

FCC TEST REPORT

FCC ID: 2A3EJDEEPPERWIFI-01A

Product	:	Deeper Connect Wi-Fi Adapter
Model Name	:	DCWA01
Brand	:	N/A
Report No.	:	PTC21112400103E-FC01
Sample ID	:	PTC21112400103-1#

Prepared for

Deeper Network Inc.

5200 Great America pkwy, Santa Clara CA USA 95054

Prepared by

Precise Testing & Certification Co., Ltd.

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

Report No.: PTC21112400103E-FC01

1 TEST RESULT CERTIFICATION

Applicant's name : Deeper Network Inc.
Address : 5200 Great America pkwy, Santa Clara CA USA 95054
Manufacturer's name : Deeper Network Inc.
Address : 5200 Great America pkwy, Santa Clara CA USA 95054
Product name : Deeper Connect Wi-Fi Adapter
Model name : DCWA01
Standards : FCC CFR47 Part 15 Section 15.247
Test procedure : ANSI C63.10:2013
Test Date : Dec. 02, 2021 to Jan. 17, 2022
Date of Issue : Jan. 18, 2022
Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

A handwritten signature in black ink that appears to read "Leo Yang".

Leo Yang / Engineer

Technical Manager:

A handwritten signature in black ink that appears to read "Chris Du".

Chris Du / Manager

Contents

	Page
1 TEST RESULT CERTIFICATION	2
2 TEST SUMMARY	5
2.1 TEST SITE.....	5
3 GENERAL INFORMATION	6
3.1 GENERAL DESCRIPTION OF E.U.T.....	6
3.2 CHANNEL LIST.....	7
4 EQUIPMENT DURING TEST	11
4.1 EQUIPMENTS LIST.....	11
4.2 MEASUREMENT UNCERTAINTY.....	13
4.3 DESCRIPTION OF SUPPORT UNITS.....	14
5 CONDUCTED EMISSION	15
5.1 E.U.T. OPERATION.....	15
5.2 EUT SETUP.....	15
5.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION).....	16
5.4 MEASUREMENT PROCEDURE.....	16
5.5 CONDUCTED EMISSION LIMIT.....	16
5.6 MEASUREMENT DESCRIPTION.....	16
5.7 CONDUCTED EMISSION TEST RESULT.....	16
6 RADIATED SPURIOUS EMISSIONS	19
6.1 EUT OPERATION.....	19
6.2 TEST SETUP.....	20
6.3 SPECTRUM ANALYZER SETUP.....	21
6.4 TEST PROCEDURE.....	22
6.5 SUMMARY OF TEST RESULTS.....	23
7 CONDUCTED SPURIOUS EMISSION	30
7.1 TEST PROCEDURE.....	30
7.2 TEST RESULT.....	30
8 BAND EDGE MEASUREMENT	37
8.1 TEST PROCEDURE.....	37

8.2 TEST RESULT.....	38
9 6DB BANDWIDTH MEASUREMENT.....	43
9.1 TEST PROCEDURE.....	43
9.2 TEST RESULT.....	43
10 MAXIMUM PEAK OUTPUT POWER.....	50
10.1 TEST PROCEDURE.....	50
10.2 TEST RESULT.....	50
11 POWER SPECTRAL DENSITY.....	51
11.1 TEST PROCEDURE.....	51
11.2 TEST RESULT.....	51
12 ANTENNA APPLICATION.....	58
12.1 ANTENNA REQUIREMENT.....	58
12.2 RESULT.....	58
13 TEST SETUP.....	59
14 EUT PHOTOS.....	61

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conducted Spurious Emission	15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS
Remark:	N/A: Not Applicable	

2.1 Test Site

Precise Testing & Certification Co., Ltd

Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

FCC Registration Number: 790290

A2LA Certificate No.: 4408.01

IC Registration Number: 12191A-1

Designation Number: CN1219

3 General Information

3.1 General Description of E.U.T.

Product Name	:	Deeper Connect Wi-Fi Adapter
Model Name	:	DCWA01
Specification	:	802.11b/g/n HT20/HT40
Operation Frequency	:	2412-2462MHz for 802.11b/g/ n(HT20) 2422-2452MHz for 802.11n(HT40)
Number of Channel	:	11 channels for 802.11b/g/ n(HT20) 7 channels for 802.11 n(HT40)
Type of Modulation	:	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Antenna installation	:	PCB Antenna
Antenna Gain	:	2dBi
Power supply	:	DC 5V 0.5A
Hardware Version	:	V1.4
Software Version	:	V1.0

3.2 Channel List

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20/HT40): MCS0;) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

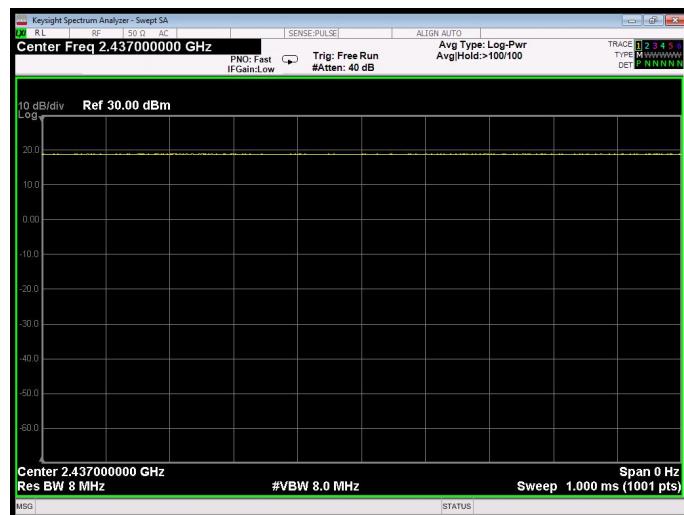
Frequency and Channel list for 802.11 b/g/n (HT20)

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Test Frequency and Channel for 802.11 b/g/n (HT20/HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462
3	2422	6	2437	9	2452

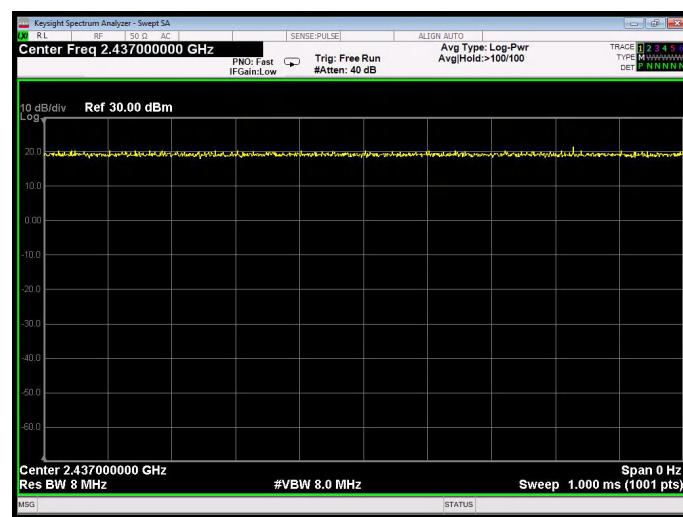
Note:


1. All the modulation modes were tested with both AC 120v 60Hz and AC230V 50Hz, the data of the worst mode with AC 120V 60Hz are recorded.

The maximum duty cycle as following table:

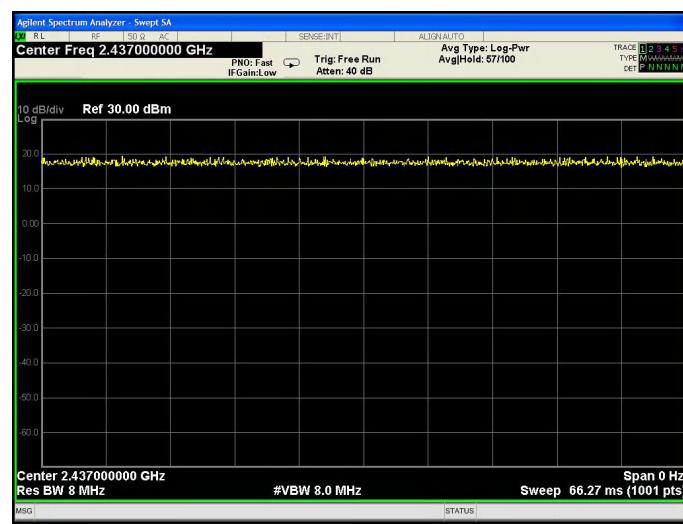
Test Mode	Duty Cycle(%)
802.11b	100%
802.11g	100%
802.11n(HT20)	100%
802.11n(HT40)	100%

Test Plots:


802.11b

802.11g

Report No.: PTC21112400103E-FC01


802.11n(HT20)

802.11n(HT40)

Report No.: PTC21112400103E-FC01

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
MXA Signal Analyzer	Agilent	N9020A	MY56070279	Aug. 21, 2021	Aug. 20, 2022	1 year
Coaxial Cable	CDS	79254	46107086	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Meter	Anritsu	ML2495A	0949003	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Sensor	Anritsu	MA2411B	0917017	Aug. 21, 2021	Aug. 20, 2022	1 year
Spectrum Analyzer	Rohde&Schwarz	FSU26	1166.1660.26	Aug. 21, 2021	Aug. 20, 2022	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	Aug. 21, 2021	Aug. 20, 2022	1 year
Loop Antenna	Schwarzbeck	FMZB 1519	012	Aug. 21, 2021	Aug. 20, 2022	1 year
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	Aug. 21, 2021	Aug. 20, 2022	1 year
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	Aug. 21, 2021	Aug. 20, 2022	1 year
Cable	Schwarzbeck	PLF-100	549489	Aug. 21, 2021	Aug. 20, 2022	1 year
Spectrum Analyzer	Agilent	E4407B	MY45109572	Aug. 21, 2021	Aug. 20, 2022	1 year
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Amplifier	LUNAR EM	LNA1G18-40	J10100000081	Aug. 21, 2021	Aug. 20, 2022	1 year
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	Aug. 21, 2021	Aug. 20, 2022	1 year
Amplifier	SCHWARZBECK	BBV 9721	9721-205	Aug. 21, 2021	Aug. 20, 2022	1 year
Cable	H+S	CBL-26	N/A	Aug. 21, 2021	Aug. 20, 2022	1 year
RF Cable	R&S	R204	R21X	Aug. 21, 2021	Aug. 20, 2022	1 year

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	Aug. 21, 2021	Aug. 20, 2022	1 year
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	Aug. 21, 2021	Aug. 20, 2022	1 year
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	Aug. 21, 2021	Aug. 20, 2022	1 year

4.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	$\pm 1.0\text{dB}$
Power Spectral Density, conducted	$\pm 2.2\text{dB}$
Radio Frequency	$\pm 1 \times 10^{-6}$
Bandwidth	$\pm 1.5 \times 10^{-6}$
Time	$\pm 2\%$
Duty Cycle	$\pm 2\%$
Temperature	$\pm 1^\circ\text{C}$
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 3\%$
Conducted Emissions (150kHz~30MHz)	$\pm 3.64\text{dB}$
Radiated Emission(9KHz~30MHz)	$\pm 2.54\text{dB}$
Radiated Emission(30MHz~1GHz)	$\pm 5.03\text{dB}$
Radiated Emission(1GHz~25GHz)	$\pm 4.74\text{dB}$

Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%

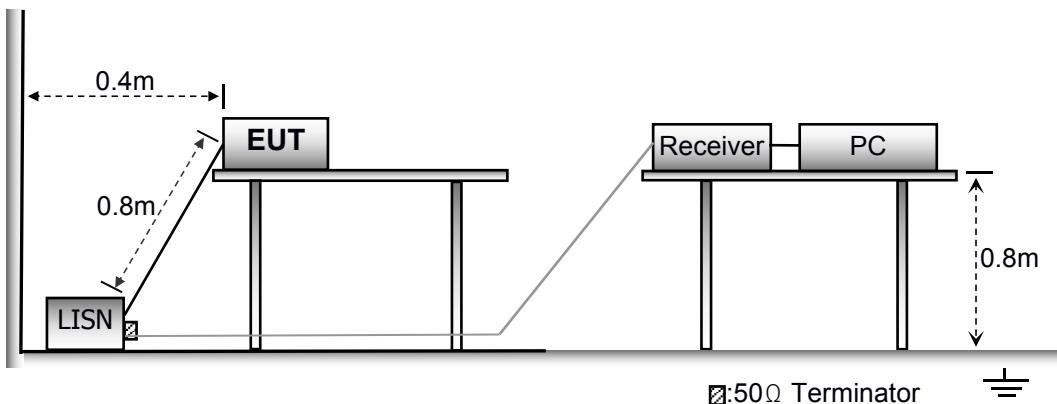
Report No.: PTC21112400103E-FC01

4.3 Description of Support Units

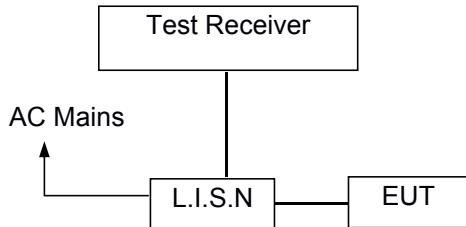
Equipment	Model No.	Series No.
Notebook	Thinkpad X230i	CN131171

5 Conducted Emission

Test Requirement:	: FCC CFR 47 Part 15 Section 15.207
Test Method	: ANSI C63.10: 2013
Test Result	: PASS
Frequency Range	: 150kHz to 30MHz
Class/Severity	: Class B


5.1 E.U.T. Operation

Operating Environment :


Temperature	: 23.9 °C
Humidity	: 51.4 % RH
Atmospheric Pressure	: 101.21kPa

5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

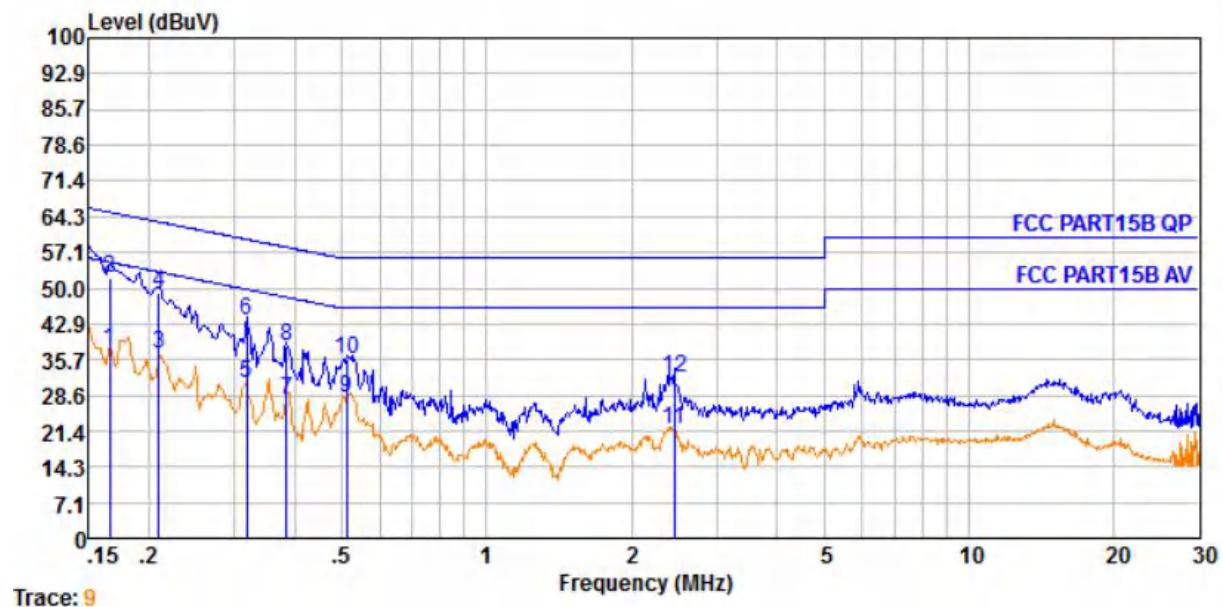
1. The lower limit shall apply at the transition frequencies
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.6 Measurement Description

The maximised peak emissions from the Notebook was scanned and measured for both the Live and Neutral Lines with AC 120V 60Hz and AC 240V 50Hz, the worst case is AC 120V 60Hz. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

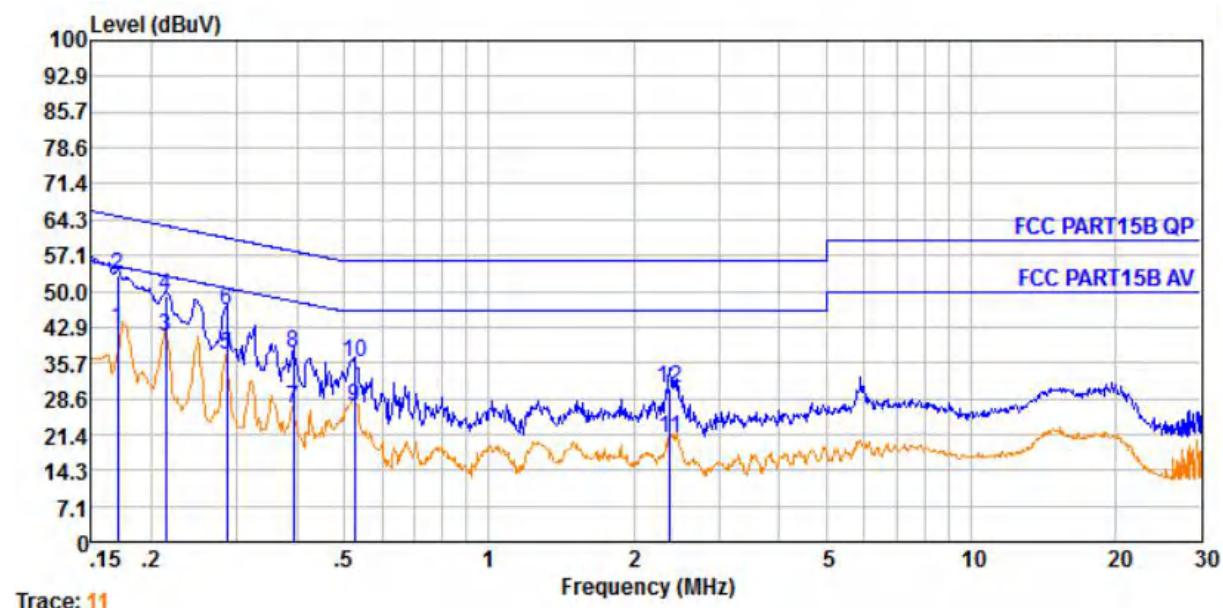
5.7 Conducted Emission Test Result

Pass.


The adapters and all modulation modes of have been tested. The data of the worst mode (TX 802.11b low channel) is recorded on the following page, and other modulation methods have not exceeded the limit.

Please refer to the following pages.

Report No.: PTC21112400103E-FC01


Line- AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.166	0.23	9.59	27.78	37.60	55.16	-17.56	Average
2.	0.166	0.23	9.59	42.08	51.90	65.16	-13.26	QP
3.	0.209	0.29	9.59	27.03	36.91	53.23	-16.32	Average
4.	0.209	0.29	9.59	39.20	49.08	63.23	-14.15	QP
5.	0.318	0.38	9.60	20.86	30.84	49.75	-18.91	Average
6.	0.318	0.38	9.60	33.38	43.36	59.75	-16.39	QP
7.	0.385	0.40	9.60	17.75	27.75	48.17	-20.42	Average
8.	0.385	0.40	9.60	28.28	38.28	58.17	-19.89	QP
9.	0.513	0.43	9.61	18.06	28.10	46.00	-17.90	Average
10.	0.513	0.43	9.61	25.61	35.65	56.00	-20.35	QP
11.	2.448	0.47	9.62	11.78	21.87	46.00	-24.13	Average
12.	2.448	0.47	9.62	21.88	31.97	56.00	-24.03	QP

Neutral-AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.170	0.24	9.60	32.75	42.59	54.94	-12.35	Average
2.	0.170	0.24	9.60	43.28	53.12	64.94	-11.82	QP
3.	0.214	0.29	9.61	31.11	41.01	53.05	-12.04	Average
4.	0.214	0.29	9.61	39.23	49.13	63.05	-13.92	QP
5.	0.286	0.36	9.62	27.42	37.40	50.63	-13.23	Average
6.	0.286	0.36	9.62	36.24	46.22	60.63	-14.41	QP
7.	0.393	0.40	9.62	16.45	26.47	47.99	-21.52	Average
8.	0.393	0.40	9.62	27.55	37.57	57.99	-20.42	QP
9.	0.527	0.43	9.63	16.81	26.87	46.00	-19.13	Average
10.	0.527	0.43	9.63	25.78	35.84	56.00	-20.16	QP
11.	2.371	0.47	9.65	10.49	20.61	46.00	-25.39	Average
12.	2.371	0.47	9.65	20.55	30.67	56.00	-25.33	QP

6 Radiated Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method : ANSI C63.10:2013

Test Result : PASS

Measurement Distance : 3m

Limit : See the follow table

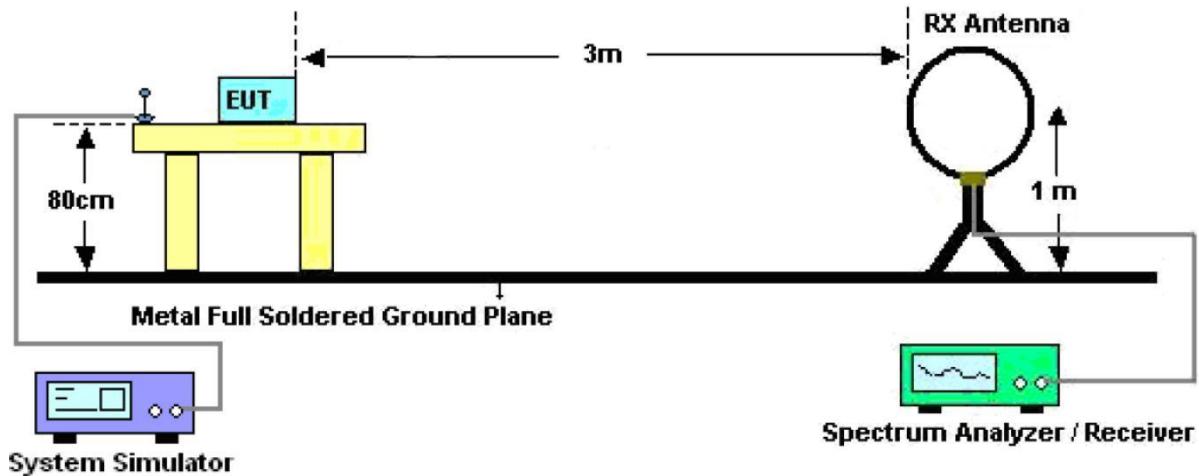
Frequency (MHz)	Field Strength		Field Strength Limit at 3m Measurement Dist	
	uV/m	Distance (m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	$20\log^{(2400/F(kHz))} + 80$
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	$20\log^{(24000/F(kHz))} + 40$
1.705 ~ 30	30	30	100 * 30	$20\log^{(30)} + 40$
30 ~ 88	100	3	100	$20\log^{(100)}$
88 ~ 216	150	3	150	$20\log^{(150)}$
216 ~ 960	200	3	200	$20\log^{(200)}$
Above 960	500	3	500	$20\log^{(500)}$

6.1 EUT Operation

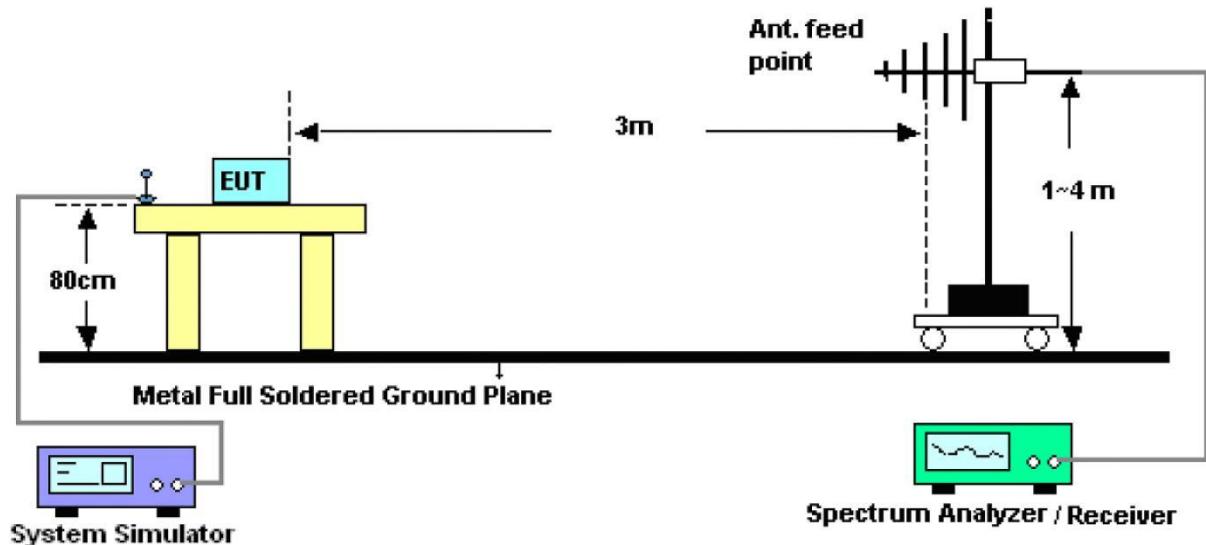
Operating Environment :

Temperature: : 24.5 °C

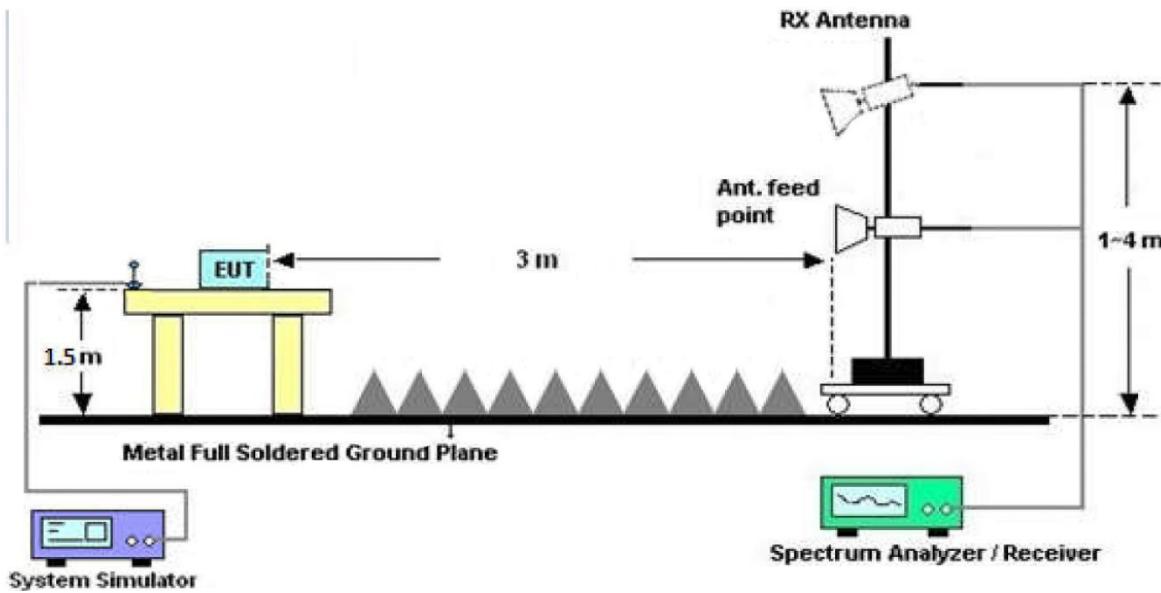
Humidity: : 52 % RH


Atmospheric Pressure: : 101.3kPa

Test Voltage : AC 120V 60Hz


6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site


The test setup for emission measurement below 30MHz

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

Receiver Setup	Frequency	Detector	RBW	VBW	Remark
	Below 30MHz	--	10kHz	10kHz	--
	30MHz ~ 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value

6.4 Test Procedure

1. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane, And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
8. The test above 1GHz must be use the fully anechoic room, and the test below 1GHz use the half anechoic room

6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

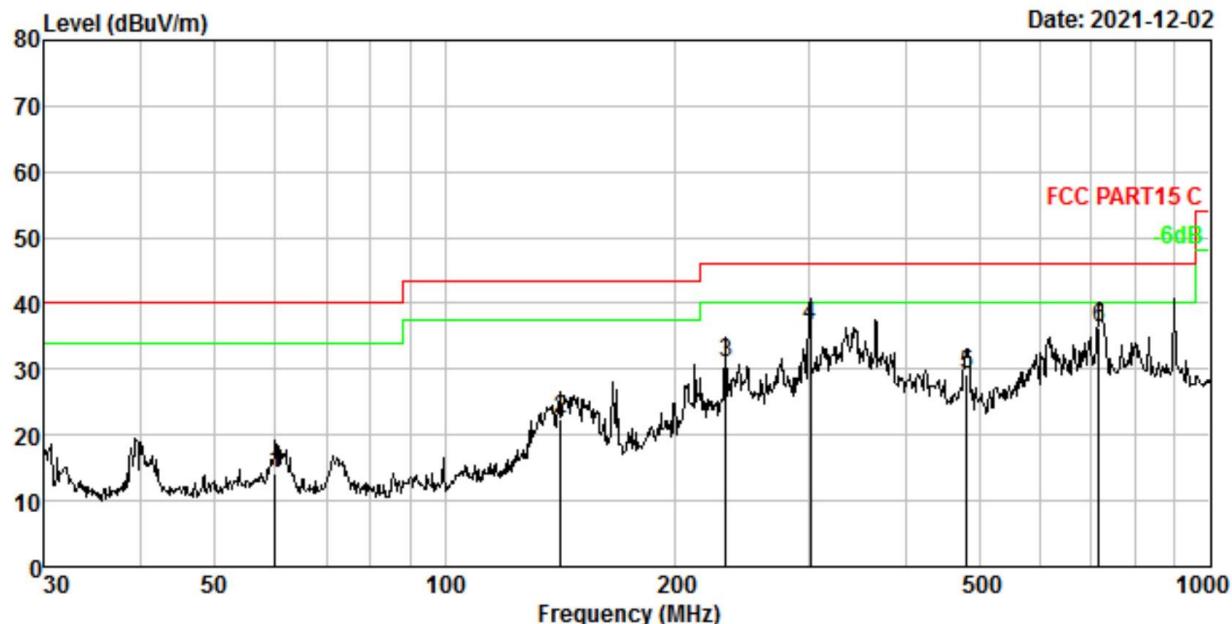
Freq. (MHz)	Ant.Pol. H/V	Emission Level (dBuV/m)	Limit 3m (dBuV/m)	Over (dB)
--	--	--	--	>20

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor = $40\log(\text{Specific distance/ test distance})$ (dB);
Limit line=Specific limits(dBuV) + distance extrapolation factor.

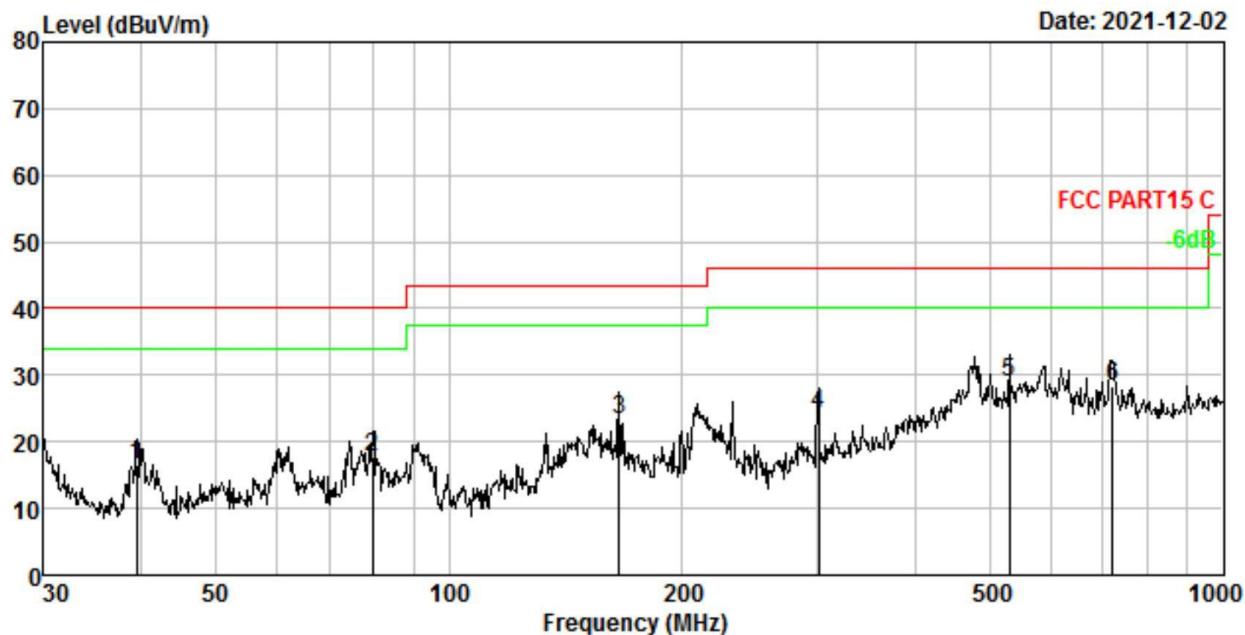
Test Frequency: 30MHz ~ 1GHz


All the modulation modes were tested the data of the worst mode (TX 802.11b Low Channel) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following test plots:

Report No.: PTC21112400103E-FC01

Antenna Polarization: Horizontal


No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	60.069	2.39	11.69	30.09	29.94	14.23	40.00	-25.77	QP
2.	141.826	3.87	13.38	35.31	30.02	22.54	43.50	-20.96	QP
3.	233.349	4.73	12.04	44.36	30.15	30.98	46.00	-15.02	QP
4.	300.367	5.16	13.21	48.64	30.32	36.69	46.00	-9.31	QP
5.	480.528	5.97	16.65	37.33	30.86	29.09	46.00	-16.91	QP
6.	716.682	6.66	20.30	40.43	31.10	36.29	46.00	-9.71	QP

Remark: Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Report No.: PTC21112400103E-FC01

Antenna Polarization: Vertical

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	39.576	1.68	12.11	32.58	29.91	16.46	40.00	-23.54	QP
2.	79.800	2.89	9.02	35.70	29.97	17.64	40.00	-22.36	QP
3.	166.068	4.14	13.59	35.63	30.03	23.33	43.50	-20.17	QP
4.	300.367	5.16	13.21	36.12	30.32	24.17	46.00	-21.83	QP
5.	530.101	6.14	17.96	35.91	30.94	29.07	46.00	-16.93	QP
6.	719.200	6.67	20.34	32.36	31.10	28.27	46.00	-17.73	QP

Remark: Emission Level = Reading + Cable Loss + ANT Factor - AMP Factor

Test Frequency: From 1GHz to 25GHz

Worst case 802.11b

Test Mode: 2412				Test channel: Lowest				
Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	40.73	32.29	4.10	28.45	48.67	74.00	-25.33	V
7236.00	34.50	35.99	6.22	27.83	48.88	74.00	-25.12	V
9648.00	32.91	38.11	7.83	25.10	53.75	74.00	-20.25	V
4824.00	39.33	32.29	4.10	28.45	47.27	74.00	-26.73	H
7236.00	34.21	35.99	6.22	27.83	48.59	74.00	-25.41	H
9648.00	32.48	38.11	7.83	25.10	53.32	74.00	-20.68	H
Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	29.78	32.29	4.10	28.45	37.72	54.00	-16.28	V
7236.00	23.35	35.99	6.22	27.83	37.73	54.00	-16.27	V
9648.00	23.25	38.11	7.83	25.10	44.09	54.00	-9.91	V
4824.00	28.85	32.29	4.10	28.45	36.79	54.00	-17.21	H
7236.00	22.79	35.99	6.22	27.83	37.17	54.00	-16.83	H
9648.00	22.22	38.11	7.83	25.10	43.06	54.00	-10.94	H

Worst case 802.11b

Test Mode: 2437				Test channel: Middle				
Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	39.71	32.35	4.12	28.44	47.74	74.00	-26.26	V
7311.00	34.52	36.08	6.30	27.74	49.16	74.00	-24.84	V
9748.00	33.90	38.25	7.91	24.65	55.41	74.00	-18.59	V
4874.00	40.14	32.35	4.12	28.44	48.17	74.00	-25.83	H
7311.00	33.13	36.08	6.30	27.74	47.77	74.00	-26.23	H
9748.00	33.77	38.25	7.91	24.65	55.28	74.00	-18.72	H
Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	30.54	32.35	4.12	28.44	38.57	54.00	-15.43	V
7311.00	22.83	36.08	6.30	27.74	37.47	54.00	-16.53	V
9748.00	23.14	38.25	7.91	24.65	44.65	54.00	-9.35	V
4874.00	30.23	32.35	4.12	28.44	38.26	54.00	-15.74	H
7311.00	22.21	36.08	6.30	27.74	36.85	54.00	-17.15	H
9748.00	23.48	38.25	7.91	24.65	44.99	54.00	-9.01	H

Worst case 802.11b

Test Mode: 2462				Test channel: High				
Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	45.51	32.41	4.14	28.42	53.64	74.00	-20.36	V
7386.00	35.36	36.15	6.36	27.68	50.19	74.00	-23.81	V
9848.00	37.31	38.35	7.97	24.33	59.30	74.00	-14.70	V
4924.00	44.72	32.41	4.14	28.42	52.85	74.00	-21.15	H
7386.00	34.21	36.15	6.36	27.68	49.04	74.00	-24.96	H
9848.00	33.46	38.35	7.97	24.33	55.45	74.00	-18.55	H
Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	36.37	32.41	4.14	28.42	44.50	54.00	-9.50	V
7386.00	25.26	36.15	6.36	27.68	40.09	54.00	-13.91	V
9848.00	25.80	38.35	7.97	24.33	47.79	54.00	-6.21	V
4924.00	35.05	32.41	4.14	28.42	43.18	54.00	-10.82	H
7386.00	23.59	36.15	6.36	27.68	38.42	54.00	-15.58	H
9848.00	22.71	38.35	7.97	24.33	44.70	54.00	-9.30	H

Note:

1. The testing has been conformed to $10 \times 2462\text{MHz} = 24620\text{MHz}$.
2. All other emissions more than 30dB below the limit.
3. Factor = Antenna Factor + Cable Loss – Pre-amplifier.
Emission Level = Reading + Factor
Margin= Emission Level-Limit
4. X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Frequency: From 18GHz to 25GHz

The measurements were more than 20dB below the limit and not reported.

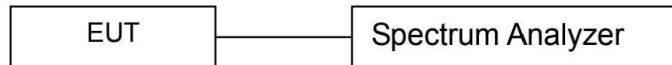
Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

2.4G WiFi (802.11b/g/n20/n40) mode have been tested, and the worst result(802.11g) was report as below

Test Mode: 802.11g Low Channel 2412MHz

Test Mode: 802.11g Low Channel 2412MHz									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Polarity H/V	Test Value
2390.00	52.74	27.39	2.77	34.01	48.89	74.00	-25.11	H	Peak
2400.00	62.12	27.42	2.78	34.01	58.31	74.00	-15.69	H	
2390.00	54.50	27.39	2.77	34.01	50.65	74.00	-23.35	V	
2400.00	64.22	27.42	2.78	34.01	60.41	74.00	-13.59	V	
2390.00	39.19	27.39	2.77	34.01	35.34	54.00	-18.66	H	
2400.00	47.60	27.42	2.78	34.01	43.79	54.00	-10.21	H	
2390.00	41.10	27.39	2.77	34.01	37.25	54.00	-16.75	V	Average
2400.00	48.81	27.42	2.78	34.01	45.00	54.00	-9.00	V	

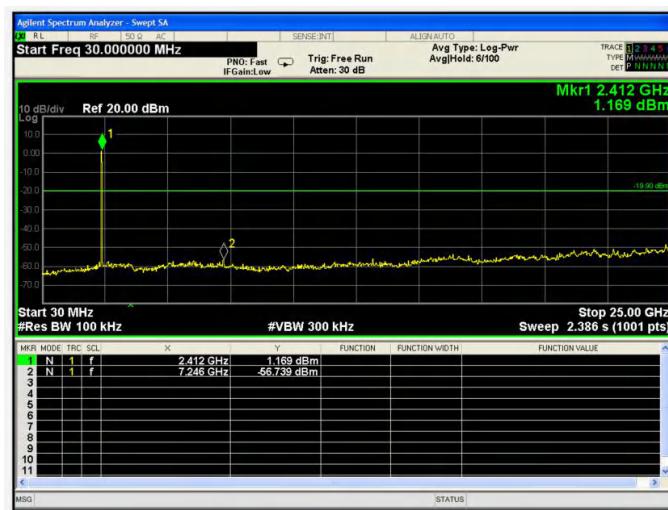
Test Mode: 802.11g High Channel 2462MHz

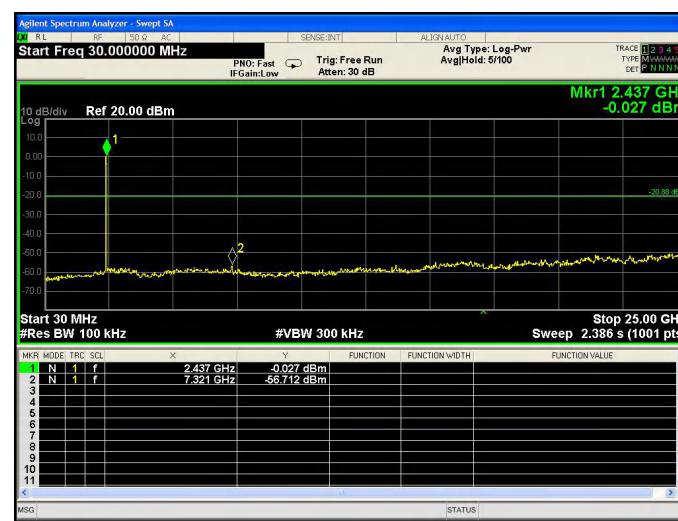

Test Mode: 802.11g High Channel 2462MHz									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Polarity H/V	Test Value
2483.50	53.87	27.70	2.84	34.03	50.38	74.00	-23.62	H	Peak
2500.00	49.35	27.75	2.86	34.03	45.93	74.00	-28.07	H	
2483.50	56.35	27.70	2.84	34.03	52.86	74.00	-21.14	V	
2500.00	52.06	27.75	2.86	34.03	48.64	74.00	-25.36	V	
2483.50	39.72	27.70	2.84	34.03	36.23	54.00	-17.77	H	
2500.00	35.61	27.75	2.86	34.03	32.19	54.00	-21.81	H	
2483.50	41.77	27.70	2.84	34.03	38.28	54.00	-15.72	V	Average
2500.00	37.54	27.75	2.86	34.03	34.12	54.00	-19.88	V	

7 Conducted Spurious Emission

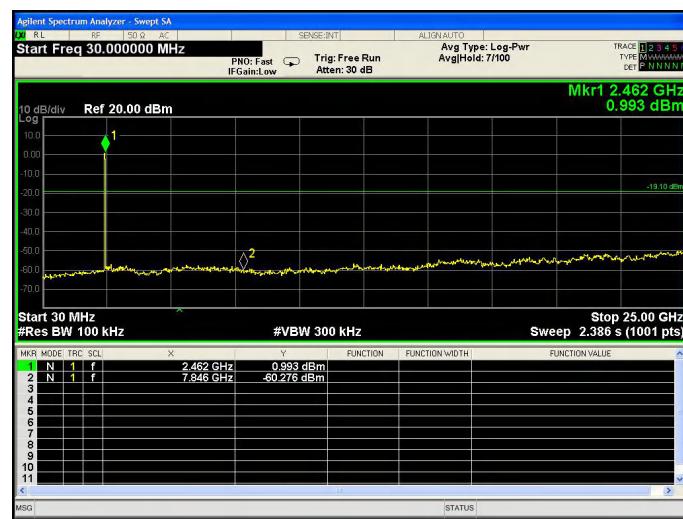
Test Requirement : FCC CFR47 Part 15 Section 15.247
Test Method : ANSI C63.10:2013
Test Limit : Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.1 Test Procedure

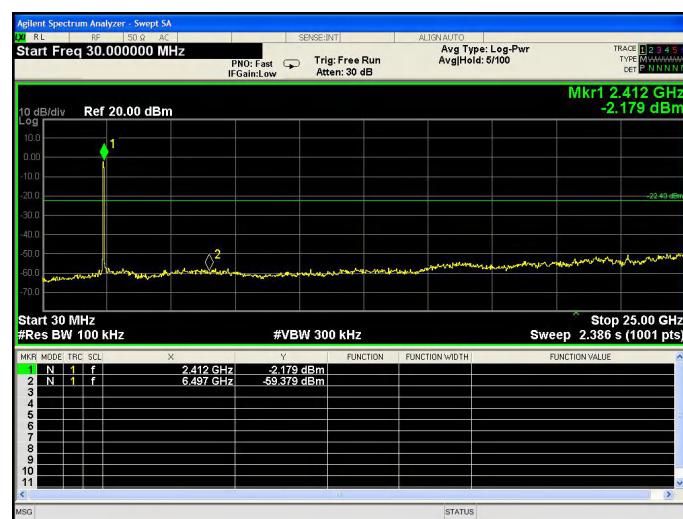

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
Detector function = peak, Trace = max hold
3. Test set-up(block diagram of configuration):


7.2 Test Result

802.11 b


Low Channel mode

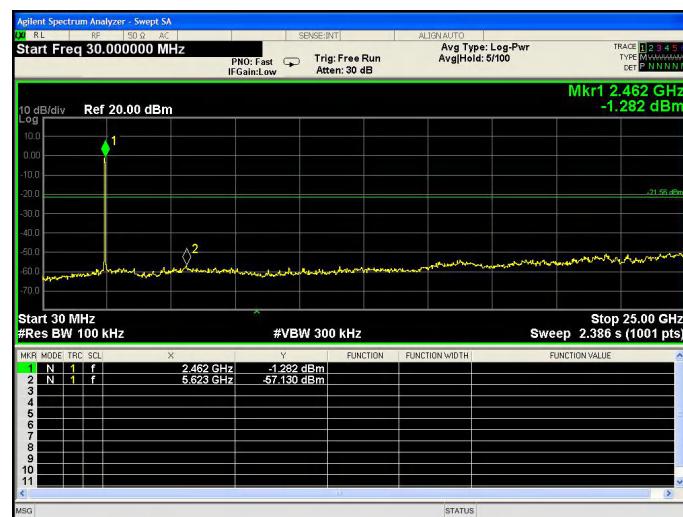
Middle Channel mode



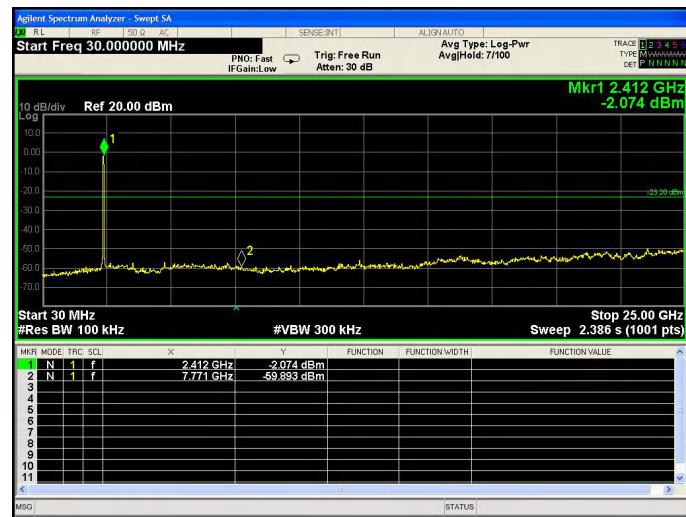
High Channel mode



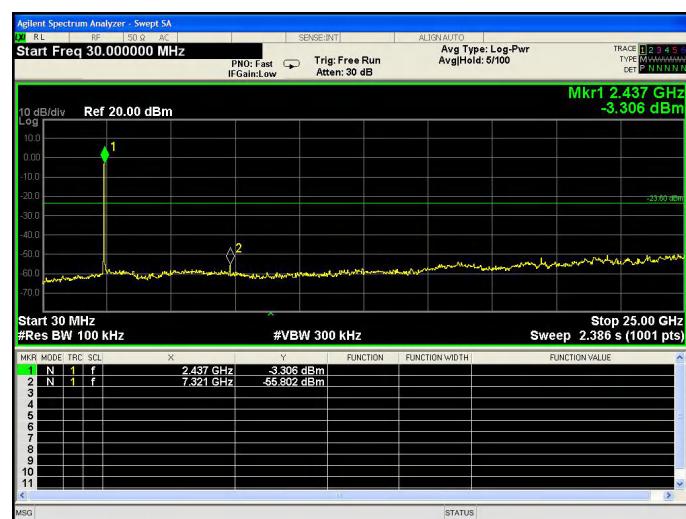
802.11 g


Low Channel mode

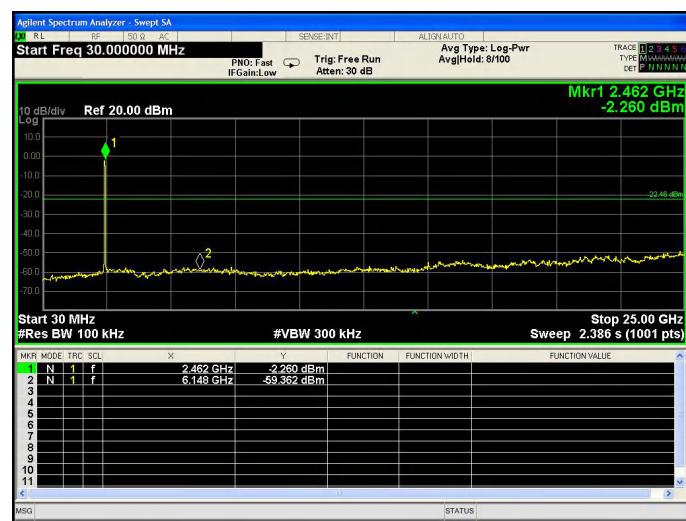
Middle Channel mode



High Channel mode

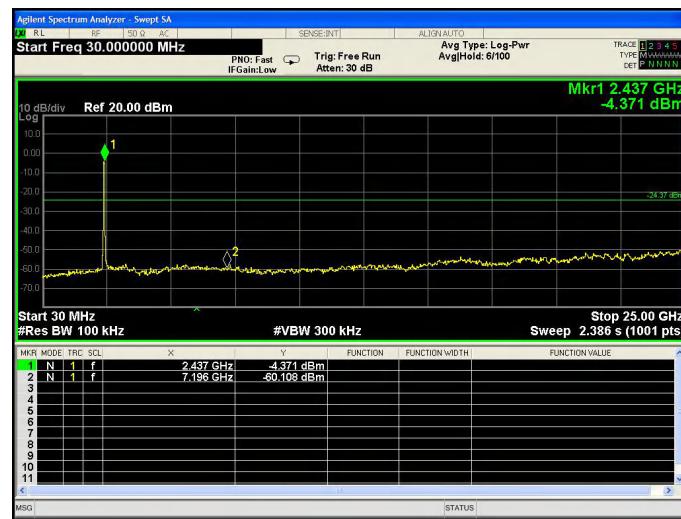


802.11 n20

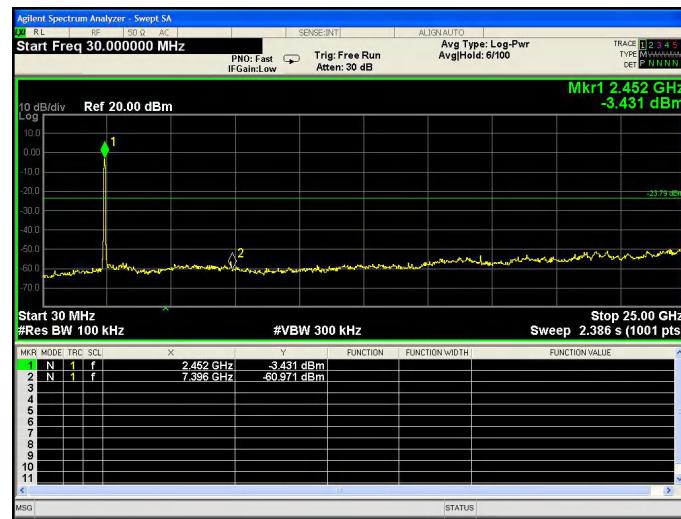

Low Channel mode

Middle Channel mode

High Channel mode



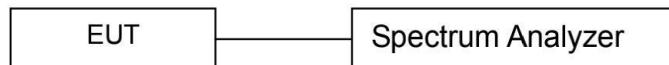
802.11 n40


Low Channel mode

Middle Channel mode

High Channel mode

8 Band Edge Measurement


Test Requirement : Section 15.247(d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
Detector function = peak, Trace = max hold
3. Test set-up(block diagram of configuration):

8.2 Test Result

802.11b

802.11g

802.11n-H20

802.11n-H40

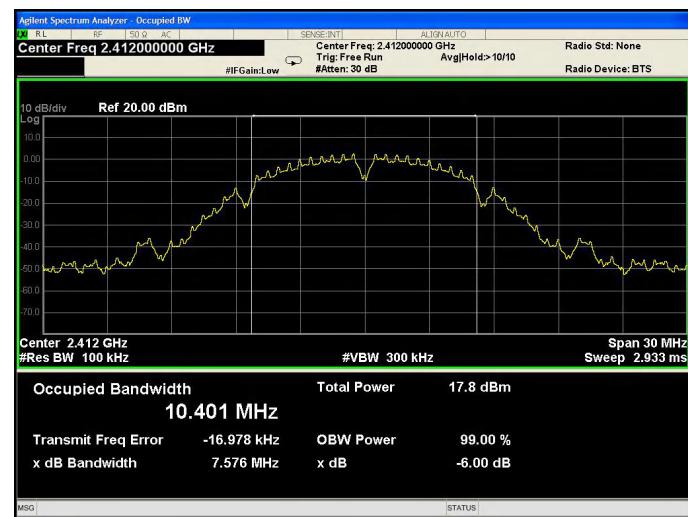
9 6dB Bandwidth Measurement

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit
Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

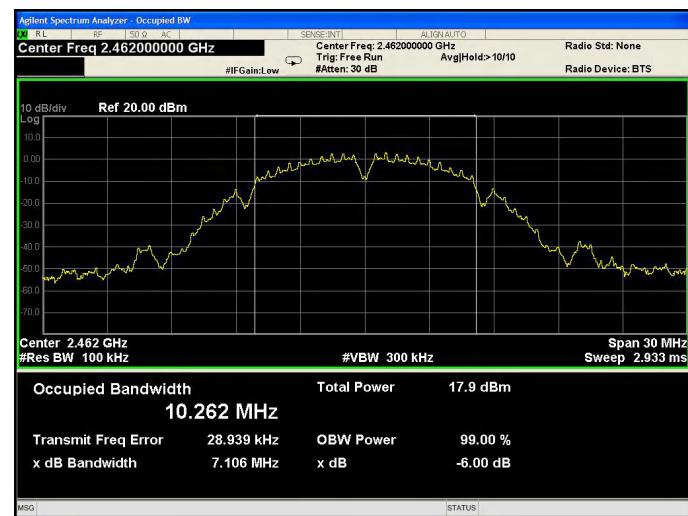
9.1 Test Procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz
3. Test set-up(block diagram of configuration):

9.2 Test Result

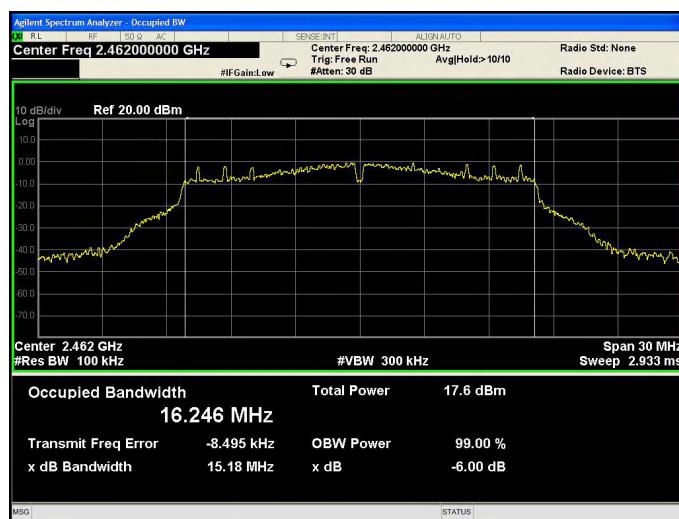
Modulation	Bandwidth(MHz)			Limit
	Low Channel	Middle Channel	High Channel	
802.11b	7.576	7.126	7.106	≥500kHz
802.11g	15.22	15.53	15.18	≥500kHz
802.11n-HT20	15.16	15.99	15.21	≥500kHz
802.11n-HT40	35.23	35.24	35.22	≥500kHz

802.11b Low Channel

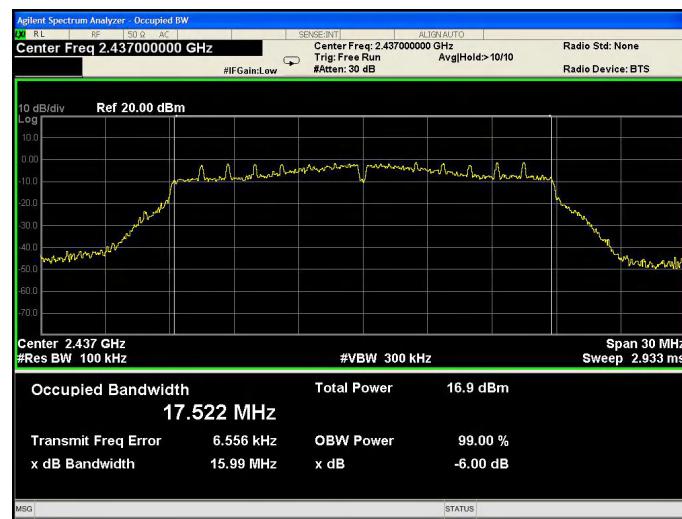

802.11b Middle Channel

Report No.: PTC21112400103E-FC01

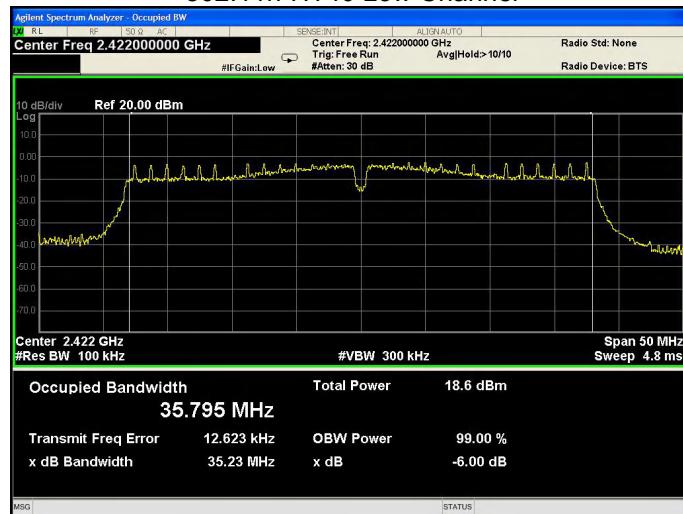
802.11b High Channel

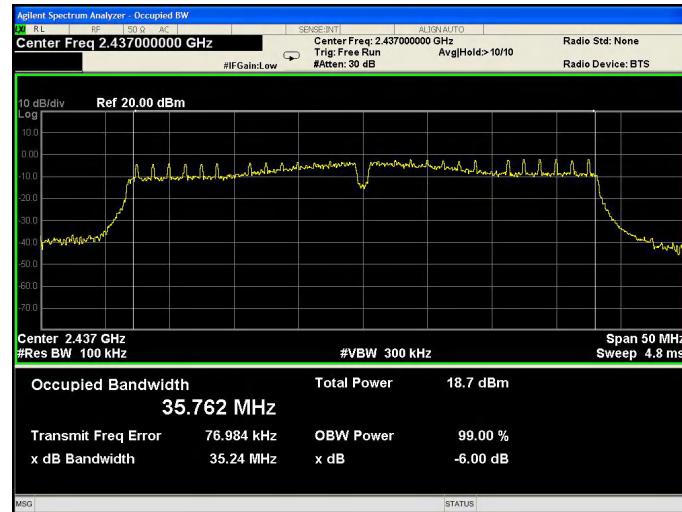

802.11g Low Channel

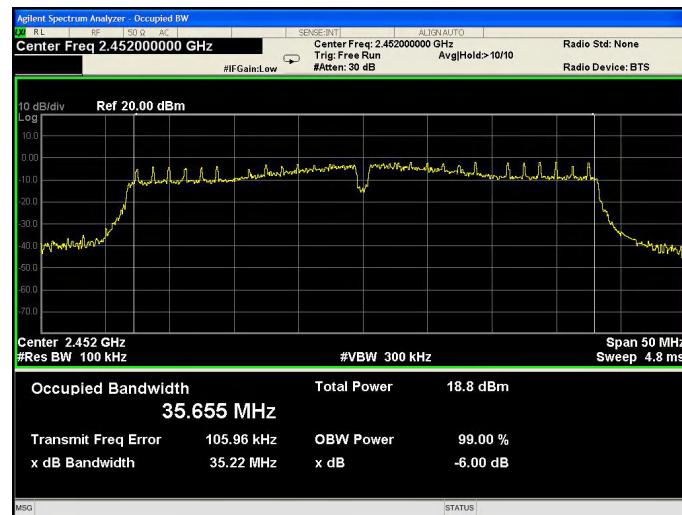
802.11g Middle Channel


802.11g High Channel

802.11n-HT20 Low Channel


802.11n-HT20 Middle Channel


802.11n-HT20 High Channel


802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

802.11n-HT40 High Channel

10 Maximum Peak Output Power

Test Requirement : FCC CFR47 Part 15 Section 15.247

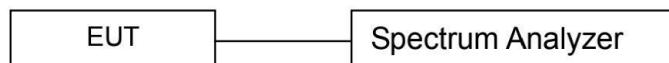
Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

10.1 Test Procedure

1. The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02 section 8.3.1.
2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power and record the results in the test report.
5. Test set-up(block diagram of configuration):

10.2 Test Result


Modulation	Maximum Peak Output Power (dBm)			Limit
	Low Channel	Middle Channel	High Channel	
802.11b	8.23	8.42	8.32	1W(30dBm)
802.11g	7.45	7.48	7.54	1W(30dBm)
802.11n-HT20	7.52	7.44	7.55	1W(30dBm)
802.11n-HT40	7.36	7.42	7.36	1W(30dBm)

11 Power Spectral density

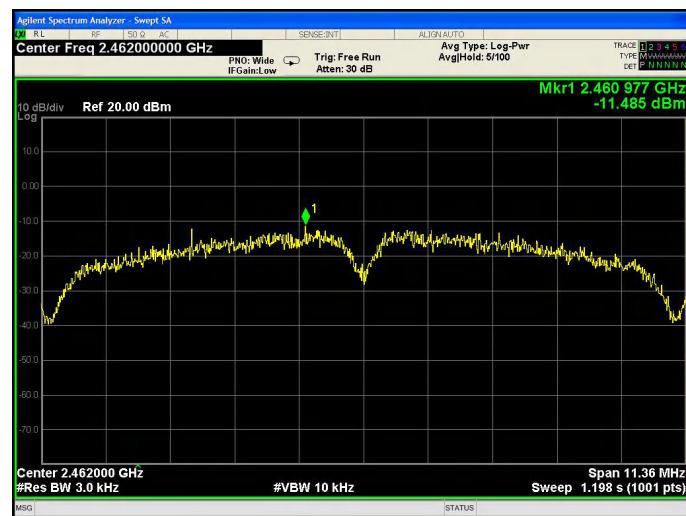
Test Requirement : FCC CFR47 Part 15 Section 15.247
 Test Method : ANSI C63.10:2013
 Test Limit : Regulation 15.247(f) The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

11.1 Test Procedure

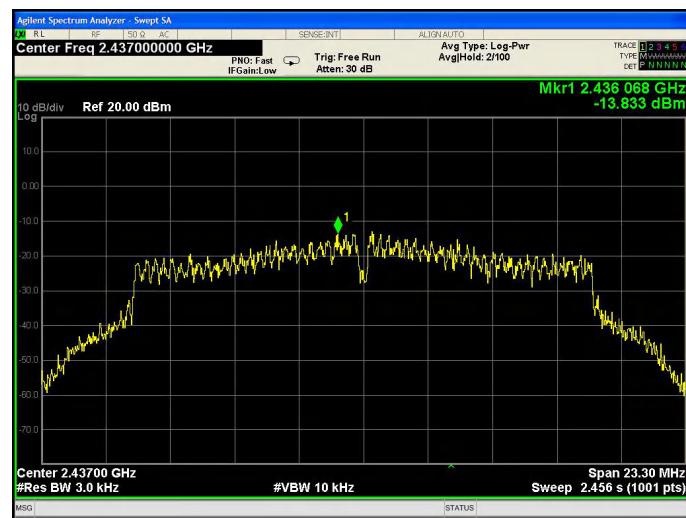
1. Connect the antenna port(s) to the spectrum analyzer input.
2. Configure the spectrum analyzer as shown below:
 Center frequency=DTS channel center frequency
 Span = 1.5 times the DTS bandwidth
 RBW = 3KHz, VBW = 10KHz
 Sweep time = auto couple
 Detector = peak
 Trace mode =max hold
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
4. Use the peak marker function to determine the maximum amplitude level within the RBW.
5. If measured value exceeds limit, reduce RBW(no less than 3KHz) and repeat.
6. Test set-up(block diagram of configuration):

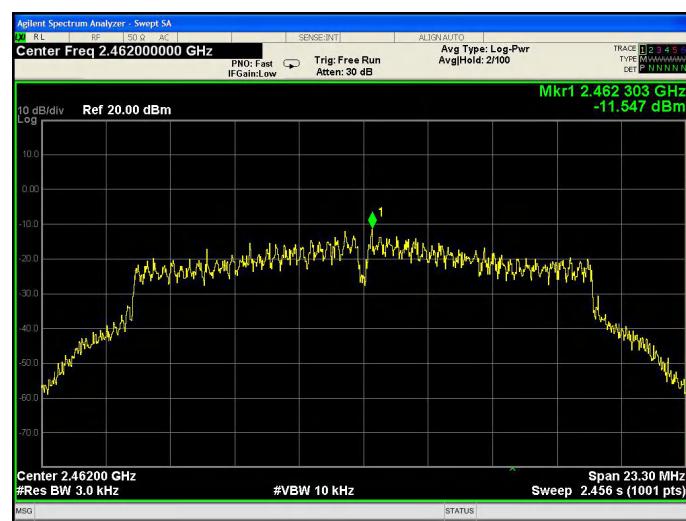
11.2 Test Result

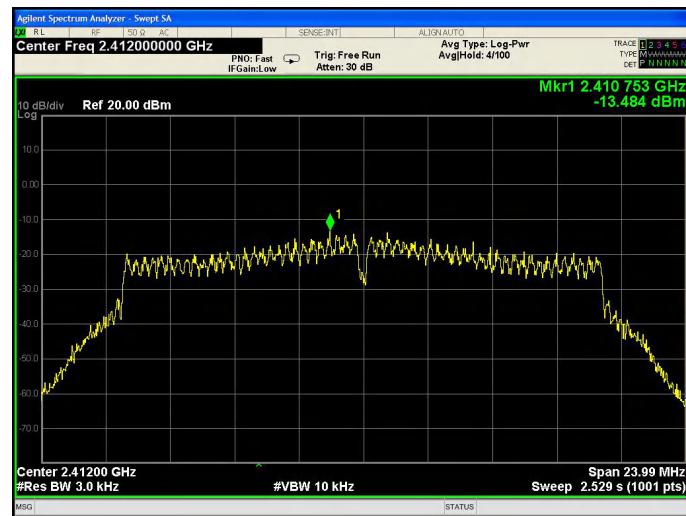
Modulation	Power Spectral density (dBm/3kHz)			Limit
	Low Channel	Middle Channel	High Channel	
802.11b	-11.871	-12.28	-11.485	8dBm/3kHz
802.11g	-13.895	-13.833	-11.547	8dBm/3kHz
802.11n-HT20	-13.484	-14.451	-13.255	8dBm/3kHz
802.11n-HT40	-16.09	-15.419	-15.398	8dBm/3kHz

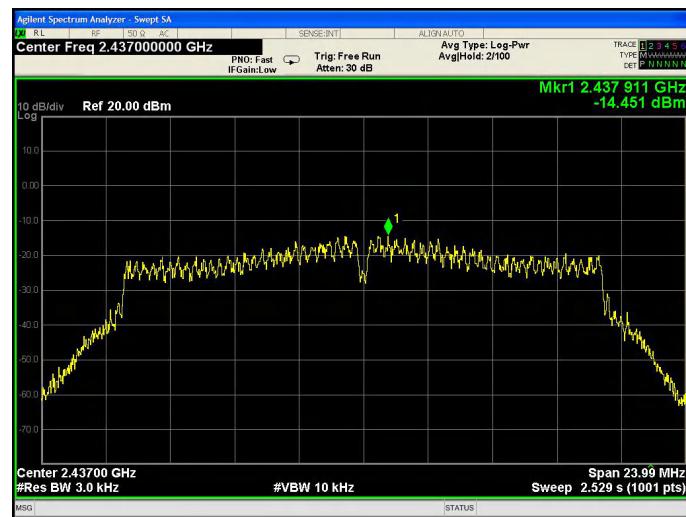

802.11b Low Channel

802.11b Middle Channel

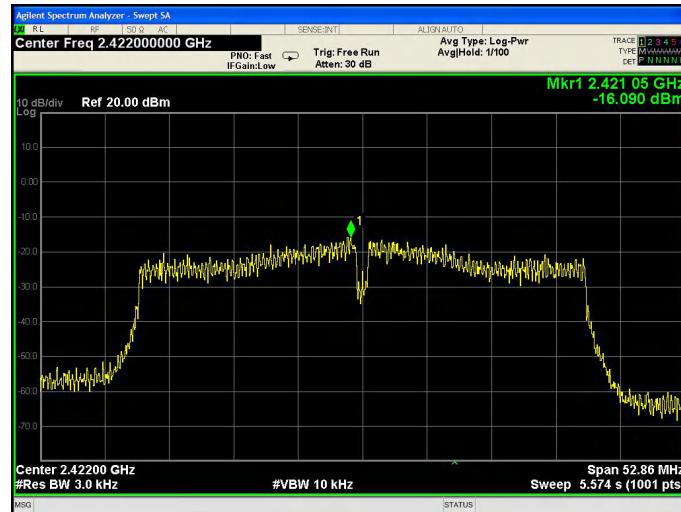

802.11b High Channel


802.11g Low Channel


802.11g Middle Channel


802.11g High Channel

802.11n-HT20 Low Channel


802.11n-HT20 Middle Channel


802.11n-HT20 High Channel


802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

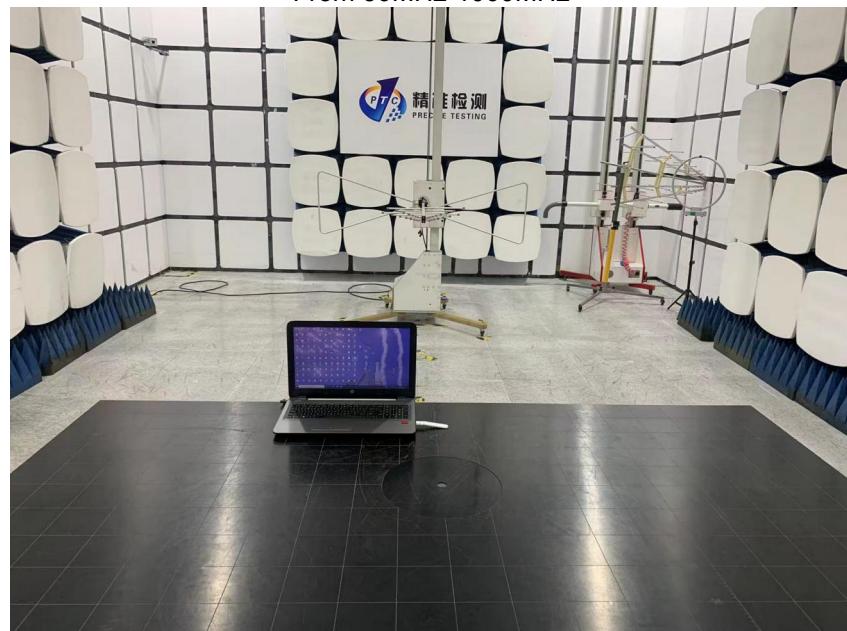
802.11n-HT40 High Channel

12 Antenna Application

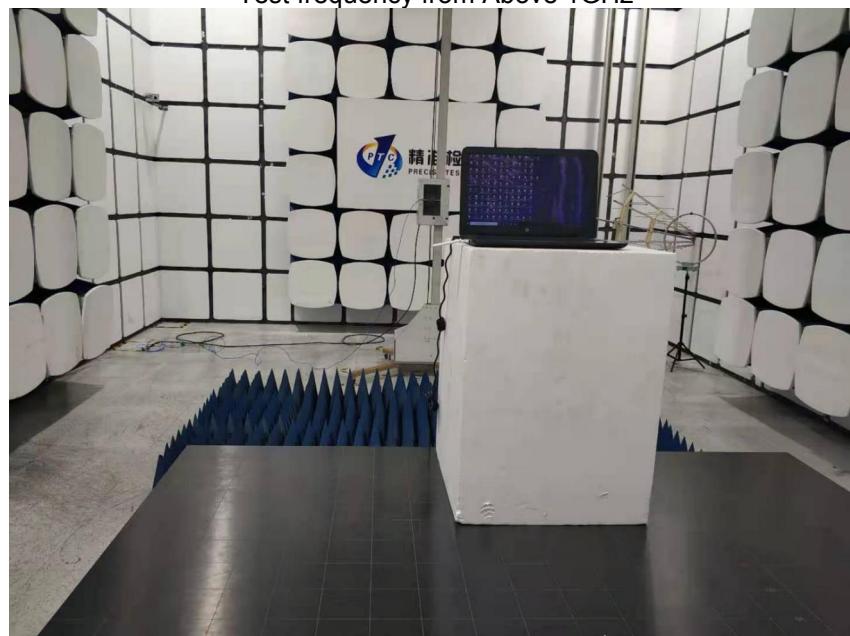
12.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

12.2 Result


The EUT'S antenna, permanent attached antenna, is PCB Antenna. The antenna's gain is 2dBi and meets the requirement.

13 Test Setup


Conducted Emissions

Radiated Spurious Emissions
From 30MHz-1000MHz

Test frequency from Above 1GHz

Report No.: PTC21112400103E-FC01

14 EUT PHOTOS

Reference file “appendix II EUT photo”

*******THE END REPORT*******