

TEST REPORT

Report No.	CHTEW21100135	Report verificaiton:
Project No.	SHT2108044903EW	
FCC ID	2A3E5-EYEONG	
Applicant's name	EyeTech Digital Systems , Inc.	
Address.....	2141 E Broadway Rd, Ste 202, Tempe, AZ 85282, United States of America	
Test item description	EyeOn Go	
Trade Mark	EyeOn	
Model/Type reference.....	EyeOn-10NE	
Listed Model(s)	-	
Standard	FCC 47 CFR Part2.1093 IEEE Std C95.1, 1999 Edition IEEE 1528: 2013	
Date of receipt of test sample.....	Sep.06, 2021	
Date of testing.....	Sep.07, 2021-Oct.20, 2021	
Date of issue.....	Oct.21, 2021	
Result.....	PASS	
Compiled by (position+printedname+signature)....	File administrators: Fanghui Zhu	
Supervised by (position+printedname+signature)....	Test Engineer: Patrick Qiu	
Approved by (position+printedname+signature)....	Manager: Hans Hu	
Testing Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd	
Address.....	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China	

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u> <u>Statement of Compliance</u>	3
<u>2.</u> <u>Test Standards and Report version</u>	4
2.1. Test Standards	4
2.2. Report version	4
<u>3.</u> <u>Summary</u>	5
3.1. Client Information	5
3.2. Product Description	5
3.3. RF Specification Description	5
3.4. Testing Laboratory Information	7
3.5. Environmental conditions	7
<u>4.</u> <u>Equipments Used during the Test</u>	8
<u>5.</u> <u>Measurement Uncertainty</u>	8
<u>6.</u> <u>SAR Measurements System Configuration</u>	9
6.1. SAR Measurement Set-up	9
6.2. DASY5 E-field Probe System	10
6.3. Phantoms	11
6.4. Device Holder	11
<u>7.</u> <u>SAR Test Procedure</u>	12
7.1. Scanning Procedure	12
7.2. Data Storage and Evaluation	14
<u>8.</u> <u>Dielectric Property Measurements & System Check</u>	16
8.1. Tissue Dielectric Parameters	16
8.2. System Check	17
<u>9.</u> <u>SAR Exposure Limits</u>	23
<u>10.</u> <u>Conducted Power Measurement Results</u>	24
10.1. Wi-Fi	24
10.2. Bluetooth	26
<u>11.</u> <u>Maximum Tune-up Limit</u>	27
<u>12.</u> <u>RF Exposure Conditions (Test Configurations)</u>	30
12.1. Antenna Location	30
12.2. Standalone SAR test exclusion considerations	31
12.3. Required Test Configurations	31
<u>13.</u> <u>Measured and Reported SAR Results</u>	32
<u>14.</u> <u>SAR Measurement Variability</u>	35
<u>15.</u> <u>Simultaneous Transmission analysis</u>	36
<u>16.</u> <u>TestSetup Photos</u>	37
<u>17.</u> <u>External and Internal Photos of the EUT</u>	38

1 . Statement of Compliance

Maximum Reported SAR (W/kg @1g)				
RF Exposure Conditions	2.4GWIFI	NII	Bluetooth	Summed SAR
Body(Dist.= 0mm)	1.285	0.561	0.153	1.438

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

2 . Test Standards and Report version

2.1. Test Standards

The tests were performed according to following standards:

[FCC 47 Part 2.1093](#): Radiofrequency radiation exposure evaluation: portable devices.

[IEEE Std C95.1, 1999 Edition](#): IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

[IEEE Std 1528™-2013](#): IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

[865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04](#): SAR Measurement Requirements for 100 MHz to 6 GHz

[865664 D02 RF Exposure Reporting v01r02](#): RF Exposure Compliance Reporting and Documentation Considerations

[447498 D01 General RF Exposure Guidance v06](#): Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

[248227 D01 802.11 Wi-Fi SAR v02r02](#): SAR Measurement Procedures for 802.11 a/b/g Transmitters

[616217 D04 SAR for laptop and tablets v01r02](#): SAR Evaluation Requirements for Laptop, Notebook, Netbook and Tablet Computers

[TCB workshop](#) April, 2019; Page 19, Tissue Simulating Liquids (TSL)

2.2. Report version

Revision No.	Date of issue	Description
N/A	2021-10-21	Original

3. Summary

3.1. Client Information

Applicant:	EyeTech Digital Systems , Inc.
Address:	2141 E Broadway Rd, Ste 202, Tempe, AZ 85282, United States of America
Manufacturer:	Shenzhen Chuangwei Electronic Appliance Tech Co.,Ltd.
Address:	4F&6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, P.R. China
Factory:	Shenzhen Chuangwei Electronic Appliance Tech Co.,Ltd.
Address:	4F&6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, P.R. China

3.2. Product Description

Main unit	
Name of EUT:	EyeOn Go
Trade Mark:	EyeOn
Model No.:	EyeOn-10NE
Listed Model(s):	-
Power supply:	DC3.8V from battery
Device Category:	Portable
Product stage:	Production unit
RF Exposure Environment:	General Population/Uncontrolled
HTW test sample No.:	YPHT21080449004
Hardware version:	TO116K_MB_V4.0
Software version:	TO116K_Y10_V3.0.0_20210923
Device Dimension:	Overall (Length x Width x Thickness): 260X185X12 mm

3.3. RF Specification Description

Wi-Fi 2.4G	
Operating Mode:	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)
Antenna Type:	PIFA
Wi-Fi 5G	
Operation Band:	U-NII-1 U-NII-2A U-NII-2C U-NII-3
Operating Mode:	802.11a 802.11n(HT20) 802.11n(HT40) 802.11ac(VHT20)

	802.11ac(VHT40) 802.11ac(VHT80)
Antenna Type:	PIFA

Bluetooth	
Bluetooth version:	V4.0
Support function:	EDR
Operating Mode:	GFSK π/4DQPSK 8DPSK
Antenna Type:	PIFA
Bluetooth	
Bluetooth version:	V4.0
Support function:	BLE
Operating Mode:	GFSK
Antenna Type:	PIFA
<i>Remark:</i>	
1. <i>The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.</i>	

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.	
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China	
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn	
Qualifications	Type	Accreditation Number
	FCC	762235

3.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
●	Data Acquisition Electronics DAEEx	SPEAG	DAE4	1549	2021/03/23	2022/03/22
●	E-field Probe	SPEAG	EX3DV4	7494	2021/04/09	2022/04/08
●	Universal Radio Communication Tester	R&S	CMW500	137681	2021/05/27	2022/05/26
● Tissue-equivalent liquids Validation						
●	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
○	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
●	Network analyzer	Keysight	E5071C	MY46733048	2020/10/15	2021/10/14
● System Validation						
○	System Validation Antenna	SPEAG	CLA-150	4024	2021/01/25	2024/01/24
○	System Validation Dipole	SPEAG	D450V3	1102	2021/01/20	2024/01/19
○	System Validation Dipole	SPEAG	D750V3	1180	2021/01/22	2024/01/21
○	System Validation Dipole	SPEAG	D835V2	4d238	2021/01/22	2024/01/21
○	System Validation Dipole	SPEAG	D1750V2	1164	2021/01/22	2024/01/21
○	System Validation Dipole	SPEAG	D1900V2	5d226	2021/01/22	2024/01/21
●	System Validation Dipole	SPEAG	D2450V2	1009	2021/01/25	2024/01/24
○	System Validation Dipole	SPEAG	D2600V2	1150	2021/01/25	2024/01/24
●	System Validation Dipole	SPEAG	D5GHzV2	1273	2021/01/26	2024/01/25
●	Signal Generator	R&S	SMB100A	114360	2021/08/05	2022/08/04
●	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
●	Power sensor	R&S	NRP18A	101010	2021/08/05	2022/08/04
●	Power sensor	R&S	NRP18A	101386	2021/05/27	2022/05/26
●	Power Amplifier	BONN	BLWA 0160-2M	1811887	2020/11/12	2021/11/11
●	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2020/11/12	2021/11/11
●	Attenuator	Mini-Circuits	VAT-3W2+	1819	2020/11/12	2021/11/11
●	Attenuator	Mini-Circuits	VAT-10W2+	1741	2020/11/12	2021/11/11

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix B and C.
2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justification. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of $k = 2$. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

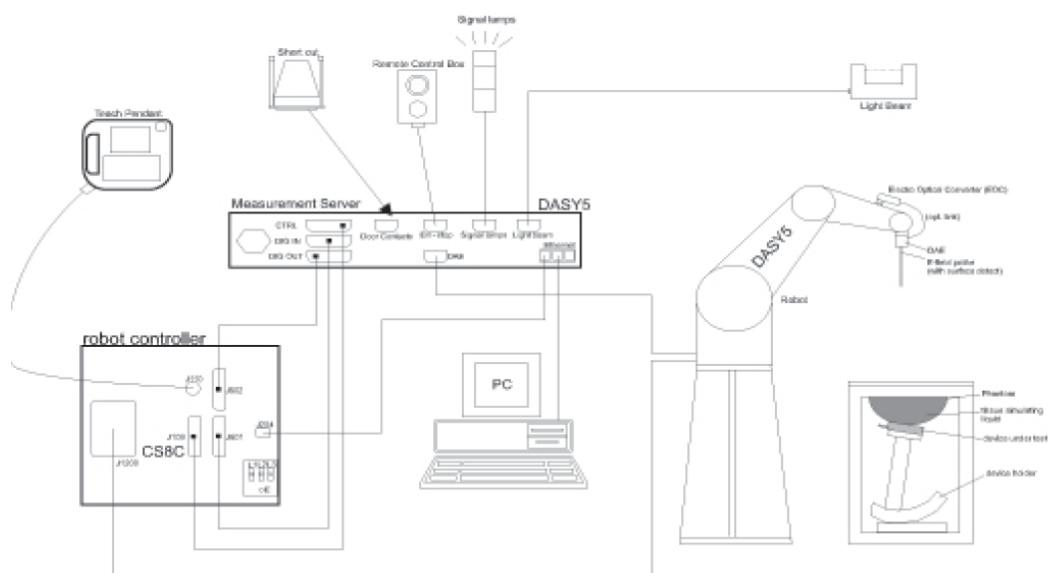
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

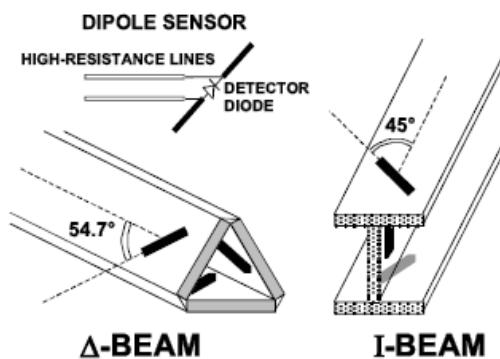
Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

● Probe Specification


Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	4 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 W/kg; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

◆ Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Resolutions per FCC KDB Publication 865664 D01v04

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	$\leq 2 \text{ GHz: } \leq 15 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 12 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 12 \text{ mm}$ $4 - 6 \text{ GHz: } \leq 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm $3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm $3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
		$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ mm
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.			
* When zoom scan is required and the <u>reported</u> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcp <i>i</i>
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcp*i*: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}}$$

Vi: compensated signal of channel (i = x, y, z)

Norm*i*: sensor sensitivity of channel (i = x, y, z),
[mV/(V/m)²] for E-field Probes

ConvF: sensitivity enhancement in solution

aij: sensor sensitivity factors for H-field probes

f: carrier frequency [GHz]

Ei: electric field strength of channel i in V/m

Hi: magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in W/kg

Etot: total field strength in V/m

σ : conductivity in [mho/m] or [Siemens/m]

ρ : equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. Dielectric Property Measurements & System Check

8.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^\circ\text{C}$ of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant (ϵ_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within $\pm 5\%$ of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ_r and σ may be relaxed to $\pm 10\%$. This is limited to frequencies ≤ 3 GHz.

Tissue Dielectric Parameters

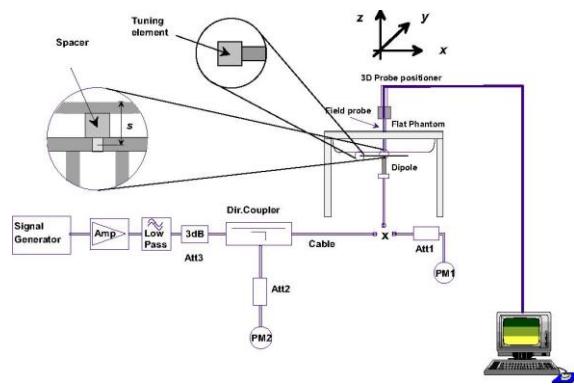
FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Tissue dielectric parameters for Head and Body				
Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
2450	39.2	1.80	52.7	1.95
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:


Dielectric performance of Head tissue simulating liquid									
Frequency (MHz)	ϵ_r		σ (S/m)		Delta (ϵ_r)	Delta (σ)	Limit	Temp (°C)	Date
	Target	Measured	Target	Measured					
2450	39.20	39.10	1.800	1.838	-0.26%	2.11%	$\pm 5\%$	22.4	2021/9/16
5250	35.93	34.85	4.706	4.609	-3.01%	-2.06%	$\pm 5\%$	22.4	2021/9/17
5600	35.53	34.34	5.065	4.954	-3.35%	-2.19%	$\pm 5\%$	22.4	2021/9/18
5750	35.36	34.12	5.219	5.103	-3.51%	-2.22%	$\pm 5\%$	22.4	2021/9/18

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.

System Performance Check Setup

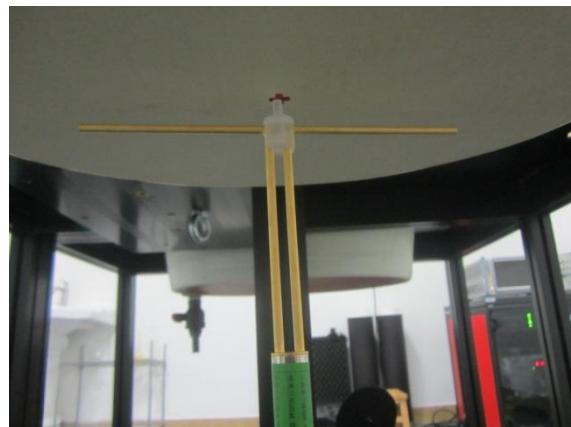


Photo of Dipole Setup

System Check Result:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target.

Head											
Frequency (MHz)	1g SAR			10g SAR			Delta (1g)	Delta (10g)	Limit	Temp (°C)	Date
	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW					
2450	52.00	48.00	12.00	23.90	22.76	5.69	-7.69%	-4.77%	$\pm 10\%$	22.4	2021/9/16

Head											
Frequency (MHz)	1g SAR			10g SAR			Delta (1g)	Delta (10g)	Limit	Temp (°C)	Date
	Target 1W	Normalize to 1W	Measured 100mW	Target 1W	Normalize to 1W	Measured 100mW					
5250	78.20	73.50	7.35	22.30	20.90	2.09	-6.01%	-6.28%	$\pm 10\%$	22.4	2021/9/17
5600	81.60	75.70	7.57	23.30	21.50	2.15	-7.23%	-7.73%	$\pm 10\%$	22.4	2021/9/18
5750	79.30	81.60	8.16	22.50	23.10	2.31	2.90%	2.67%	$\pm 10\%$	22.4	2021/9/18

Plots of System Performance Check

SystemPerformanceCheck-Head 2450MHz

DUT: D2450V2; Type: D2450V2; Serial: 1009

Date: 2021-09-16

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2450$ MHz; $\sigma = 1.838$ S/m; $\epsilon_r = 39.096$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

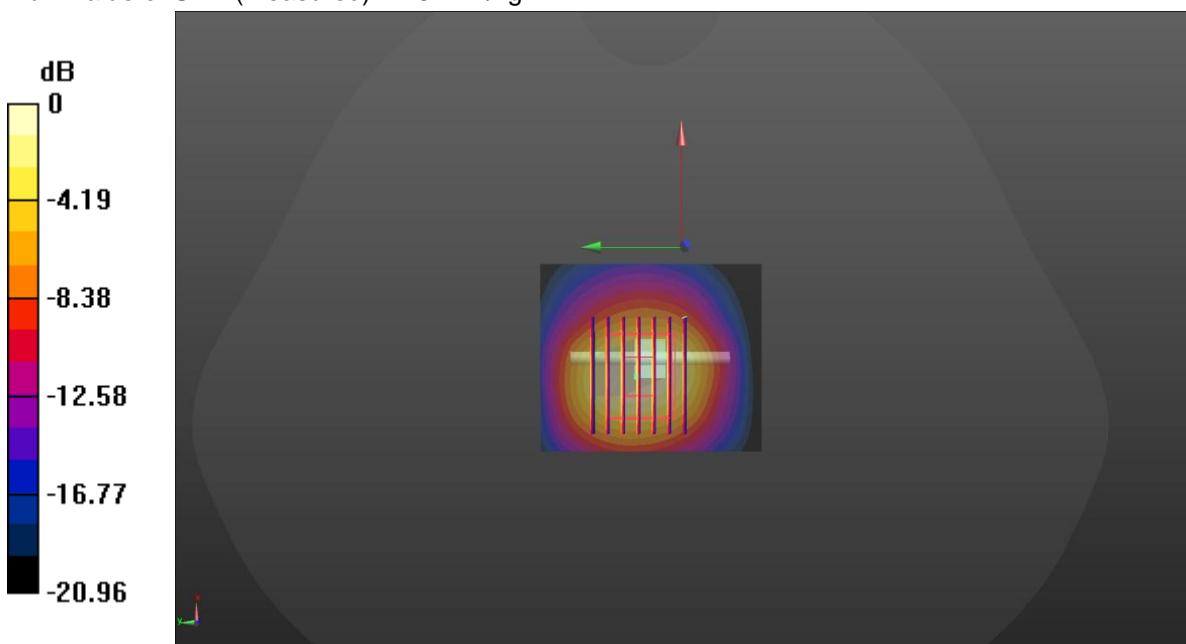
Ambient Temperature: 22.6°C; Liquid Temperature: 22.4°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(7.97, 7.97, 7.97) @ 2450 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 17.0 W/kg


Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.40 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 23.9 W/kg

SAR(1 g) = 12 W/kg; SAR(10 g) = 5.69 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

System Performance Check-Head 5250MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2021-09-17

Communication System: UID 0, Generic WIFI (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 5250$ MHz; $\sigma = 4.609$ S/m; $\epsilon_r = 34.849$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.6°C; Liquid Temperature: 22.4°C;

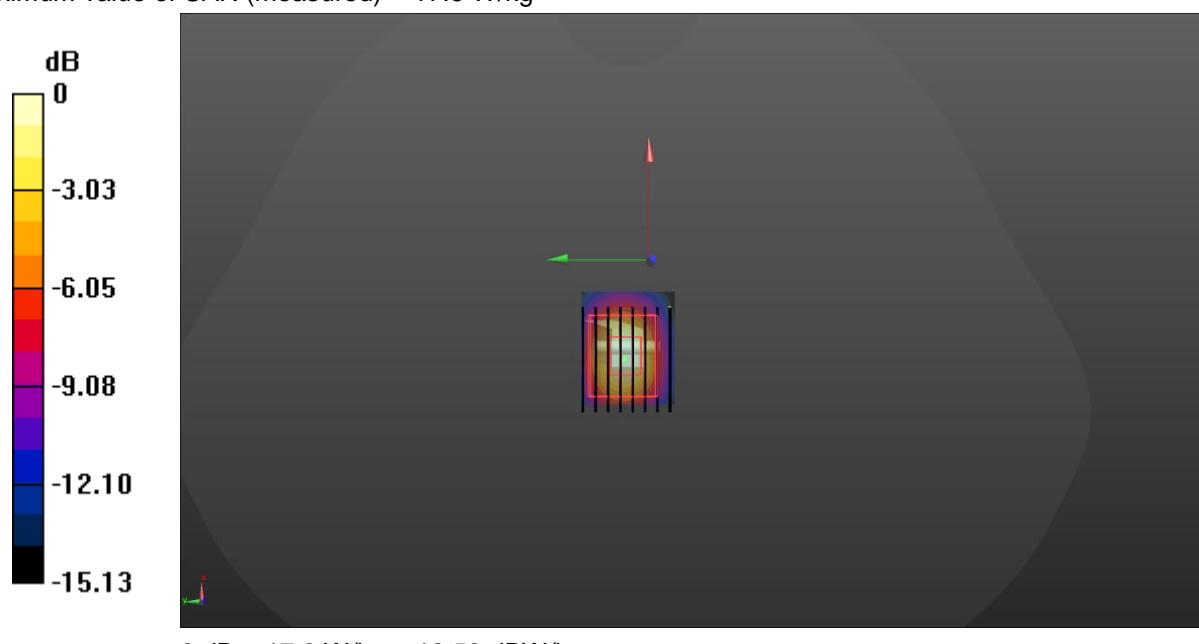
DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(5.65, 5.65, 5.65) @ 5250 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm, pin=100mW/Area Scan (31x31x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 18.6 W/kg


Head/d=10mm, pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.91 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.35 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

System Performance Check-Head 5600MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2021-09-18

Communication System: UID 0, Generic WIFI (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5600$ MHz; $\sigma = 4.954$ S/m; $\epsilon_r = 34.339$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

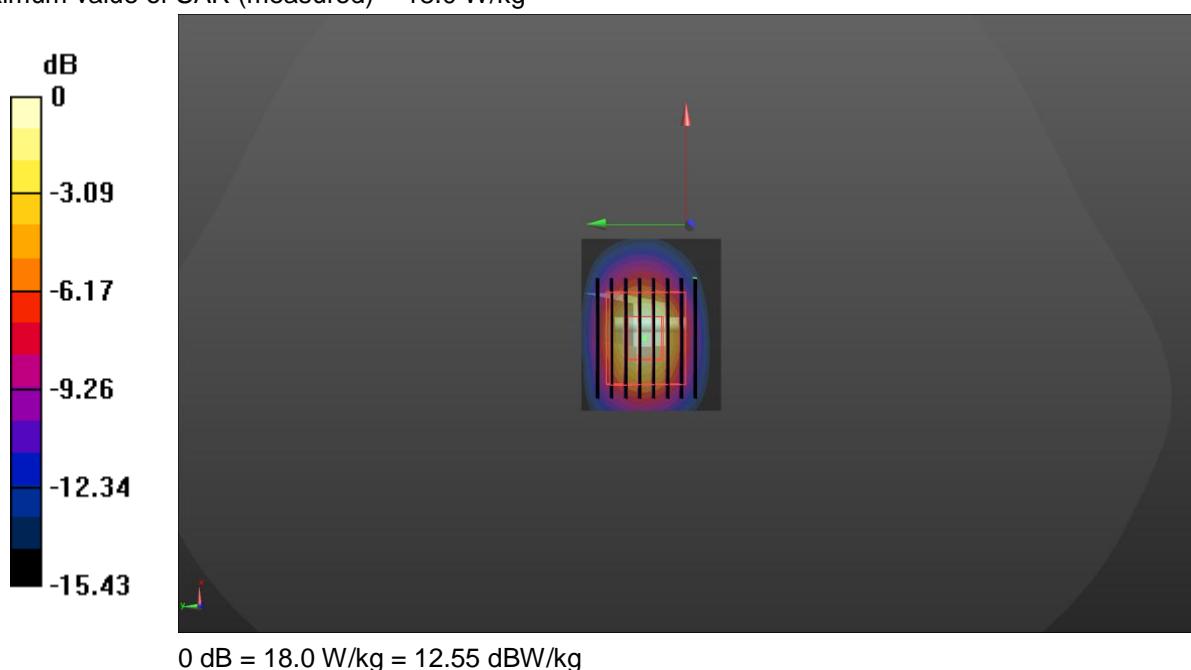
Ambient Temperature: 22.6°C; Liquid Temperature: 22.4°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(4.95, 4.95, 4.95) @ 5600 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm, Pin=100mW/Area Scan (41x41x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.9 W/kg


Head/d=10mm, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.19 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

System Performance Check-Head 5750MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2021-09-18

Communication System: UID 0, Generic WIFI (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5750$ MHz; $\sigma = 5.103$ S/m; $\epsilon_r = 34.123$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.6°C; Liquid Temperature: 22.4°C;

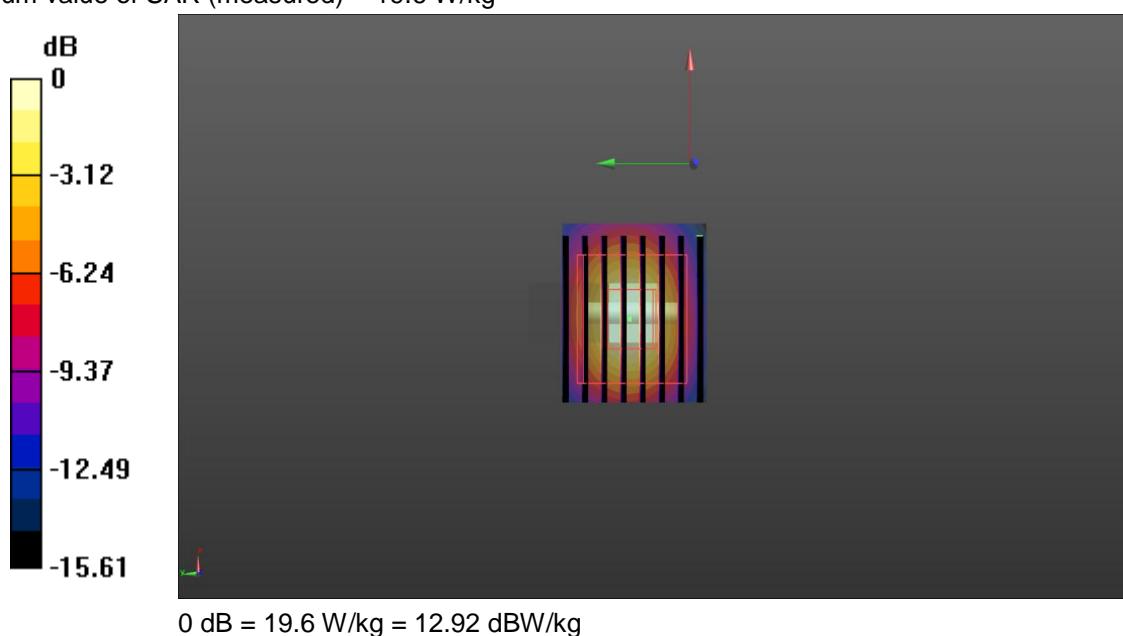
DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(4.86, 4.86, 4.86) @ 5750 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm, Pin=100mW/Area Scan (41x41x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 23.1 W/kg


Head/d=10mm, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.96 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 35.5 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

9. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

Type Exposure	Limit (W/kg)	
	General Population/ Uncontrolled Exposure Environment	Occupational/ Controlled Exposure Environment
Spatial Average SAR (whole body)	0.08	0.4
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0
Spatial Peak SAR (10g for limb)	4.0	20.0

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

10. Conducted Power Measurement Results

10.1. Wi-Fi

For 2.4GHz Wi-Fi SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were for SAR evaluation.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Wi-Fi 2.4G				
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)
802.11b	1	2412	15.43	13.02
	6	2437	15.48	13.04
	11	2462	15.20	12.75
802.11g	1	2412	14.56	11.62
	6	2437	15.04	12.28
	11	2462	14.81	11.98
802.11n (HT20)	1	2412	14.69	11.66
	6	2437	14.83	11.88
	11	2462	14.82	11.86
802.11n (HT40)	3	2422	14.89	12.02
	6	2437	15.19	12.26
	9	2452	14.90	12.04

Wi-Fi 5G U-NII-1			
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
802.11ac (VHT20)	36	5180	12.69
	40	5200	13.05
	48	5240	13.23
802.11n (HT20)	36	5180	12.70
	40	5200	12.80
	48	5240	13.69
802.11a	36	5180	12.75
	40	5200	13.09
	48	5240	13.90
802.11ac (VHT40)	38	5190	13.02
	46	5230	13.19
802.11n (HT40)	38	5190	11.29
	46	5230	12.54
802.11ac (VHT80)	42	5210	11.12

Wi-Fi 5G U-NII-2A			
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
802.11ac (VHT20)	52	5260	13.11
	56	5280	13.53
	64	5320	13.39
802.11n (HT20)	52	5260	13.05
	56	5280	13.56
	64	5320	13.35
802.11a	52	5260	13.88
	56	5280	13.26
	64	5320	13.56
802.11ac (VHT40)	54	5270	12.64
	62	5310	11.91
802.11n (HT40)	54	5270	12.60
	62	5310	12.46
802.11ac (VHT80)	58	5290	11.84

Wi-Fi 5G U-NII-2C			
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
802.11ac (VHT20)	100	5500	11.53
	120	5600	10.37
	140	5700	10.96
802.11n (HT20)	100	5500	11.51
	120	5600	10.36
	140	5700	9.99
802.11a	100	5500	12.63
	120	5600	11.01
	140	5700	11.52
802.11ac (VHT40)	102	5510	10.87
	118	5590	10.66
	134	5670	10.51
802.11n (HT40)	102	5510	11.38
	118	5590	10.68
	134	5670	10.53
802.11ac (VHT80)	106	5530	9.63
	122	5610	8.58
	138	5690	8.75

Wi-Fi 5G U-NII-3			
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
802.11ac (VHT20)	149	5745	10.91
	157	5785	10.85
	165	5825	11.07
802.11n (HT20)	149	5745	10.88
	157	5785	10.81
	165	5825	11.07
802.11a	149	5745	11.05
	157	5785	11.06
	165	5825	11.73
802.11ac (VHT40)	151	5755	10.99
	159	5795	10.94
802.11n (HT40)	151	5755	10.99
	159	5795	10.95
802.11ac (VHT80)	155	5775	10.79

10.2. Bluetooth

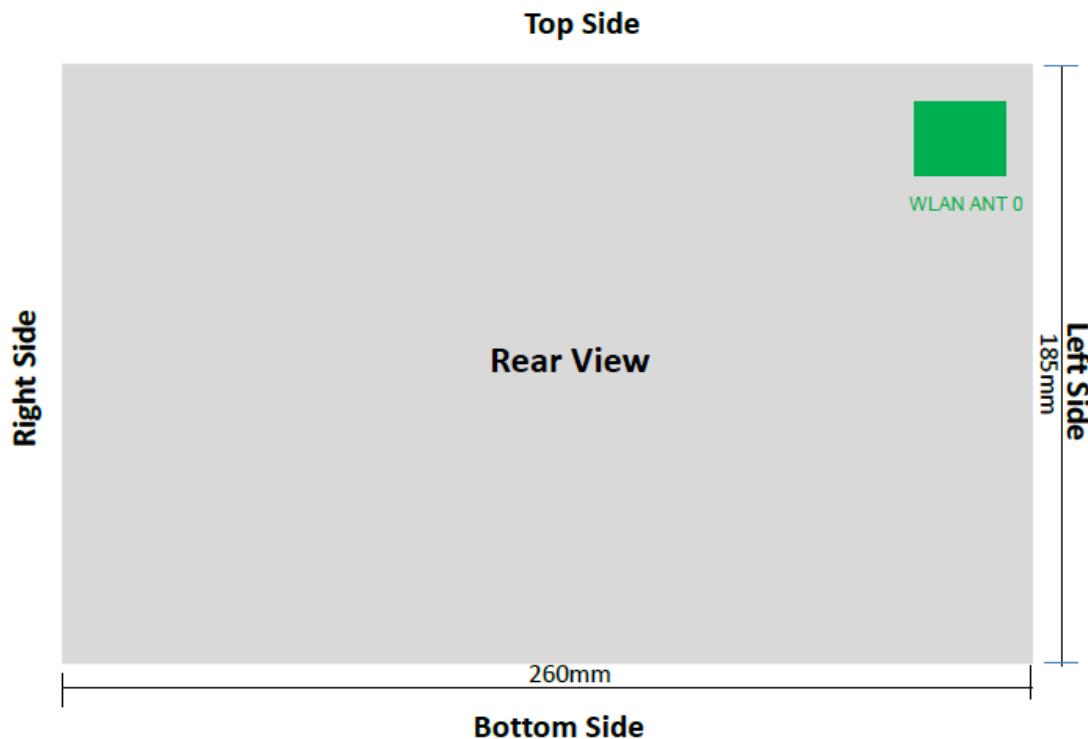
Bluetooth				
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)
GFSK	0	2402	9.06	9.02
	39	2441	10.80	10.40
	78	2480	9.77	9.73
$\pi/4$ QPSK	0	2402	9.09	8.56
	39	2441	10.63	10.03
	78	2480	9.94	9.42
8DPSK	0	2402	9.27	8.84
	39	2441	10.97	10.37
	78	2480	10.54	10.04
BLE	0	2402	4.30	4.28
	19	2440	6.97	6.86
	39	2480	5.35	5.26

11. Maximum Tune-up Limit

Wi-Fi 2.4G		
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power
802.11b	1	13.50
	6	13.50
	11	13.00
802.11g	1	12.00
	6	12.50
	11	12.00
802.11n(HT20)	1	12.00
	6	12.00
	11	12.00
802.11n(HT40)	3	12.50
	6	12.50
	9	12.50

Wi-Fi 5G U-NII-1		
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power
802.11ac (VHT20)	36	13.00
	40	13.50
	48	13.50
802.11n (HT20)	36	13.00
	40	13.00
	48	14.00
802.11a	36	13.00
	40	13.50
	48	14.00
802.11ac (VHT40)	38	13.50
	46	13.50
802.11n (HT40)	38	11.50
	46	13.00
802.11ac (VHT80)	42	11.50

Wi-Fi 5G U-NII-2A		
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power
802.11ac (VHT20)	52	13.50
	56	14.00
	64	13.50
802.11n (HT20)	52	13.50
	56	14.00
	64	13.50
802.11a	52	14.00
	56	13.50
	64	14.00
802.11ac (VHT40)	54	13.00
	62	12.00
802.11n (HT40)	54	13.00
	62	12.50
802.11ac (VHT80)	58	12.00


Wi-Fi 5G U-NII-2C		
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power
802.11ac (VHT20)	100	12.00
	120	10.50
	140	11.00
802.11n (HT20)	100	12.00
	120	10.50
	140	10.00
802.11a	100	13.00
	120	11.50
	140	12.00
802.11ac (VHT40)	102	11.00
	118	11.00
	134	11.00
802.11n (HT40)	102	11.50
	118	11.00
	134	11.00
802.11ac (VHT80)	106	10.00
	122	9.00
	138	9.00

Wi-Fi 5G U-NII-3		
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power
802.11ac (VHT20)	149	11.00
	157	11.00
	165	11.50
802.11n (HT20)	149	11.00
	157	11.00
	165	11.50
802.11a	149	11.50
	157	11.50
	165	12.00
802.11ac (VHT40)	151	11.00
	159	11.00
802.11n (HT40)	151	11.00
	159	11.00
802.11ac (VHT80)	155	11.00

Bluetooth		
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power
GFSK	0	9.50
	39	10.50
	78	10.00
$\pi/4$ QPSK	0	9.00
	39	10.50
	78	9.50
8DPSK	0	9.00
	39	10.50
	78	10.50
BLE	0	4.50
	19	7.00
	39	5.50

12. RF Exposure Conditions (Test Configurations)

12.1. Antenna Location

12.2. Standalone SAR test exclusion considerations

KDB 447498 with KDB 616217:

a) For 100 MHz to 6 GHz and *test separation distances* \leq 50 mm, the 1-g SAR test exclusion thresholds are determined by the following:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR

When the minimum *test separation distance* is $<$ 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion.

b) For 100 MHz to 6 GHz and *test separation distances* $>$ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following :

1) $\{[\text{Power allowed at numeric threshold for 50 mm in step a}]\} + [(\text{test separation distance} - 50 \text{ mm}) \cdot (f(\text{MHz})/150)]\}$ mW, for 100 MHz to 1500 MHz

2) $\{[\text{Power allowed at numeric threshold for 50 mm in step a}]\} + [(\text{test separation distance} - 50 \text{ mm}) \cdot 10]\}$ mW, for $>$ 1500 MHz and \leq 6 GHz

Antennas \leq 50mm to adjacent edges

Tx Interface	Frequency (MHz)	Output Power		separation distances (mm)					Calculated Threshold Value				
		dBm	mW	Rear	Left	Right	Top	Bottom	Rear	Left	Right	Top	Bottom
WIFI 2.4G	2437	13.50	22.39	5	5	-	12	-	7.0	7.0	-	2.9	-
WIFI 5G U-NII-1	5240	14.00	25.12	5	5	-	12	-	11.5	11.5	-	4.8	-
WIFI 5G U-NII-2A	5260	14.00	25.12	5	5	-	12	-	11.5	11.5	-	4.8	-
WIFI 5G U-NII-2C	5500	13.00	19.95	5	5	-	12	-	9.4	9.4	-	3.9	-
WIFI 5G U-NII-3	5825	12.00	15.85	5	5	-	12	-	7.7	7.7	-	3.2	-
Bluetooth	2441	11.00	12.59	5	5	-	12	-	3.9	3.9	-	1.6	-

Antennas $>$ 50mm to adjacent edges

Tx Interface	Frequency (MHz)	Output Power		separation distances (mm)					Calculated Threshold Value				
		dBm	mW	Rear	Left	Right	Top	Bottom	Rear	Left	Right	Top	Bottom
WIFI 2.4G	2437	13.50	22.39	96.1	-	-	245	-	140	-	-	2046	-
WIFI 5G U-NII-1	5240	14.00	25.12	65.5	-	-	245	-	140	-	-	2016	-
WIFI 5G U-NII-2A	5260	14.00	25.12	65.4	-	-	245	-	140	-	-	2015	-
WIFI 5G U-NII-2C	5500	13.00	19.95	64.0	-	-	245	-	140	-	-	2014	-
WIFI 5G U-NII-3	5825	12.00	15.85	62.2	-	-	245	-	140	-	-	2012	-
Bluetooth	2441	11.00	12.59	96.0	-	-	245	-	140	-	-	2046	-

12.3. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 13.2:

Test Configurations	Rear	Left	Right	Top	Bottom
WIFI 2.4G	Yes	Yes	No	Yes	No
WIFI 5G U-NII-1	Yes	Yes	No	Yes	No
WIFI 5G U-NII-2A	Yes	Yes	No	Yes	No
WIFI 5G U-NII-2C	Yes	Yes	No	Yes	No
WIFI 5G U-NII-3	Yes	Yes	No	Yes	No
Bluetooth	Yes	Yes	No	Yes	No

13. Measured and Reported SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- $\leq 0.8 \text{ W/kg}$ or 2.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\leq 100 \text{ MHz}$
- $\leq 0.6 \text{ W/kg}$ or 1.5 W/kg , for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- $\leq 0.4 \text{ W/kg}$ or 1.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\geq 200 \text{ MHz}$

KDB 248227 D01 SAR meas for 802.11:

When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- $\leq 0.4 \text{ W/kg}$, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- $> 0.4 \text{ W/kg}$, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closest/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is $\leq 0.8 \text{ W/kg}$ or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is $> 0.8 \text{ W/kg}$, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is $\leq 1.2 \text{ W/kg}$ or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is $\leq 1.2 \text{ W/kg}$, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is $\leq 1.2 \text{ W/kg}$, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

Wi-Fi 2.4G												
Mode	Test Position	Frequency		Conducted Power (dBm)	Tune-up limit (dBm)	Tune-up scaling factor	Duty Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Plot No.
		CH	MHz									
802.11b	Rear	1	2412	13.02	13.50	1.117	99.50%	1.005	0.06	0.965	1.083	-
		6	2437	13.04	13.50	1.112	99.50%	1.005	0.09	1.15	1.285	1
		11	2462	12.75	13.00	1.059	99.50%	1.005	0.12	0.926	0.986	-
	Left	1	2412	13.02	13.50	1.117	99.50%	1.005	-0.12	0.844	0.947	-
		6	2437	13.04	13.50	1.112	99.50%	1.005	-0.11	0.915	1.022	-
		11	2462	12.75	13.00	1.059	99.50%	1.005	0.19	0.824	0.877	-
	Top	1	2412	13.02	13.50	1.117	99.50%	1.005	0.09	0.716	0.804	-
		6	2437	13.04	13.50	1.112	99.50%	1.005	0.05	0.823	0.920	-
		11	2462	12.75	13.00	1.059	99.50%	1.005	0.07	0.699	0.744	-

Wi-Fi 5G U-NII-1												
Mode	Test Position	Frequency		Conducted Power (dBm)	Tune-up limit (dBm)	Tune-up scaling factor	Duty Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Plot No.
		CH	MHz									
802.11a	Rear	36	5180	12.75	13.00	1.059	97.28%	1.028	0.09	0.145	0.158	-
		44	5220	13.09	13.50	1.099	97.28%	1.028	-0.06	0.169	0.191	-
		48	5240	13.90	14.00	1.023	97.28%	1.028	-0.13	0.189	0.199	2
	Left	48	5240	13.90	14.00	1.023	97.28%	1.028	0.04	0.172	0.181	-
	Top	48	5240	13.90	14.00	1.023	97.28%	1.028	0.08	0.163	0.171	-

Wi-Fi 5G U-NII-2A												
Mode	Test Position	Frequency		Conducted Power (dBm)	Tune-up limit (dBm)	Tune-up scaling factor	Duty Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Plot No.
		CH	MHz									
802.11a	Rear	52	5260	13.88	14.00	1.028	97.36%	1.027	-0.08	0.172	0.182	3
		56	5280	13.26	13.50	1.057	97.36%	1.027	0.11	0.144	0.156	-
		64	5320	13.56	14.00	1.107	97.36%	1.027	0.03	0.158	0.180	-
	Left	52	5260	13.88	14.00	1.028	97.36%	1.027	0.10	0.162	0.171	-
	Top	52	5260	13.88	14.00	1.028	97.36%	1.027	-0.08	0.143	0.151	-

Wi-Fi 5G U-NII-2C												
Mode	Test Position	Frequency		Conducted Power (dBm)	Tune-up limit (dBm)	Tune-up scaling factor	Duty Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Plot No.
		CH	MHz									
802.11a	Rear	100	5500	12.63	13.00	1.089	97.28%	1.028	-0.14	0.184	0.206	4
		120	5600	11.01	11.50	1.119	97.28%	1.028	-0.14	0.155	0.178	-
		140	5700	11.52	12.00	1.117	97.28%	1.028	-0.14	0.157	0.180	-
	Left	102	5510	12.63	13.00	1.089	97.28%	1.028	-0.11	0.169	0.189	-
	Top	118	5590	12.63	13.00	1.089	97.28%	1.028	0.09	0.152	0.170	-

Wi-Fi 5G U-NII-3												
Mode	Test Position	Frequency		Conducted Power (dBm)	Tune-up limit (dBm)	Tune-up scaling factor	Duty Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Plot No.
		CH	MHz									
802.11a	Rear	149	5745	11.05	11.50	1.109	97.28%	1.028	0.09	0.475	0.542	-
		157	5785	11.06	11.50	1.107	97.28%	1.028	-0.02	0.462	0.526	-
		165	5825	11.73	12.00	1.064	97.28%	1.028	-0.11	0.513	0.561	5
	Left	165	5825	11.73	12.00	1.064	97.28%	1.028	-0.12	0.486	0.532	-
	Top	165	5825	11.73	12.00	1.064	97.28%	1.028	0.08	0.452	0.494	-

SAR Test Data Plots to the Appendix A.

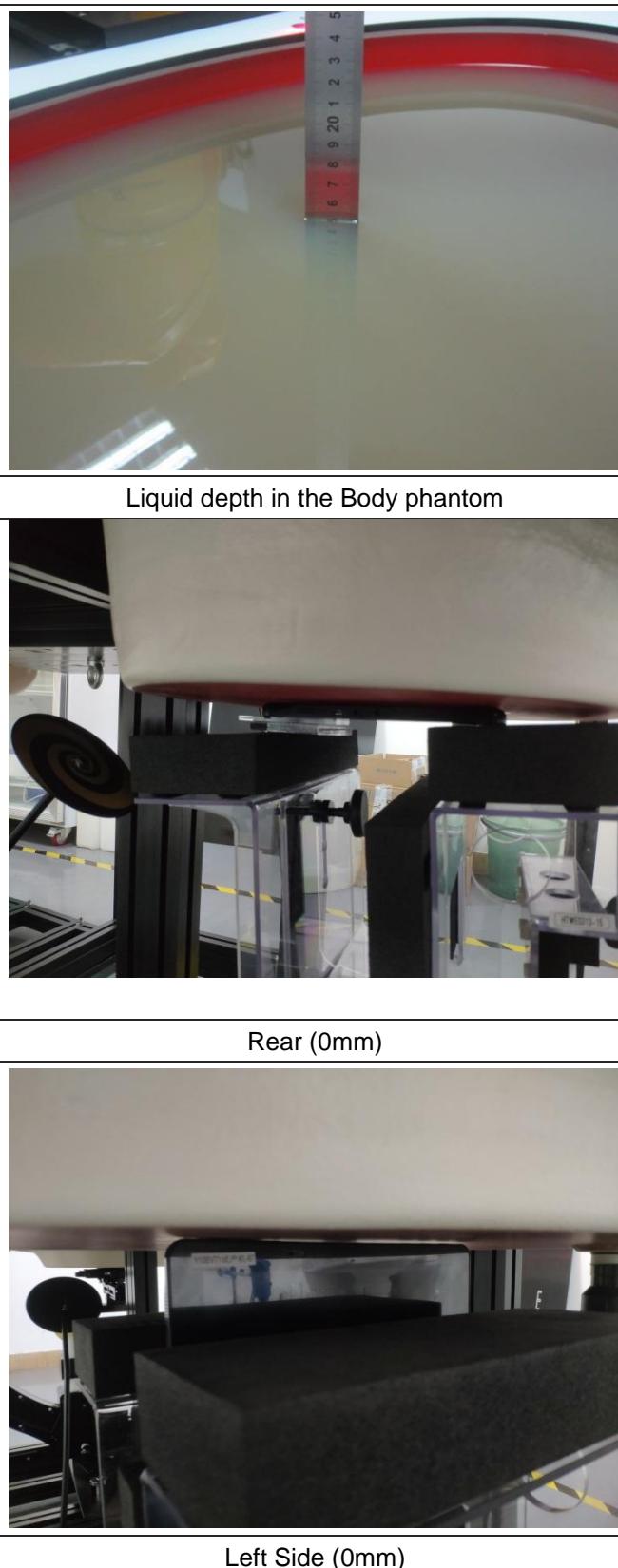
14. SAR Measurement Variability

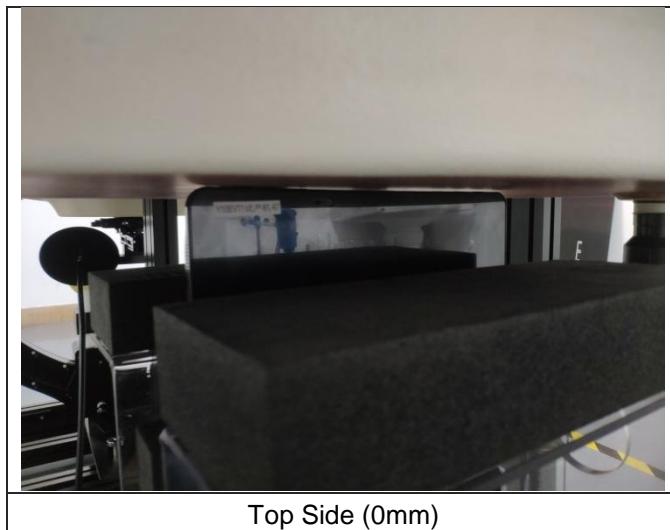
In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg ($\sim 10\%$ from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

Band	Test Position	Frequency		Highest Measured SAR (W/kg)	First Repeated		Second Repeated	
		CH	MHz		Measured SAR(W/kg)	Largest to Smallest SAR Ratio	Measured SAR(W/kg)	Largest to Smallest SAR Ratio
WIFI2.4G	Rear	6	2437	1.15	1.06	1.085	N/A	N/A

15. Simultaneous Transmission analysis


No.	Simultaneous Transmission Configurations	Head	Body-worn	Note
1	WIFI+ Bluetooth (data)	Yes	Yes	


General note:

1. The reported SAR summation is calculated based on the same configuration and test position

WIFI+ BT					
WWAN Band		Exposure Position	Standalone SAR (W/kg)		Σ 1-g SAR (W/kg)
			WWAN	BT	
WIFI	2.4G	Rear	1.285	0.153	1.438
		Left	1.022	0.135	1.157
		Top	0.920	0.128	1.048
	WIFI 5G U-NII-1	Rear	0.199	0.153	0.352
		Left	0.181	0.135	0.316
		Top	0.171	0.128	0.299
	WIFI 5G U-NII-2A	Rear	0.182	0.153	0.335
		Left	0.171	0.135	0.306
		Top	0.151	0.128	0.279
	WIFI 5G U-NII-2C	Rear	0.206	0.153	0.359
		Left	0.189	0.135	0.324
		Top	0.170	0.128	0.298
	WIFI 5G U-NII-3	Rear	0.561	0.153	0.714
		Left	0.532	0.135	0.667
		Top	0.494	0.128	0.622

16. TestSetup Photos

17. External and Internal Photos of the EUT

Please reference to the report No.: CHTEW21100145

-----***End of Report***-----

Wifi 2.4G-M-Body worn

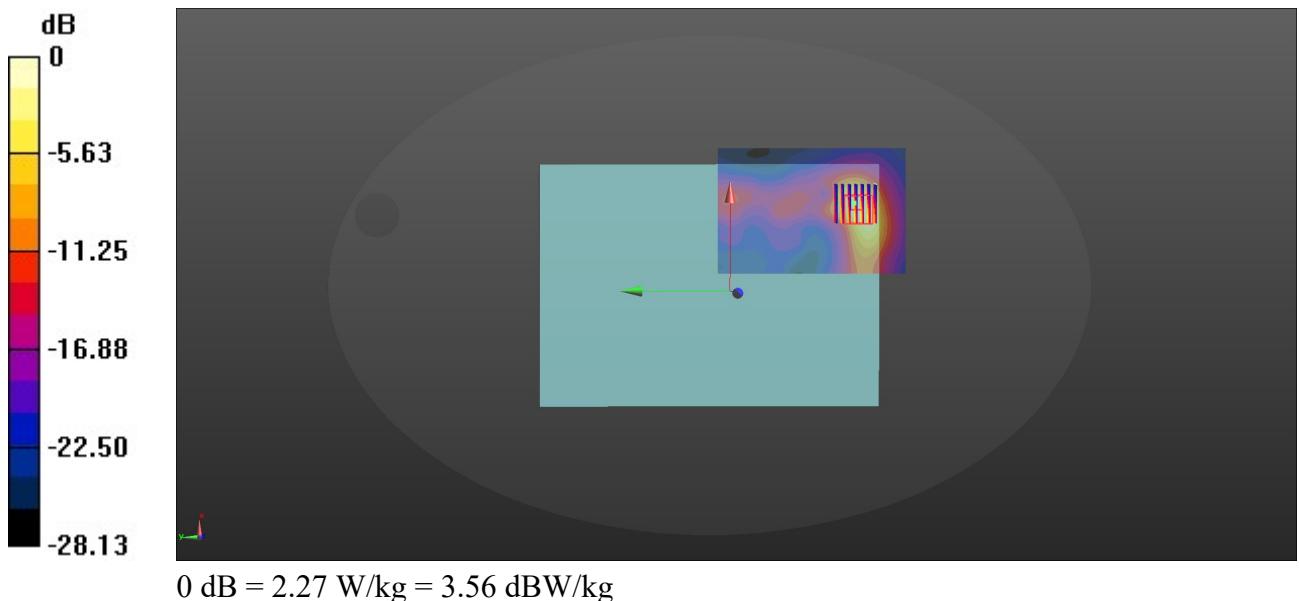
Communication System: UID 0, Generic WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1
 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 39.114$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.4°C; Liquid Temperature: 22.2°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(7.97, 7.97, 7.97) @ 2437 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Rear/CH 6/Area Scan (81x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
 Maximum value of SAR (interpolated) = 2.44 W/kg

Rear/CH 6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 0.9370 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.97 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.372 W/kg

Maximum value of SAR (measured) = 2.27 W/kg

Wifi 5G U-NII-1-H-Body worn

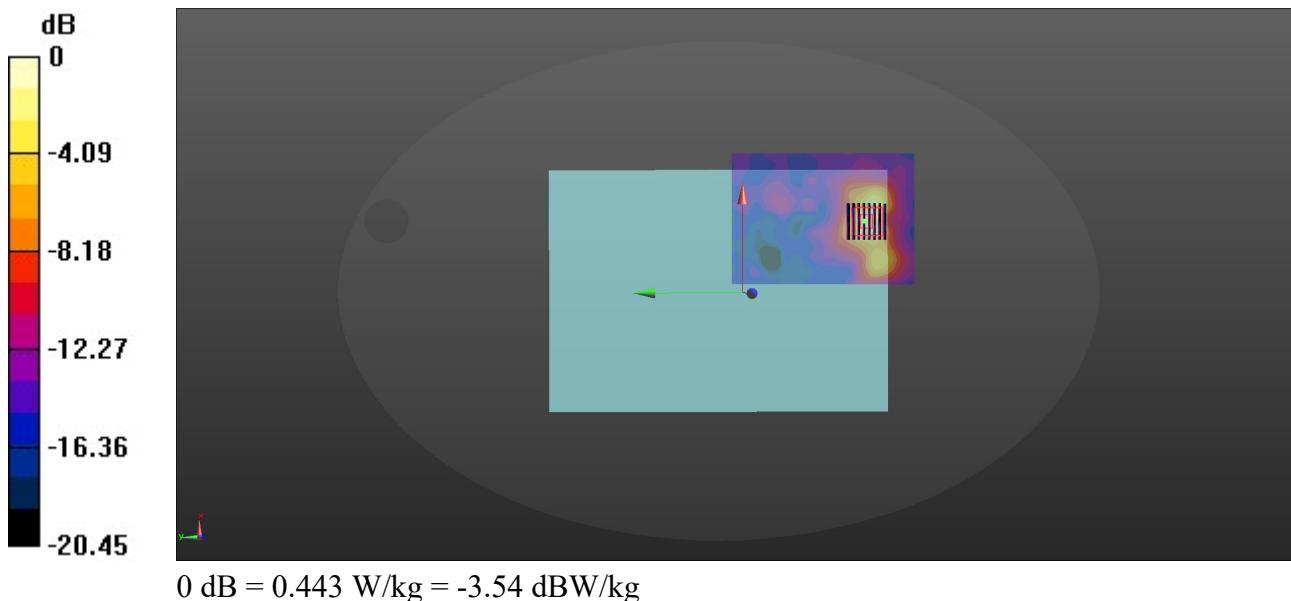
Communication System: UID 0, Generic WIFI (0); Frequency: 5240 MHz; Duty Cycle: 1:1
 Medium parameters used: $f = 5240$ MHz; $\sigma = 4.598$ S/m; $\epsilon_r = 34.865$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.2°C; Liquid Temperature: 22.0°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(5.65, 5.65, 5.65) @ 5240 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Rear/CH 48/Area Scan (101x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
 Maximum value of SAR (interpolated) = 0.435 W/kg

Rear/CH 48/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
 Reference Value = 1.475 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.066 W/kg

Maximum value of SAR (measured) = 0.443 W/kg

Wifi 5G U-NII-2A-L-Body worn

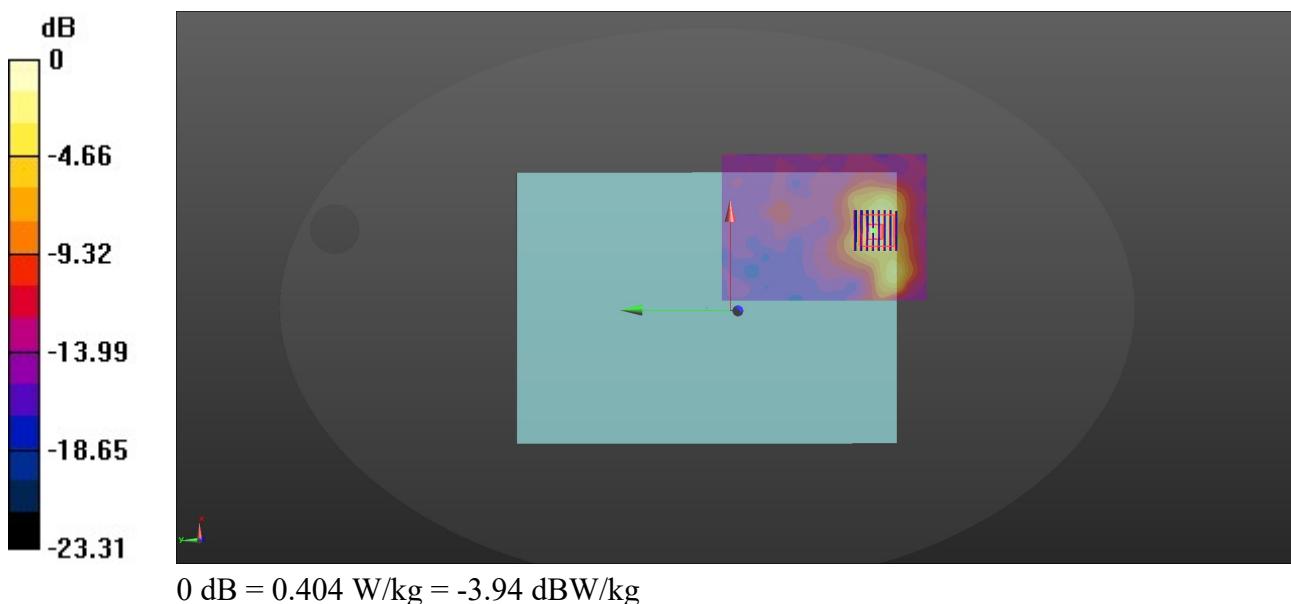
Communication System: UID 0, Generic WIFI (0); Frequency: 5260 MHz; Duty Cycle: 1:1
 Medium parameters used: $f = 5260$ MHz; $\sigma = 4.622$ S/m; $\epsilon_r = 34.829$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.0°C; Liquid Temperature: 21.8°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(5.65, 5.65, 5.65) @ 5260 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Rear/CH 52/Area Scan (101x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
 Maximum value of SAR (interpolated) = 0.403 W/kg

Rear/CH 52/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
 Reference Value = 1.469 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.677 W/kg

SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.061 W/kg

Maximum value of SAR (measured) = 0.404 W/kg

Wifi 5G U-NII-2C-L-Body worn

Communication System: UID 0, Generic WIFI (0); Frequency: 5500 MHz; Duty Cycle: 1:1

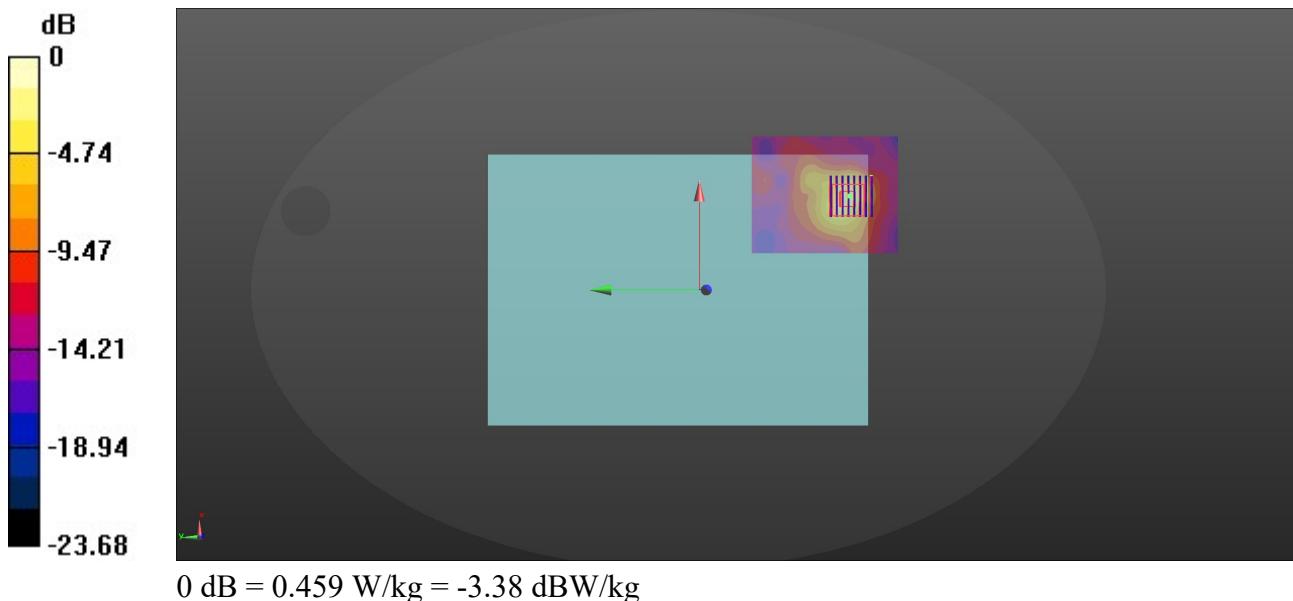
Medium parameters used: $f = 5500$ MHz; $\sigma = 4.854$ S/m; $\epsilon_r = 34.494$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.3°C; Liquid Temperature: 22.1°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(4.95, 4.95, 4.95) @ 5500 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Rear/CH 100/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
 Maximum value of SAR (interpolated) = 0.448 W/kg

Rear/CH 100/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
 Reference Value = 0.9130 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.796 W/kg

SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.063 W/kg

Maximum value of SAR (measured) = 0.459 W/kg

Wifi 5G U-NII-3-H-Body worn

Communication System: UID 0, Generic WIFI (0); Frequency: 5825 MHz; Duty Cycle: 1:1

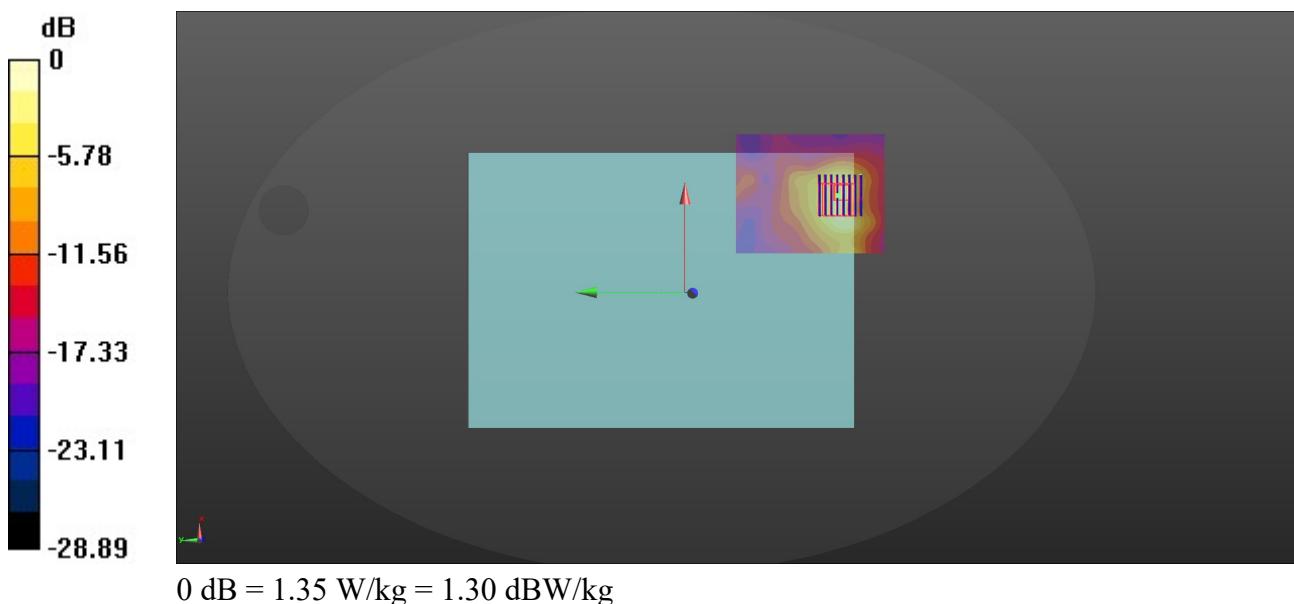
Medium parameters used (interpolated): $f = 5825$ MHz; $\sigma = 5.183$ S/m; $\epsilon_r = 34.014$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.6°C; Liquid Temperature: 22.4°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(4.86, 4.86, 4.86) @ 5825 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Rear/CH 165/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
 Maximum value of SAR (interpolated) = 1.35 W/kg

Rear/CH 165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
 Reference Value = 1.692 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 0.513 W/kg; SAR(10 g) = 0.178 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

Bluetooth-M-Body worn

Communication System: UID 0, Generic WIFI (0); Frequency: 2441 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2441$ MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 39.414$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

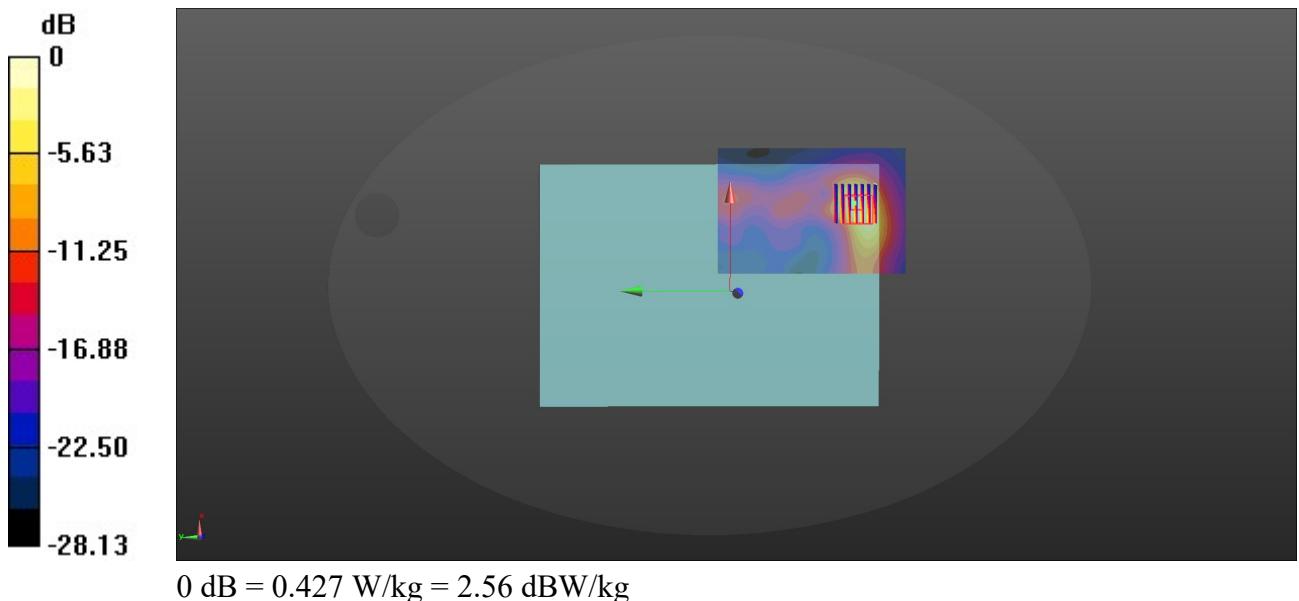
Ambient Temperature: 22.4°C; Liquid Temperature: 22.2°C;

DASY Configuration:

- Probe: EX3DV4 - SN7494; ConvF(7.97, 7.97, 7.97) @ 2441 MHz; Calibrated: 4/9/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 6/Area Scan (81x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.434 W/kg


Rear/CH 6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.3325 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.515 W/kg

SAR(1 g) = 0.115 W/kg; SAR(10 g) = 0.069 W/kg

Maximum value of SAR (measured) = 0.427 W/kg

1.1.1. DAE4 Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctll@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

中国认可
 国际互认
 校准
 CALIBRATION
 CNAS L0570

Client : HTW

Certificate No: Z21-60063

CALIBRATION CERTIFICATE

Object	DAE4 - SN: 1549
--------	-----------------

Calibration Procedure(s)	FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEEx)
--------------------------	---

Calibration date:	March 23, 2021
-------------------	----------------

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	16-Jun-20 (CTTL, No.J20X04342)	Jun-21

Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: March 25, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 FAX: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = $-100...+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$406.327 \pm 0.15\% \text{ (k=2)}$	$406.003 \pm 0.15\% \text{ (k=2)}$	$406.159 \pm 0.15\% \text{ (k=2)}$
Low Range	$3.98410 \pm 0.7\% \text{ (k=2)}$	$3.99112 \pm 0.7\% \text{ (k=2)}$	$3.99200 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$19^\circ \pm 1^\circ$
---	------------------------

1.2. Probe Calibration Certificate

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com <http://www.chinattl.cn>

中国认可
 国际互认
 校准
 CALIBRATION
 CNAS L0570

Client

HTW

Certificate No: Z21-60064

CALIBRATION CERTIFICATE

Object EX3DV4 - SN : 7494

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: April 09, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter	NRP2	101919	16-Jun-20(CTTL, No.J20X04344)	Jun-21
Power sensor	NRP-Z91	101547	16-Jun-20(CTTL, No.J20X04344)	Jun-21
Power sensor	NRP-Z91	101548	16-Jun-20(CTTL, No.J20X04344)	Jun-21
Reference	10dBAttenuator	18N50W-10dB	10-Feb-20(CTTL, No.J20X00525)	Feb-22
Reference	20dBAttenuator	18N50W-20dB	10-Feb-20(CTTL, No.J20X00526)	Feb-22
Reference Probe	EX3DV4	SN 7307	29-May-20(SPEAG, No.EX3-7307_May20)	May-21
DAE4		SN 1555	25-Aug-20(SPEAG, No.DAE4-1555_Aug20)	Aug-21
Secondary Standards		ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator	MG3700A	6201052605	23-Jun-20(CTTL, No.J20X04343)	Jun-21
Network Analyzer	E5071C	MY46110673	21-Jan-21(CTTL, No.J20X00515)	Jan-22

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: April 11, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta=0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; A,B,C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters:* Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):* in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:* The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle:* The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7494

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.41	0.47	0.41	\pm 10.0%
DCP(mV) ^B	98.9	100.2	99.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB- μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	151.2	\pm 2.0%
		Y	0.0	0.0	1.0		164.8	
		Z	0.0	0.0	1.0		151.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

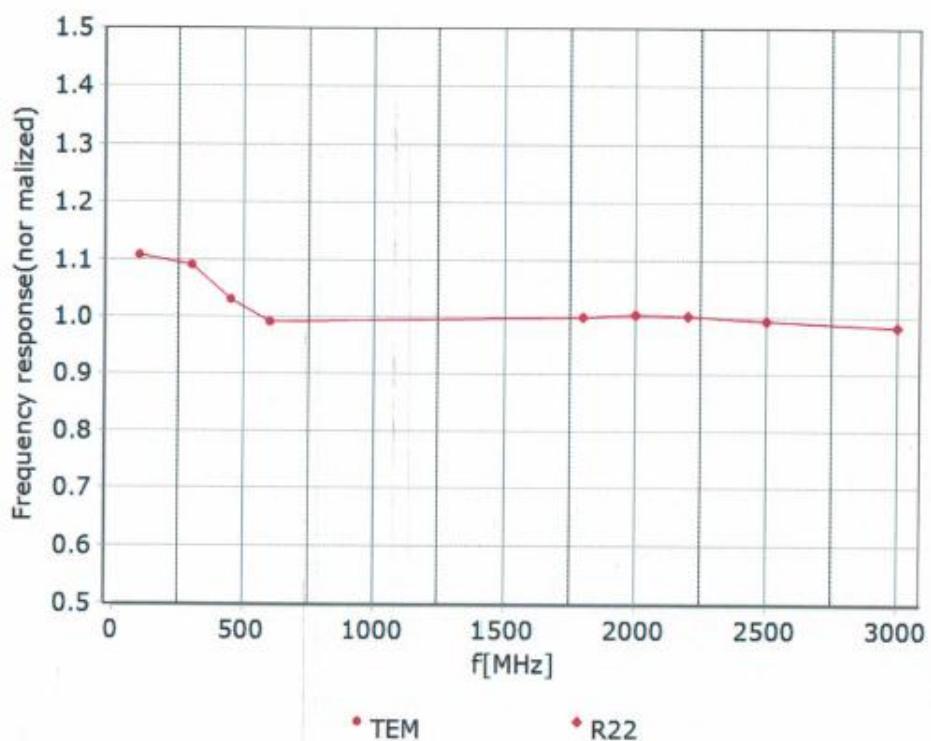
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7494

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.70	10.70	10.70	0.40	0.75	±12.1%
835	41.5	0.90	10.41	10.41	10.41	0.13	1.39	±12.1%
1750	40.1	1.37	8.88	8.88	8.88	0.20	1.14	±12.1%
1900	40.0	1.40	8.55	8.55	8.55	0.22	1.08	±12.1%
2000	40.0	1.40	8.60	8.60	8.60	0.17	1.28	±12.1%
2300	39.5	1.67	8.30	8.30	8.30	0.62	0.62	±12.1%
2450	39.2	1.80	7.97	7.97	7.97	0.48	0.74	±12.1%
2600	39.0	1.96	7.68	7.68	7.68	0.40	0.85	±12.1%
5250	35.9	4.71	5.65	5.65	5.65	0.45	1.35	±13.3%
5600	35.5	5.07	4.95	4.95	4.95	0.55	1.35	±13.3%
5750	35.4	5.22	4.86	4.86	4.86	0.50	1.50	±13.3%

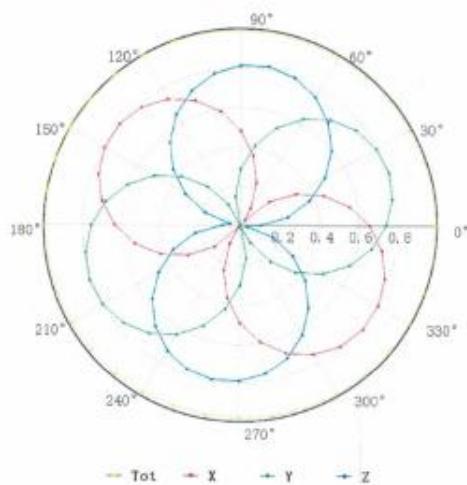
^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

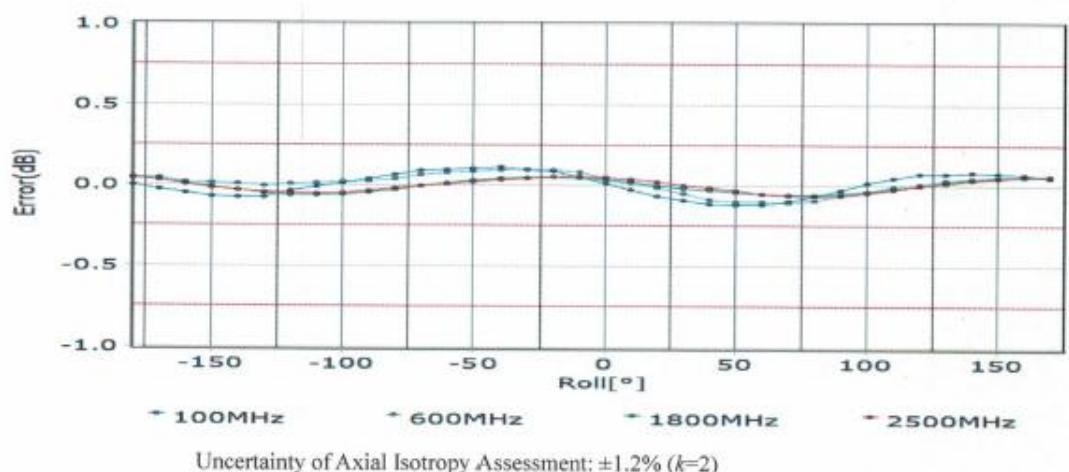
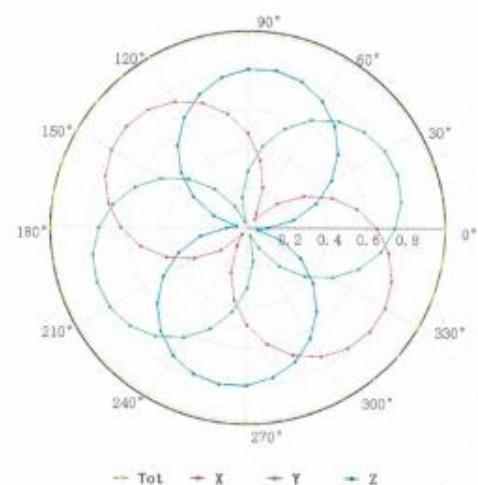

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

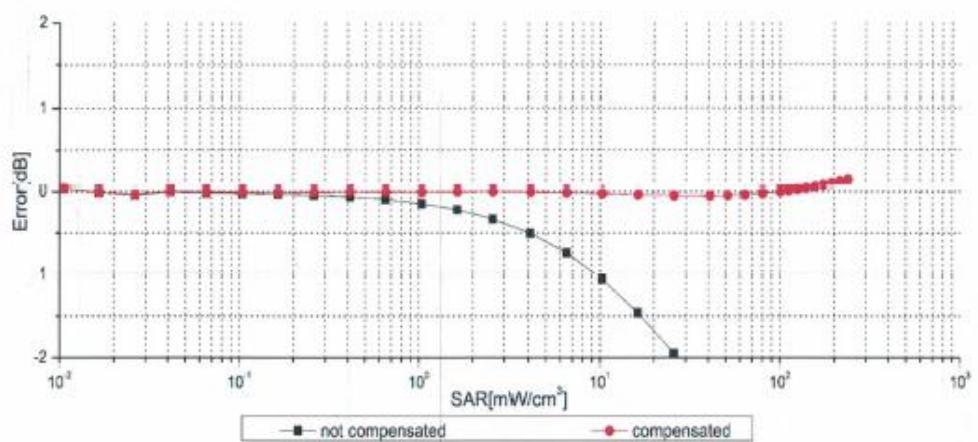
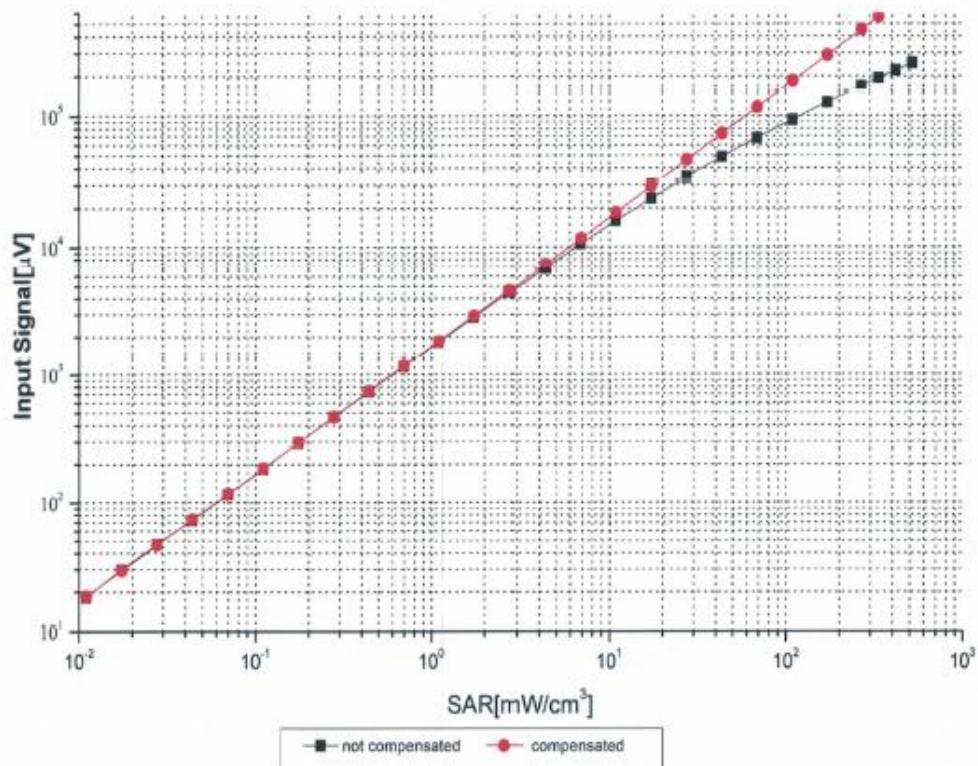
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.4\% (k=2)$



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Receiving Pattern (Φ), $\theta=0^\circ$

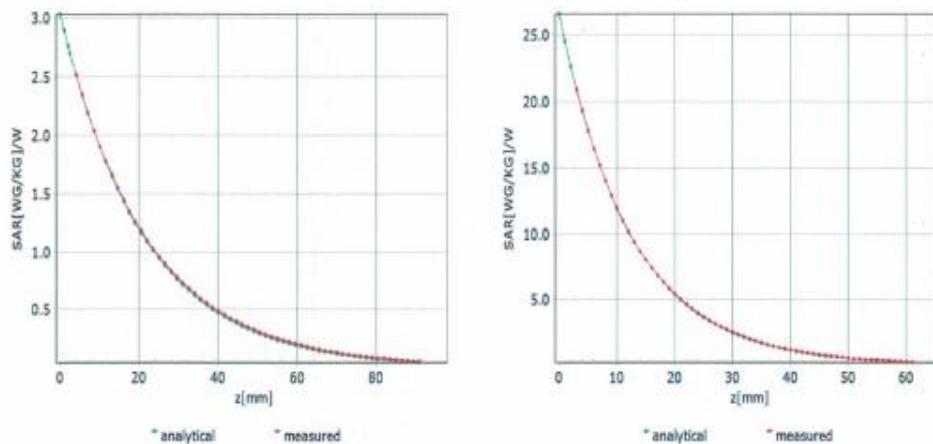
f=600 MHz, TEM



f=1800 MHz, R22

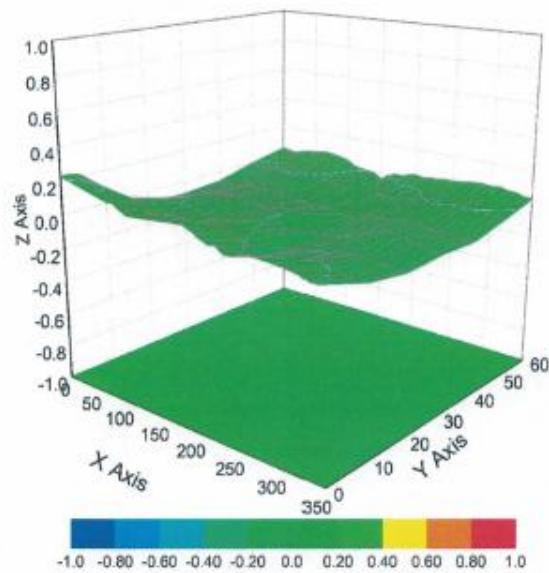
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.9\% (k=2)$



In Collaboration with
s p e a g
CALIBRATION LABORATORY

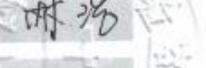
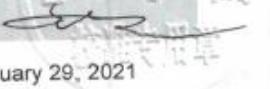

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Conversion Factor Assessment

$f=750 \text{ MHz}, \text{WGLS R9(H_convF)}$ $f=1750 \text{ MHz}, \text{WGLS R22(H_convF)}$

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: $\pm 3.2\% (k=2)$



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7494

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	22.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

1.1. D2450V2 Dipole Calibration Certificate

In Collaboration with s p e a g CALIBRATION LABORATORY		中国认可 国际互认 校准 CALIBRATION CNAS L0570	
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: ctll@chinattl.com		Fax: +86-10-62304633-2504 http://www.chinattl.cn	
Client	HTW	Certificate No: Z21-60020	
CALIBRATION CERTIFICATE			
Object	D2450V2 - SN: 1009		
Calibration Procedure(s)	FF-Z11-003-01 Calibration Procedures for dipole validation kits		
Calibration date:	January 25, 2021		
<p>This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3°C) and humidity<70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	12-May-20 (CTTL, No.J20X02965)	May-21
Power sensor NRP6A	101369	12-May-20 (CTTL, No.J20X02965)	May-21
ReferenceProbe EX3DV4	SN 7600	30-Nov-20(CTTL-SPEAG, No.Z20-60421)	Nov-21
DAE4	SN 771	10-Feb-20(CTTL-SPEAG, No.Z20-60017)	Feb-21
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Feb-20 (CTTL, No.J20X00516)	Feb-21
NetworkAnalyzer E5071C	MY46110673	10-Feb-20 (CTTL, No.J20X00515)	Feb-21
Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	
Issued: January 29, 2021			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	39.5 \pm 6 %	1.81 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg \pm 18.7 % (k=2)

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9Ω+ 2.04jΩ
Return Loss	- 27.4dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.064 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Head TSL

Date: 01.25.2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1009

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 39.52$; $\rho = 1000$ kg/m³

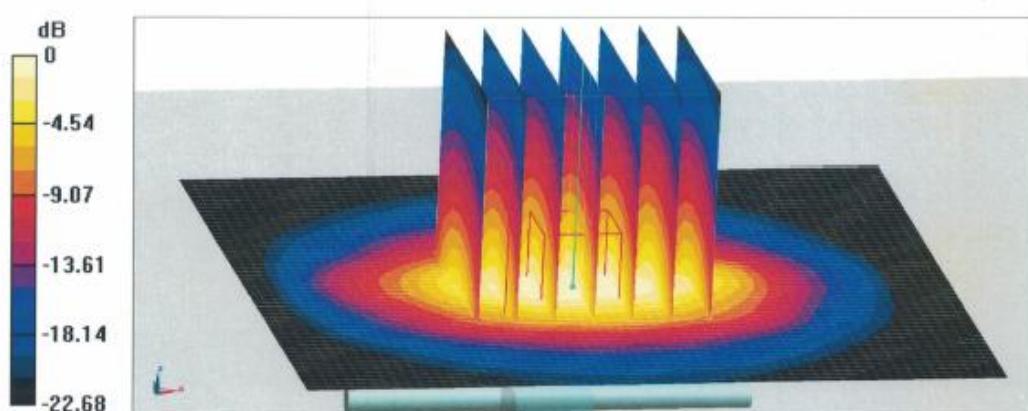
Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7600; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: 2020-11-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.7 V/m; Power Drift = -0.06 dB

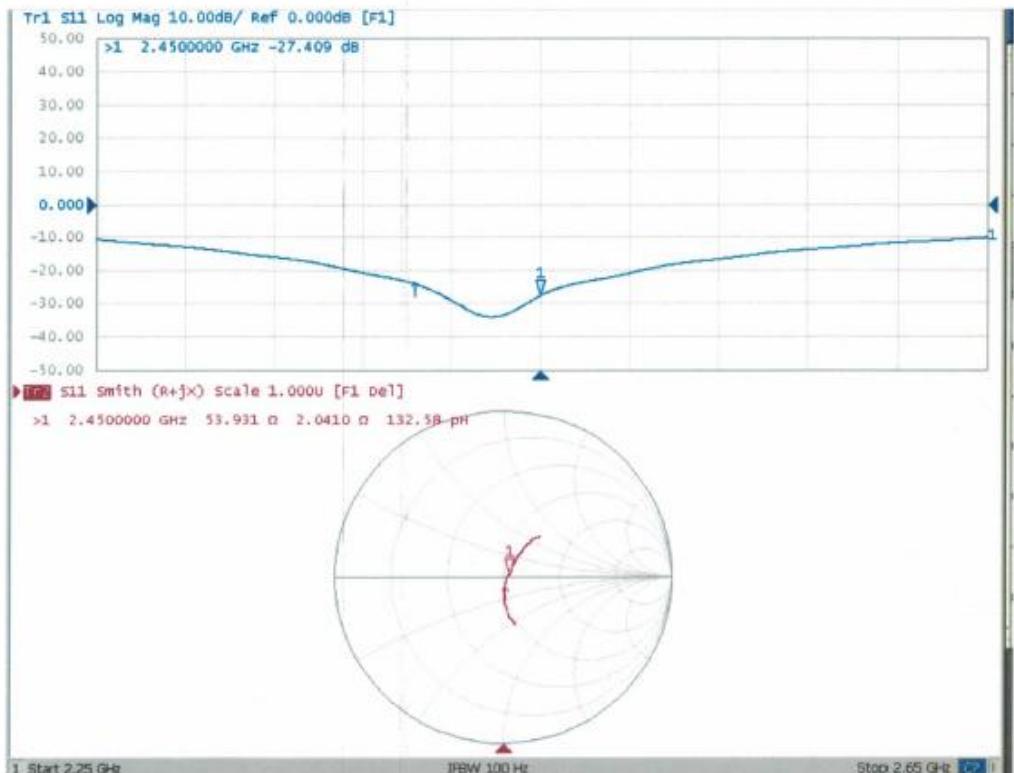

Peak SAR (extrapolated) = 27.2 W/kg

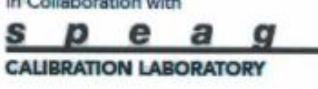
SAR(1 g) = 13 W/kg; SAR(10 g) = 5.97 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mm

Ratio of SAR at M2 to SAR at M1 = 47.2%

Maximum value of SAR (measured) = 22.0 W/kg


0 dB = 22.0 W/kg = 13.42 dBW/kg


In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

1.2. D5GHzV2 Dipole Calibration Certificate

In Collaboration with		中国认可 国际互认 校准 CALIBRATION CNAS L0570																																	
Client	HTW	Certificate No: Z21-60022																																	
CALIBRATION CERTIFICATE																																			
Object	D5GHzV2 - SN: 1273																																		
Calibration Procedure(s)	FF-Z11-003-01 Calibration Procedures for dipole validation kits																																		
Calibration date:	January 26, 2021																																		
<p>This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>																																			
<table border="1"> <thead> <tr> <th>Primary Standards</th> <th>ID #</th> <th>Cal Date(Calibrated by, Certificate No.)</th> <th>Scheduled Calibration</th> </tr> </thead> <tbody> <tr> <td>Power Meter NRP2</td> <td>106276</td> <td>12-May-20 (CTTL, No.J20X02965)</td> <td>May-21</td> </tr> <tr> <td>Power sensor NRP6A</td> <td>101369</td> <td>12-May-20 (CTTL, No.J20X02965)</td> <td>May-21</td> </tr> <tr> <td>ReferenceProbe EX3DV4</td> <td>SN 7600</td> <td>30-Nov-20(CTTL-SPEAG, No.Z20-60421)</td> <td>Nov-21</td> </tr> <tr> <td>DAE4</td> <td>SN 771</td> <td>10-Feb-20(CTTL-SPEAG, No.Z20-60017)</td> <td>Feb-21</td> </tr> <tr> <td colspan="2">Secondary Standards</td> <td>ID #</td> <td>Cal Date(Calibrated by, Certificate No.)</td> </tr> <tr> <td colspan="2">Signal Generator E4438C</td> <td>MY49071430</td> <td>25-Feb-20 (CTTL, No.J20X00516)</td> </tr> <tr> <td colspan="2">NetworkAnalyzerE5071C</td> <td>MY46110673</td> <td>10-Feb-20 (CTTL, No.J20X00515)</td> </tr> </tbody> </table>		Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	Power Meter NRP2	106276	12-May-20 (CTTL, No.J20X02965)	May-21	Power sensor NRP6A	101369	12-May-20 (CTTL, No.J20X02965)	May-21	ReferenceProbe EX3DV4	SN 7600	30-Nov-20(CTTL-SPEAG, No.Z20-60421)	Nov-21	DAE4	SN 771	10-Feb-20(CTTL-SPEAG, No.Z20-60017)	Feb-21	Secondary Standards		ID #	Cal Date(Calibrated by, Certificate No.)	Signal Generator E4438C		MY49071430	25-Feb-20 (CTTL, No.J20X00516)	NetworkAnalyzerE5071C		MY46110673	10-Feb-20 (CTTL, No.J20X00515)		
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration																																
Power Meter NRP2	106276	12-May-20 (CTTL, No.J20X02965)	May-21																																
Power sensor NRP6A	101369	12-May-20 (CTTL, No.J20X02965)	May-21																																
ReferenceProbe EX3DV4	SN 7600	30-Nov-20(CTTL-SPEAG, No.Z20-60421)	Nov-21																																
DAE4	SN 771	10-Feb-20(CTTL-SPEAG, No.Z20-60017)	Feb-21																																
Secondary Standards		ID #	Cal Date(Calibrated by, Certificate No.)																																
Signal Generator E4438C		MY49071430	25-Feb-20 (CTTL, No.J20X00516)																																
NetworkAnalyzerE5071C		MY46110673	10-Feb-20 (CTTL, No.J20X00515)																																
Calibrated by:	Name	Function	Signature																																
	Zhao Jing	SAR Test Engineer																																	
Reviewed by:	Lin Hao	SAR Test Engineer																																	
Approved by:	Qi Dianyuan	SAR Project Leader																																	
Issued: January 29, 2021																																			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.																																			

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2013
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	4.68 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.2 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	5.22 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.3 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$47.8\Omega - 1.46j\Omega$
Return Loss	- 31.3dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$51.6\Omega + 2.95j\Omega$
Return Loss	- 29.6dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$50.0\Omega + 3.42j\Omega$
Return Loss	- 29.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.101 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Head TSL

Date: 01.26.2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1273

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: $f = 5250 \text{ MHz}$; $\sigma = 4.678 \text{ S/m}$; $\epsilon_r = 36.04$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5600 \text{ MHz}$; $\sigma = 5.055 \text{ S/m}$; $\epsilon_r = 35.43$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5750 \text{ MHz}$; $\sigma = 5.219 \text{ S/m}$; $\epsilon_r = 35.21$; $\rho = 1000 \text{ kg/m}^3$,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7600; ConvF(5.68, 5.68, 5.68) @ 5250 MHz; ConvF(5.11, 5.11, 5.11) @ 5600 MHz; ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 2020-11-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 65.72 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.5%

Maximum value of SAR (measured) = 18.4 W/kg

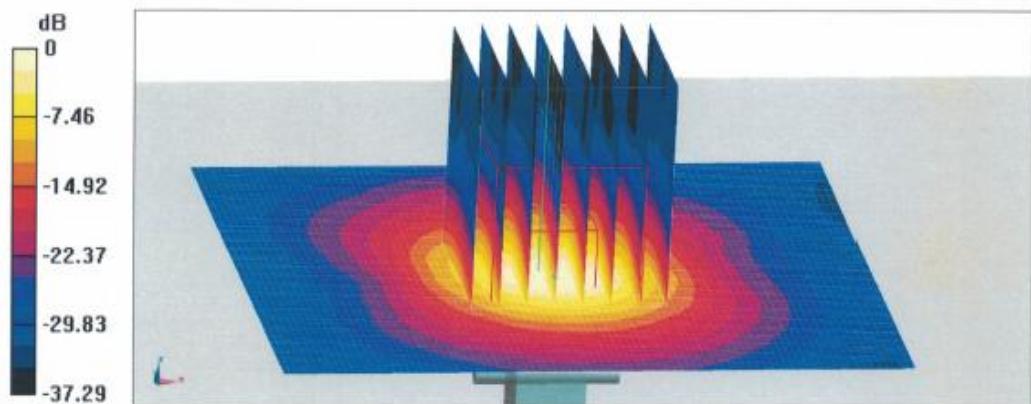
Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 67.05 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 35.4 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm


Ratio of SAR at M2 to SAR at M1 = 62.8%

Maximum value of SAR (measured) = 20.4 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

**Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm**
Reference Value = 66.61 V/m; Power Drift = -0.06 dB
Peak SAR (extrapolated) = 35.8 W/kg
SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.25 W/kg
Smallest distance from peaks to all points 3 dB below = 7.6 mm
Ratio of SAR at M2 to SAR at M1 = 61.7%
Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

