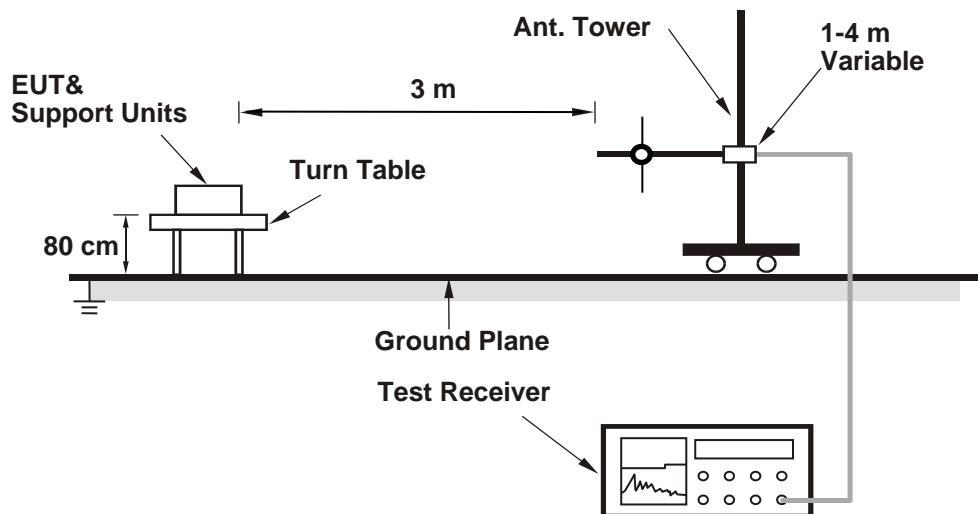
Limits of unwanted emission out of the restricted bands

Applicable To	Limit	
789033 D02 General UNII Test Procedure New Rules v02r01	Field Strength at 3 m	
	PK: 74 (dB μ V/m)	AV: 54 (dB μ V/m)

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:


$$E = \frac{1000000\sqrt{30P}}{3} \text{ } \mu\text{V/m, where P is the eirp (Watts).}$$

6 Test Arrangements


6.1 Unwanted Emissions below 1 GHz

6.1.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.1.2 Test Procedure

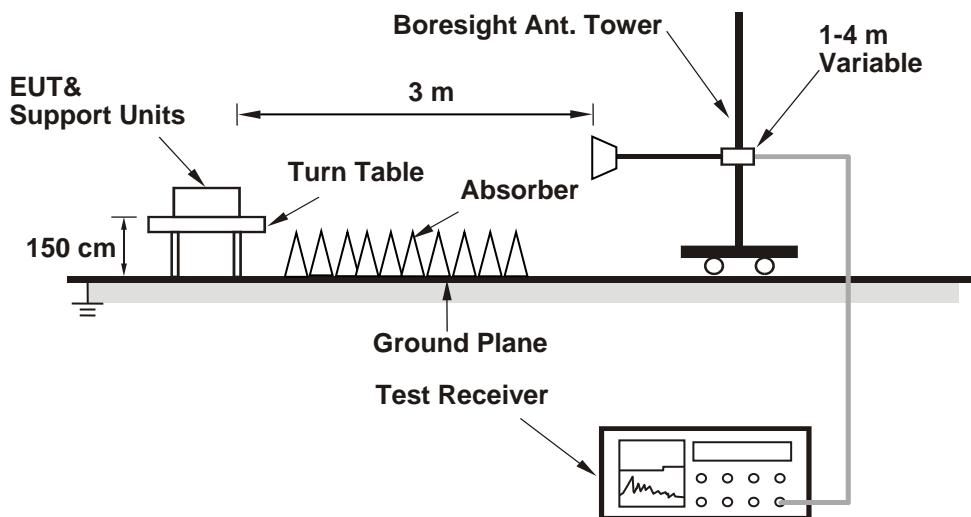
For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

6.2 Unwanted Emissions above 1 GHz

6.2.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

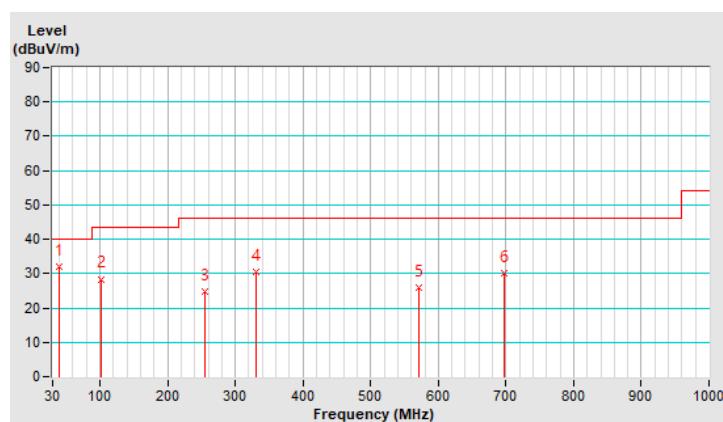
Notes:

1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
2. For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10 Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1 GHz.
3. All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 Unwanted Emissions below 1 GHz

Mode A

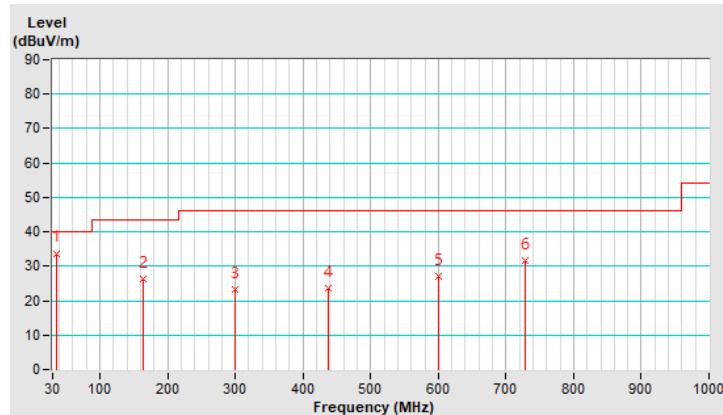

RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 68% RH
Tested By	Tom Yang		

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	39.27	31.9 QP	40.0	-8.1	1.50 H	69	45.0	-13.1
2	101.04	28.4 QP	43.5	-15.1	2.00 H	308	44.8	-16.4
3	255.51	24.8 QP	46.0	-21.2	1.00 H	191	37.4	-12.6
4	331.36	30.6 QP	46.0	-15.4	1.00 H	32	40.4	-9.8
5	571.44	25.9 QP	46.0	-20.1	2.00 H	239	29.4	-3.5
6	697.95	30.1 QP	46.0	-15.9	1.00 H	353	30.8	-0.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

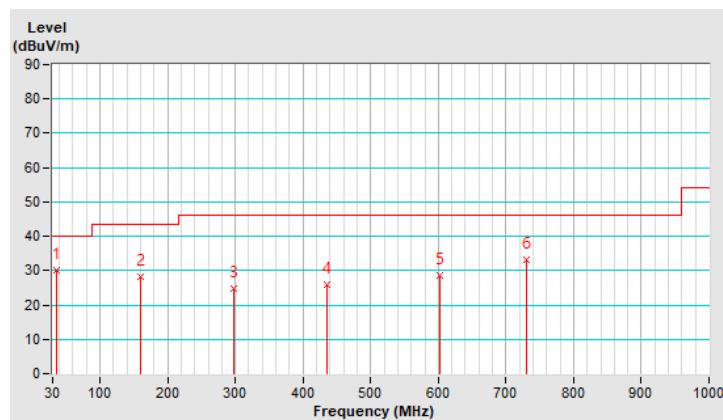

RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 68% RH
Tested By	Tom Yang		

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	34.87	33.8 QP	40.0	-6.2	1.00 V	148	47.5	-13.7
2	163.18	26.3 QP	43.5	-17.2	2.00 V	360	38.4	-12.1
3	299.29	23.2 QP	46.0	-22.8	1.50 V	225	33.9	-10.7
4	437.96	23.6 QP	46.0	-22.4	2.00 V	6	30.0	-6.4
5	600.34	27.0 QP	46.0	-19.0	1.50 V	90	29.4	-2.4
6	728.07	31.8 QP	46.0	-14.2	1.50 V	171	31.9	-0.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

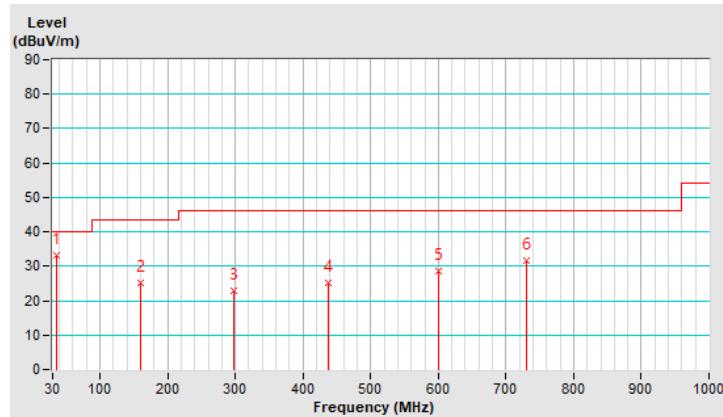

Mode B

RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 68% RH
Tested By	Tom Yang		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	35.28	30.0 QP	40.0	-10.0	2.00 H	68	43.6	-13.6
2	160.36	28.2 QP	43.5	-15.3	1.50 H	70	40.2	-12.0
3	297.06	24.8 QP	46.0	-21.2	1.50 H	196	35.6	-10.8
4	435.84	25.8 QP	46.0	-20.2	2.00 H	267	32.2	-6.4
5	601.57	28.6 QP	46.0	-17.4	2.00 H	197	31.0	-2.4
6	729.73	33.1 QP	46.0	-12.9	1.00 H	75	33.1	0.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.


RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 68% RH
Tested By	Tom Yang		

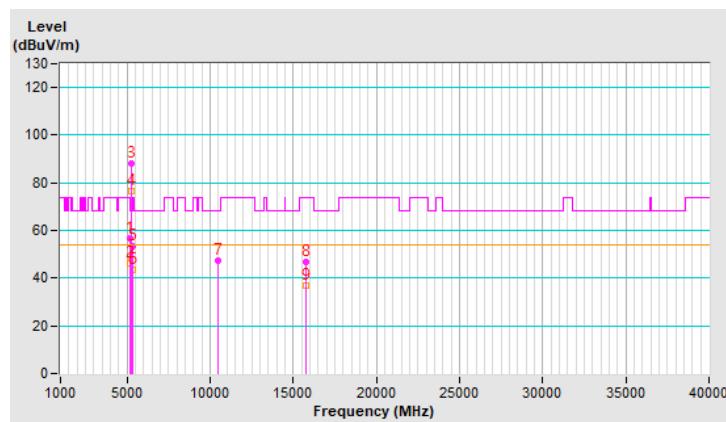
Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	36.50	33.1 QP	40.0	-6.9	1.50 V	160	46.5	-13.4
2	160.72	25.0 QP	43.5	-18.5	2.00 V	320	37.0	-12.0
3	296.88	22.8 QP	46.0	-23.2	1.50 V	182	33.6	-10.8
4	437.04	25.3 QP	46.0	-20.7	1.00 V	36	31.7	-6.4
5	600.39	28.7 QP	46.0	-17.3	1.50 V	14	31.1	-2.4
6	730.02	31.5 QP	46.0	-14.5	1.00 V	199	31.5	0.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

7.2 Unwanted Emissions above 1 GHz

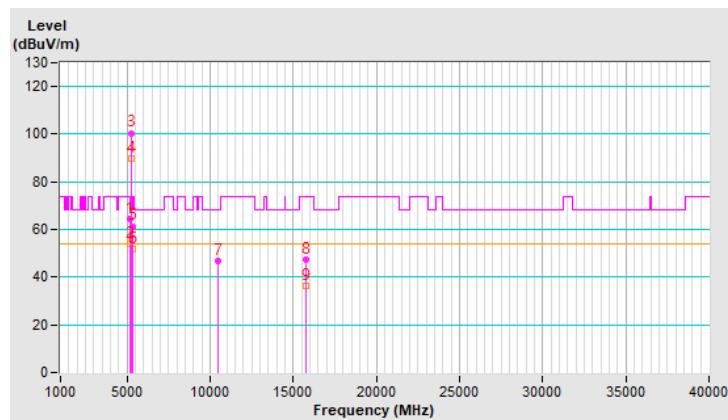

Mode A

RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 66% RH
Tested By	Tom Yang		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	5146.90	56.5 PK	74.0	-17.5	1.37 H	115	52.0	4.5
2	5146.90	46.5 AV	54.0	-7.5	1.37 H	115	42.0	4.5
3	*5250.00	88.0 PK			1.37 H	115	84.0	4.0
4	*5250.00	76.4 AV			1.37 H	115	72.4	4.0
5	5356.42	53.4 PK	74.0	-20.6	1.37 H	115	49.1	4.3
6	5356.42	43.4 AV	54.0	-10.6	1.37 H	115	39.1	4.3
7	#10500.00	47.5 PK	68.2	-20.7	2.70 H	57	33.2	14.3
8	15750.00	46.8 PK	74.0	-27.2	2.18 H	317	32.6	14.2
9	15750.00	36.8 AV	54.0	-17.2	2.18 H	317	22.6	14.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. " # ": The radiated frequency is out of the restricted band.

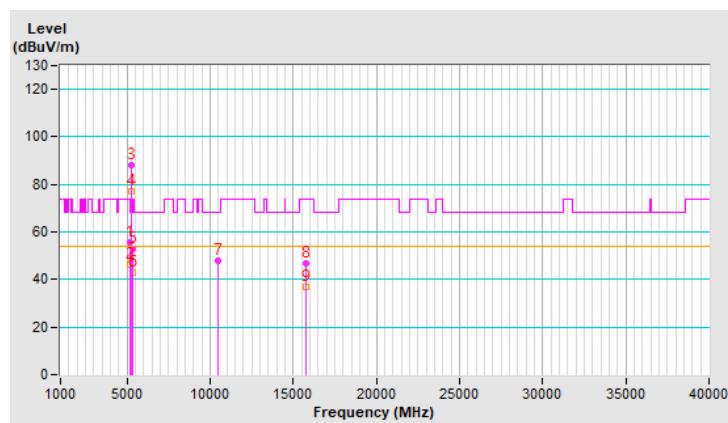


RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 66% RH
Tested By	Tom Yang		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	5147.09	64.6 PK	74.0	-9.4	2.08 V	273	60.1	4.5
2	5147.09	53.8 AV	54.0	-0.2	2.08 V	273	49.3	4.5
3	*5250.00	100.5 PK			2.08 V	273	96.5	4.0
4	*5250.00	89.7 AV			2.08 V	273	85.7	4.0
5	5357.66	61.4 PK	74.0	-12.6	2.08 V	273	57.1	4.3
6	5357.66	51.6 AV	54.0	-2.4	2.08 V	273	47.3	4.3
7	#10500.00	46.8 PK	68.2	-21.4	1.78 V	267	32.5	14.3
8	15750.00	47.6 PK	74.0	-26.4	1.97 V	180	33.4	14.2
9	15750.00	36.3 AV	54.0	-17.7	1.97 V	180	22.1	14.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. " # ": The radiated frequency is out of the restricted band.

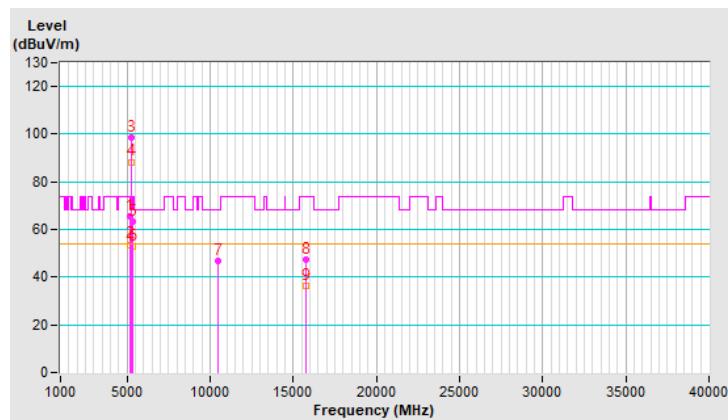

Mode B

RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 67% RH
Tested By	Tom Yang		

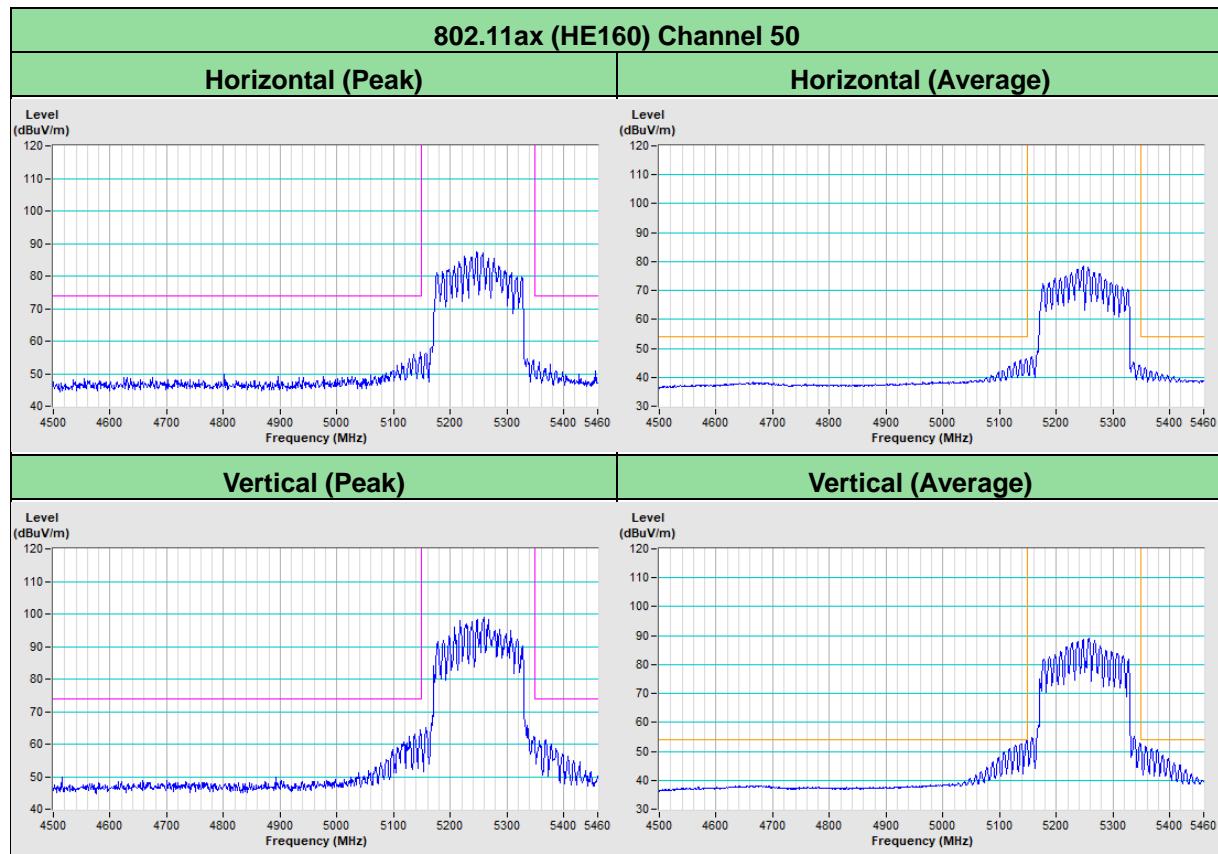
Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	5146.79	55.8 PK	74.0	-18.2	1.28 H	90	51.3	4.5
2	5146.79	46.1 AV	54.0	-7.9	1.28 H	90	41.6	4.5
3	*5250.00	88.1 PK			1.28 H	90	84.1	4.0
4	*5250.00	77.0 AV			1.28 H	90	73.0	4.0
5	5356.28	52.9 PK	74.0	-21.1	1.28 H	90	48.6	4.3
6	5356.28	42.9 AV	54.0	-11.1	1.28 H	90	38.6	4.3
7	#10500.00	47.9 PK	68.2	-20.3	2.68 H	45	33.6	14.3
8	15750.00	46.8 PK	74.0	-27.2	2.18 H	301	32.6	14.2
9	15750.00	37.0 AV	54.0	-17.0	2.18 H	301	22.8	14.2

Remarks:

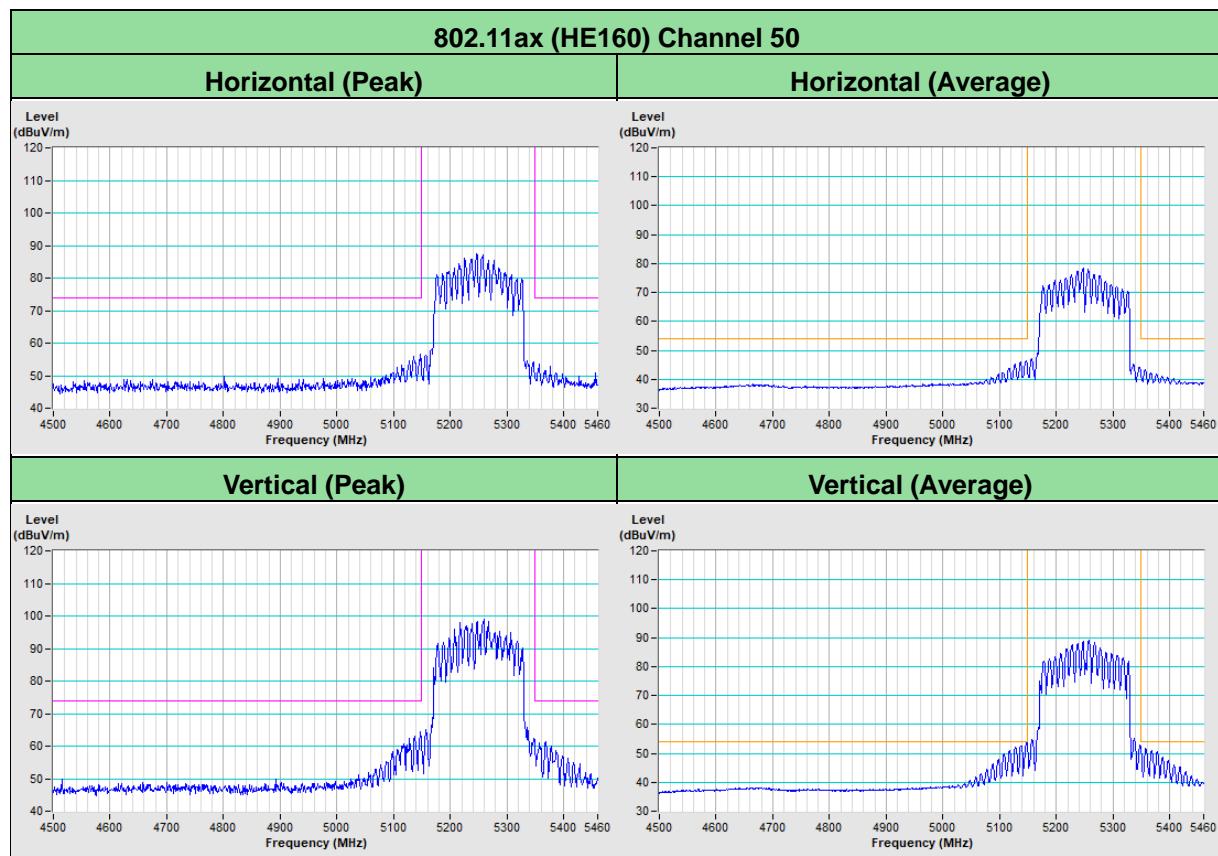
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. " # ": The radiated frequency is out of the restricted band.


RF Mode	802.11ax (HE160)	Channel	CH 50 : 5250 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Input Power (System)	120 Vac, 60Hz	Environmental Conditions	25°C, 67% RH
Tested By	Tom Yang		

Antenna Polarity & Test Distance : Vertical at 3 m


No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	5147.15	65.7 PK	74.0	-8.3	2.20 V	252	61.2	4.5
2	5147.15	53.7 AV	54.0	-0.3	2.20 V	252	49.2	4.5
3	*5250.00	98.8 PK			2.20 V	252	94.8	4.0
4	*5250.00	88.4 AV			2.20 V	252	84.4	4.0
5	5356.98	63.2 PK	74.0	-10.8	2.20 V	252	58.9	4.3
6	5356.98	53.1 AV	54.0	-0.9	2.20 V	252	48.8	4.3
7	#10500.00	47.0 PK	68.2	-21.2	1.72 V	251	32.7	14.3
8	15750.00	47.6 PK	74.0	-26.4	1.99 V	193	33.4	14.2
9	15750.00	36.1 AV	54.0	-17.9	1.99 V	193	21.9	14.2

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. " # ": The radiated frequency is out of the restricted band.

Plot of Band Edge Mode A

Plot of Band Edge Mode B

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---