
All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

201 - -

nRF52 Product Specification

Contents

Page 2

Contents

1 Revision history... 9
2 About this document.. 10

2.1 Document naming and status...10
2.2 Peripheral naming and abbreviations... 10
2.3 Register tables.. 10
2.4 Registers... 11

3 Block diagram..12
4 Pin assignments.. 13

4.1 QFN48 pin assignments... 13
4.2 WLCSP ball assignments... 15
4.3 GPIO usage restrictions..17

5 Absolute maximum ratings.. 19
6 Recommended operating conditions.. 20

6.1 WLCSP light sensitivity... 20
7 CPU... 21

7.1 Floating point interrupt.. 21
7.2 Electrical specification...21
7.3 CPU and support module configuration..22

8 Memory... 23
8.1 RAM - Random access memory...23
8.2 Flash - Non-volatile memory...24
8.3 Memory map... 24
8.4 Instantiation... 24

9 AHB multilayer...26
9.1 AHB multilayer priorities..26

10 EasyDMA.. 27
10.1 EasyDMA array list... 28

11 NVMC — Non-volatile memory controller... 29
11.1 Writing to Flash...29
11.2 Erasing a page in Flash... 29
11.3 Writing to user information configuration registers (UICR)... 29
11.4 Erasing user information configuration registers (UICR).. 29
11.5 Erase all.. 30
11.6 Cache.. 30
11.7 Registers... 30
11.8 Electrical specification...33

12 BPROT — Block protection..34
12.1 Registers... 34

13 FICR — Factory information configuration registers.......................................43
13.1 Registers... 43

14 UICR — User information configuration registers... 54
14.1 Registers... 54

15 Peripheral interface... 68
15.1 Peripheral ID... 68
15.2 Peripherals with shared ID..68
15.3 Peripheral registers... 69
15.4 Bit set and clear..69
15.5 Tasks... 69
15.6 Events..70

Contents

Page 3

15.7 Shortcuts... 70
15.8 Interrupts... 70

16 Debug and trace.. 72
16.1 DAP - Debug Access Port..72
16.2 CTRL-AP - Control Access Port... 73
16.3 Debug interface mode...74
16.4 Real-time debug..74
16.5 Trace... 75

17 Power and clock management...76
17.1 Current consumption scenarios.. 76

18 POWER — Power supply..78
18.1 Regulators... 78
18.2 System OFF mode..79
18.3 System ON mode... 80
18.4 Power supply supervisor...80
18.5 RAM sections.. 82
18.6 Reset... 82
18.7 Retained registers... 83
18.8 Reset behavior.. 83
18.9 Registers... 83
18.10 Electrical specification...99

19 CLOCK — Clock control...101
19.1 HFCLK clock controller... 101
19.2 LFCLK clock controller..103
19.3 Registers... 105
19.4 Electrical specification...109

20 GPIO — General purpose input/output... 111
20.1 Pin configuration... 111
20.2 GPIO located near the RADIO... 113
20.3 Registers... 113
20.4 Electrical specification...154

21 GPIOTE — GPIO tasks and events..157
21.1 Pin events and tasks.. 157
21.2 Port event..158
21.3 Tasks and events pin configuration.. 158
21.4 Registers... 158
21.5 Electrical specification...167

22 PPI — Programmable peripheral interconnect... 168
22.1 Pre-programmed channels..169
22.2 Registers... 169

23 RADIO — 2.4 GHz Radio.. 205
23.1 EasyDMA...205
23.2 Packet configuration..206
23.3 Maximum packet length.. 207
23.4 Address configuration..207
23.5 Data whitening.. 207
23.6 CRC...208
23.7 Radio states.. 209
23.8 Transmit sequence..209
23.9 Receive sequence...211
23.10 Received Signal Strength Indicator (RSSI)...212
23.11 Interframe spacing...212
23.12 Device address match.. 213
23.13 Bit counter... 213
23.14 Registers... 214
23.15 Electrical specification... 230

24 TIMER — Timer/counter..234

Contents

Page 4

24.1 Capture..235
24.2 Compare..235
24.3 Task delays... 235
24.4 Task priority...235
24.5 Registers... 235
24.6 Electrical specification...241

25 RTC — Real-time counter...242
25.1 Clock source... 242
25.2 Resolution versus overflow and the PRESCALER... 242
25.3 COUNTER register..243
25.4 Overflow features.. 243
25.5 TICK event.. 243
25.6 Event control feature...244
25.7 Compare feature... 244
25.8 TASK and EVENT jitter/delay... 246
25.9 Reading the COUNTER register...248
25.10 Registers... 248
25.11 Electrical specification... 254

26 RNG — Random number generator.. 255
26.1 Bias correction.. 255
26.2 Speed.. 255
26.3 Registers... 255
26.4 Electrical specification...257

27 TEMP — Temperature sensor.. 258
27.1 Registers... 258
27.2 Electrical specification...263

28 ECB — AES electronic codebook mode encryption......................................264
28.1 Shared resources..264
28.2 EasyDMA...264
28.3 ECB data structure..264
28.4 Registers... 265
28.5 Electrical specification...266

29 CCM — AES CCM mode encryption..267
29.1 Shared resources..268
29.2 Encryption..268
29.3 Decryption... 268
29.4 AES CCM and RADIO concurrent operation..269
29.5 Encrypting packets on-the-fly in radio transmit mode...269
29.6 Decrypting packets on-the-fly in radio receive mode..270
29.7 CCM data structure...271
29.8 EasyDMA and ERROR event... 272
29.9 Registers... 272

30 AAR — Accelerated address resolver...276
30.1 Shared resources..276
30.2 EasyDMA...276
30.3 Resolving a resolvable address..276
30.4 Use case example for chaining RADIO packet reception with address resolution using

AAR...277
30.5 IRK data structure...277
30.6 Registers... 278
30.7 Electrical specification...280

31 SPIM — Serial peripheral interface master with EasyDMA............................281
31.1 Shared resources..281
31.2 EasyDMA...282
31.3 SPI master transaction sequence...283
31.4 Low power...284
31.5 Master mode pin configuration... 284

Contents

Page 5

31.6 Registers... 285
31.7 Electrical specification...290

32 SPIS — Serial peripheral interface slave with EasyDMA...............................292
32.1 Shared resources..292
32.2 EasyDMA...292
32.3 SPI slave operation...293
32.4 Pin configuration... 294
32.5 Registers... 295
32.6 Electrical specification...303

33 TWIM — I2C compatible two-wire interface master with EasyDMA...............305
33.1 Shared resources..306
33.2 EasyDMA...306
33.3 Master write sequence..307
33.4 Master read sequence.. 308
33.5 Master repeated start sequence... 309
33.6 Low power...310
33.7 Master mode pin configuration... 310
33.8 Registers... 310
33.9 Electrical specification...317

34 TWIS — I2C compatible two-wire interface slave with EasyDMA..................319
34.1 Shared resources..321
34.2 EasyDMA...321
34.3 TWI slave responding to a read command...321
34.4 TWI slave responding to a write command.. 322
34.5 Master repeated start sequence... 323
34.6 Terminating an ongoing TWI transaction..324
34.7 Low power...324
34.8 Slave mode pin configuration... 324
34.9 Registers... 325
34.10 Electrical specification... 331

35 UARTE — Universal asynchronous receiver/transmitter with EasyDMA.... 333
35.1 Shared resources..333
35.2 EasyDMA...333
35.3 Transmission... 334
35.4 Reception.. 334
35.5 Error conditions... 336
35.6 Using the UARTE without flow control... 336
35.7 Parity configuration..336
35.8 Low power...336
35.9 Pin configuration... 337
35.10 Registers... 337
35.11 Electrical specification... 345

36 QDEC — Quadrature decoder..347
36.1 Sampling and decoding.. 347
36.2 LED output.. 348
36.3 Debounce filters.. 348
36.4 Accumulators...349
36.5 Output/input pins... 349
36.6 Pin configuration... 349
36.7 Registers... 350
36.8 Electrical specification...356

37 SAADC — Successive approximation analog-to-digital converter............... 357
37.1 Shared resources..357
37.2 Overview..357
37.3 Digital output... 358
37.4 Analog inputs and channels..359
37.5 Operation modes...359

Contents

Page 6

37.6 EasyDMA...361
37.7 Resistor ladder.. 362
37.8 Reference.. 363
37.9 Acquisition time... 363
37.10 Limits event monitoring... 364
37.11 Registers... 365
37.12 Electrical specification... 389
37.13 Performance factors..391

38 COMP — Comparator..392
38.1 Differential mode... 393
38.2 Single-ended mode... 394
38.3 Registers... 396
38.4 Electrical specification...401

39 LPCOMP — Low power comparator..402
39.1 Shared resources..403
39.2 Pin configuration... 403
39.3 Registers... 404
39.4 Electrical specification...408

40 WDT — Watchdog timer... 409
40.1 Reload criteria... 409
40.2 Temporarily pausing the watchdog...409
40.3 Watchdog reset... 409
40.4 Registers... 410
40.5 Electrical specification...414

41 SWI — Software interrupts...415
41.1 Registers... 415

42 NFCT — Near field communication tag...416
42.1 Overview..416
42.2 Pin configuration... 418
42.3 EasyDMA...418
42.4 Collision resolution.. 419
42.5 Frame timing controller... 420
42.6 Frame assembler.. 421
42.7 Frame disassembler..422
42.8 Antenna interface.. 423
42.9 NFCT antenna recommendations... 423
42.10 Battery protection.. 423
42.11 References.. 424
42.12 Registers... 424
42.13 Electrical specification... 435

43 PDM — Pulse density modulation interface... 436
43.1 Master clock generator... 436
43.2 Module operation.. 436
43.3 Decimation filter.. 437
43.4 EasyDMA...437
43.5 Hardware example.. 438
43.6 Pin configuration... 438
43.7 Registers... 439
43.8 Electrical specification...443

44 I2S — Inter-IC sound interface... 445
44.1 Mode..445
44.2 Transmitting and receiving..445
44.3 Left right clock (LRCK)... 446
44.4 Serial clock (SCK)...446
44.5 Master clock (MCK).. 447
44.6 Width, alignment and format...447
44.7 EasyDMA...449

Contents

Page 7

44.8 Module operation.. 451
44.9 Pin configuration... 452
44.10 Registers... 453
44.11 Electrical specification... 460

45 MWU — Memory watch unit...461
45.1 Registers... 461

46 EGU — Event generator unit..488
46.1 Registers... 488
46.2 Electrical specification...494

47 PWM — Pulse width modulation... 495
47.1 Wave counter.. 495
47.2 Decoder with EasyDMA.. 498
47.3 Limitations... 503
47.4 Pin configuration... 503
47.5 Registers... 504
47.6 Electrical specification...512

48 SPI — Serial peripheral interface master..513
48.1 Functional description... 513
48.2 Registers... 516
48.3 Electrical specification...519

49 TWI — I2C compatible two-wire interface... 521
49.1 Functional description... 521
49.2 Master mode pin configuration... 521
49.3 Shared resources..522
49.4 Master write sequence..522
49.5 Master read sequence.. 523
49.6 Master repeated start sequence... 524
49.7 Low power...525
49.8 Registers... 525
49.9 Electrical specification...529

50 UART — Universal asynchronous receiver/transmitter.................................531
50.1 Functional description... 531
50.2 Pin configuration... 531
50.3 Shared resources..532
50.4 Transmission... 532
50.5 Reception.. 532
50.6 Suspending the UART.. 533
50.7 Error conditions... 533
50.8 Using the UART without flow control..534
50.9 Parity configuration..534
50.10 Registers... 534
50.11 Electrical specification... 539

51 Mechanical specifications.. 540
51.1 QFN48 6 x 6 mm package... 540
51.2 WLCSP package...541

52 Ordering information...542
52.1 IC marking...542
52.2 Box labels..542
52.3 Order code.. 543
52.4 Code ranges and values...543
52.5 Product options... 544

53 Reference circuitry.. 545
53.1 Schematic QFAA and QFAB QFN48 with internal LDO setup... 545
53.2 Schematic QFAA and QFAB QFN48 with DC/DC regulator setup................................... 546
53.3 Schematic QFAA and QFAB QFN48 with DC/DC regulator and NFC setup.................... 547
53.4 Schematic CIAA WLCSP with internal LDO setup... 548
53.5 Schematic CIAA WLCSP with DC/DC regulator setup... 549

Contents

Page 8

53.6 Schematic CIAA WLCSP with DC/DC regulator and NFC setup......................................550
53.7 PCB guidelines..550
53.8 PCB layout example... 551

54 Liability disclaimer.. 553
54.1 RoHS and REACH statement...553
54.2 Life support applications... 553

1 Revision history

Page 9

1 Revision history

2 About this document

Page 10

2 About this document
This product specification is organized into chapters based on the modules and peripherals that are available
in this IC.

The peripheral descriptions are divided into separate sections that include the following information:

• A detailed functional description of the peripheral
• Register configuration for the peripheral
• Electrical specification tables, containing performance data which apply for the operating conditions

described in Recommended operating conditions on page 20.

2.1 Document naming and status
Nordic uses three distinct names for this document, which are reflecting the maturity and the status of the
document and its content.

Table 1: Defined document names

2.2 Peripheral naming and abbreviations
Every peripheral has a unique capitalized name or an abbreviation of its name, e.g. TIMER, used for
identification and reference. This name is used in chapter headings and references, and it will appear in the
ARM® Cortex® Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer to identify
the peripheral.

The peripheral instance name, which is different from the peripheral name, is constructed using the
peripheral name followed by a numbered postfix, starting with 0, for example, TIMER0. A postfix is normally
only used if a peripheral can be instantiated more than once. The peripheral instance name is also used in
the CMSIS to identify the peripheral instance.

2.3 Register tables
Individual registers are described using register tables. These tables are built up of two sections. The first
three colored rows describe the position and size of the different fields in the register. The following rows
describe the fields in more detail.

2.3.1 Fields and values
The Id (Field Id) row specifies the bits that belong to the different fields in the register. If a field has
enumerated values, then every value will be identified with a unique value id in the Value Id column.

A blank space means that the field is reserved and read as undefined, and it also must be written as to
secure forward compatibility. If a register is divided into more than one field, a unique field name is specified
for each field in the Field column. The Value Id may be omitted in the single-bit bit fields when values can be
substituted with a Boolean type enumerator range, e.g. true/false, disable(d)/enable(d), on/off, and so on.

2 About this document

Page 11

Values are usually provided as decimal or hexadecimal. Hexadecimal values have a prefix, decimal
values have no prefix.

The Value column can be populated in the following ways:

• Individual enumerated values, for example 1, 3, 9.
• Range of values, e.g. [0..4], indicating all values from and including 0 and 4.
• Implicit values. If no values are indicated in the Value column, all bit combinations are supported, or

alternatively the field's translation and limitations are described in the text instead.

If two or more fields are closely related, the Value Id, Value, and Description may be omitted for all but the
first field. Subsequent fields will indicate inheritance with '..'.

A feature marked Deprecated should not be used for new designs.

2.4 Registers
Table 2: Register Overview

2.4.1 DUMMY
Address offset: 0x514

Example of a register controlling a dummy feature

3 Block diagram

Page 12

3 Block diagram
This block diagram illustrates the overall system. Arrows with white heads indicate signals that share
physical pins with other signals.

Figure 1: Block diagram

4 Pin assignments

Page 13

4 Pin assignments
Here we cover the pin assignments for each variant of the chip.

4.1 QFN48 pin assignments

Figure 2: QFN48 pin assignments, top view

Table 3: QFN48 pin assignments

4 Pin assignments

Page 14

4 Pin assignments

Page 15

4.2 WLCSP ball assignments

Figure 3: WLCSP ball assignments, top view

Table 4: WLCSP ball assignments

1 See GPIO located near the radio on page 17 for more information.
2 See NFC antenna pins on page 17 for more information.

4 Pin assignments

Page 16

4 Pin assignments

Page 17

4.3 GPIO usage restrictions

4.3.1 GPIO located near the radio
Radio performance parameters, such as sensitivity, may be affected by high frequency digital I/O with large
sink/source current close to the Radio power supply and antenna pins.

Table 5: GPIO recommended usage for QFN48 package on page 17 and Table 6: GPIO recommended
usage for WLCSP package on page 17 identify some GPIO that have recommended usage guidelines to
maximize radio performance in an application.

Table 5: GPIO recommended usage for QFN48 package

Table 6: GPIO recommended usage for WLCSP package

4.3.2 NFC antenna pins
Two physical pins can be configured either as NFC antenna pins (factory default), or as GPIOs, as shown
below.

Table 7: GPIO pins used by NFC

When configured as NFC antenna pins, the GPIOs on those pins will automatically be set to DISABLE state
and a protection circuit will be enabled preventing the chip from being damaged in the presence of a strong
NFC field. The protection circuit will short the two pins together if voltage difference exceeds approximately 2
V.

3 See GPIO located near the radio on page 17 for more information.
4 See NFC antenna pins on page 17 for more information.

4 Pin assignments

Page 18

For information on how to configure these pins as normal GPIOs, see NFCT — Near field communication tag
on page 416 and UICR — User information configuration registers on page 54. Note that the device will
not be protected against strong NFC field damage if the pins are configured as GPIO and an NFC antenna
is connected to the device. The pins will always be configured as NFC pins during power-on reset until the
configuration is set according to the UICR register.

These two pins will have some limitations when configured as GPIO. The pin capacitance will be higher on
these pins, and there is some current leakage between the two pins if they are driven to different logical
values. To avoid leakage between the pins when configured as GPIO, these GPIOs should always be at the
same logical value whenever entering one of the device power saving modes. See Electrical specification.

5 Absolute maximum ratings

Page 19

5 Absolute maximum ratings
Maximum ratings are the extreme limits to which the chip can be exposed for a limited amount of time
without permanently damaging it. Exposure to absolute maximum ratings for prolonged periods of time may
affect the reliability of the device.

Table 8: Absolute maximum ratings

6 Recommended operating conditions

Page 20

6 Recommended operating conditions
The operating conditions are the physical parameters that the chip can operate within.

Table 9: Recommended operating conditions

Important: The on-chip power-on reset circuitry may not function properly for rise times longer than
the specified maximum.

6.1 WLCSP light sensitivity
All WLCSP package variants are sensitive to visible and close-range infrared light. This means that a final
product design must shield the chip properly, either by final product encapsulation or by shielding/coating of
the WLCSP device.

7 CPU

Page 21

7 CPU
The ARM® Cortex®-M4 processor with floating-point unit (FPU) has a 32-bit instruction set (Thumb®-2
technology) that implements a superset of 16 and 32-bit instructions to maximize code density and
performance.

This processor implements several features that enable energy-efficient arithmetic and high-performance
signal processing including:

• Digital signal processing (DSP) instructions
• Single-cycle multiply and accumulate (MAC) instructions
• Hardware divide
• 8 and 16-bit single instruction multiple data (SIMD) instructions
• Single-precision floating-point unit (FPU)

The ARM Cortex Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer for the
ARM Cortex processor series is implemented and available for the M4 CPU.

Real-time execution is highly deterministic in thread mode, to and from sleep modes, and when handling
events at configurable priority levels via the Nested Vectored Interrupt Controller (NVIC).

Executing code from flash will have a wait state penalty on the nRF52 Series. An instruction cache can be
enabled to minimize flash wait states when fetching instructions. For more information on cache, see Cache
on page 30. The section Electrical specification on page 21 shows CPU performance parameters
including wait states in different modes, CPU current and efficiency, and processing power and efficiency
based on the CoreMark® benchmark.

7.1 Floating point interrupt
The floating point unit (FPU) may generate exceptions when used due to e.g. overflow or underflow. These
exceptions will trigger the FPU interrupt (see Instantiation on page 24). To clear the IRQ line when an
exception has occurred, the relevant exception bit within the FPSCR register needs to be cleared. For more
information about the FPSCR or other FPU registers, see Cortex-M4 Devices Generic User Guide.

7.2 Electrical specification

7.2.1 CPU performance

The CPU clock speed is 64 MHz. Current and efficiency data is taken when in System ON and the CPU is
executing the CoreMark™ benchmark. It includes power regulator and clock base currents. All other blocks
are IDLE.

7 CPU

Page 22

7.3 CPU and support module configuration
The ARM® Cortex®-M4 processor has a number of CPU options and support modules implemented on the
device.

8 Memory

Page 23

8 Memory
The nRF52832 contains flash and RAM that can be used for code and data storage.

The amount of RAM and flash will vary depending on variant, see Table 10: Memory variants on page 23.

Table 10: Memory variants

The CPU and the EasyDMA can access memory via the AHB multilayer interconnect. The CPU is also able
to access peripherals via the AHB multilayer interconnect, as illustrated in Figure 4: Memory layout on page
23.

Figure 4: Memory layout

See AHB multilayer on page 26 and EasyDMA on page 27 for more information about the AHB
multilayer interconnect and the EasyDMA.

The same physical RAM is mapped to both the Data RAM region and the Code RAM region. It is up to the
application to partition the RAM within these regions so that one does not corrupt the other.

8.1 RAM - Random access memory
The RAM interface is divided into multiple RAM AHB slaves.

Each RAM AHB slave is connected to two 4-kilobyte RAM sections, see Section 0 and Section 1 in Figure 4:
Memory layout on page 23.

Each of the RAM sections have separate power control for System ON and System OFF mode operation,
which is configured via RAM register (see the POWER — Power supply on page 78).

8 Memory

Page 24

8.2 Flash - Non-volatile memory
The Flash can be read an unlimited number of times by the CPU, but it has restrictions on the number of
times it can be written and erased and also on how it can be written.

Writing to Flash is managed by the Non-volatile memory controller (NVMC), see NVMC — Non-volatile
memory controller on page 29.

The Flash is divided into multiple pages that can be accessed by the CPU via both the ICODE and DCODE
buses as shown in, Figure 4: Memory layout on page 23. Each page is divided into 8 blocks.

8.3 Memory map
The complete memory map is shown in Figure 5: Memory map on page 24. As described in Memory on
page 23, Code RAM and the Data RAM are the same physical RAM.

Figure 5: Memory map

8.4 Instantiation
Table 11: Instantiation table

8 Memory

Page 25

9 AHB multilayer

Page 26

9 AHB multilayer
The CPU and all of the EasyDMAs are AHB bus masters on the AHB multilayer, while the RAM and various
other modules are AHB slaves.

See Block diagram on page 12 for an overview of which peripherals implement EasyDMA.

The CPU has exclusive access to all AHB slaves except for the RAM that can also be accessed by the
EasyDMA.

Access rights to each of the RAM AHB slaves are resolved using the priority of the different bus masters in
the system

See AHB multilayer priorities on page 26 for information about the priority of the different AHB bus
masters in the system. It is possible for two or more bus masters to have the same priority in cases where
it is guaranteed by design that the related masters will never be able to access the same slave at the same
time.

9.1 AHB multilayer priorities
Each master connected to the AHB multilayer is assigned a priority.

Table 12: AHB bus masters

10 EasyDMA

Page 27

10 EasyDMA
EasyDMA is an easy-to-use direct memory access module that some peripherals implement to gain direct
access to Data RAM.

The EasyDMA is an AHB bus master similar to the CPU and it is connected to the AHB multilayer
interconnect for direct access to the Data RAM. The EasyDMA is not able to access the Flash.

A peripheral can implement multiple EasyDMA instances, for example to provide a dedicated channel for
reading data from RAM into the peripheral at the same time as a second channel is dedicated for writing data
to the RAM from the peripheral. This concept is illustrated in Figure 6: EasyDMA example on page 27

Figure 6: EasyDMA example

An EasyDMA channel is usually exposed to the user in the form illustrated below, but some variations may
occur:

This example shows a peripheral called MYPERIPHERAL that implements two EasyDMA channels, one
for reading, called READER, and one for writing, called WRITER. When the peripheral is started, it is here
assumed that the peripheral will read 5 bytes from the readerBuffer located in RAM at address 0x20000000,
process the data and then write no more than 6 bytes back to the writerBuffer located in RAM at address
0x20000005. The memory layout of these buffers is illustrated in Figure 7: EasyDMA memory layout on page
28.

10 EasyDMA

Page 28

Figure 7: EasyDMA memory layout

The EasyDMA channel's MAXCNT register cannot be specified larger than the actual size of the buffer. If,
for example, the WRITER.MAXCNT register is specified larger than the size of the writerBuffer, the WRITER
EasyDMA channel may overflow the writerBuffer.

After the peripheral has completed the EasyDMA transfer, the CPU can read the EasyDMA channel's
AMOUNT register to see how many bytes that were transferred, e.g. it is possible for the CPU to read the
MYPERIPHERAL->WRITER.AMOUNT register to see how many bytes the WRITER wrote to RAM.

10.1 EasyDMA array list
The EasyDMA is able to operate in a mode called array list.

The EasyDMA array list can be represented by the data structure ArrayList_type illustrated in the code
example below.

This data structure includes only a buffer with size equal to READER.MAXCNT. EasyDMA will use the
READER.MAXCNT register to determine when the buffer is full.

This array list does not provide a mechanism to explicitly specify where the next item in the list is located.
Instead, it assumes that the list is organized as a linear array where items are located one after the other in
RAM.

Figure 8: EasyDMA array list

11 NVMC — Non-volatile memory controller

Page 29

11 NVMC — Non-volatile memory controller
The Non-volatile memory controller (NVMC) is used for writing and erasing the internal Flash memory and
the UICR.

Before a write can be performed, the NVMC must be enabled for writing in CONFIG.WEN. Similarly, before
an erase can be performed, the NVMC must be enabled for erasing in CONFIG.EEN, see CONFIG on page
31. The user must make sure that writing and erasing are not enabled at the same time. Failing to do so
may result in unpredictable behavior.

11.1 Writing to Flash
When writing is enabled, the Flash is written by writing a full 32-bit word to a word-aligned address in the
Flash.

The NVMC is only able to write '0' to bits in the Flash that are erased, that is, set to '1'. It cannot write back a
bit to '1'.

As illustrated in Memory on page 23, the Flash is divided into multiple pages that are further divided into
multiple blocks. The same block in the Flash can only be written nWRITE number of times before an erase
must be performed using ERASEPAGE or ERASEALL. See the memory size and organization in Memory on
page 23 for block size.

Only full 32-bit words can be written to Flash using the NVMC interface. To write less than 32 bits to Flash,
write the data as a word, and set all the bits that should remain unchanged in the word to '1'. Note that the
restriction about the number of writes (see above) still applies in this case.

The time it takes to write a word to the Flash is specified by tWRITE. The CPU is halted while the NVMC is
writing to the Flash.

Only word-aligned writes are allowed. Byte or half-word-aligned writes will result in a hard fault.

11.2 Erasing a page in Flash
When erase is enabled, the Flash can be erased page by page using the ERASEPAGE register.

After erasing a Flash page, all bits in the page are set to '1'. The time it takes to erase a page is specified by
tERASEPAGE. The CPU is halted while the NVMC performs the erase operation.

11.3 Writing to user information configuration registers (UICR)
User information configuration registers (UICR) are written in the same way as Flash. After UICR has been
written, the new UICR configuration will only take effect after a reset.

UICR can only be written nWRITE number of times before an erase must be performed using ERASEUICR or
ERASEALL.

The time it takes to write a word to the UICR is specified by tWRITE. The CPU is halted while the NVMC is
writing to the UICR.

11.4 Erasing user information configuration registers (UICR)
When erase is enabled, UICR can be erased using the ERASEUICR register.

After erasing UICR all bits in UICR are set to '1'. The time it takes to erase UICR is specified by tERASEPAGE.
The CPU is halted while the NVMC performs the erase operation.

11 NVMC — Non-volatile memory controller

Page 30

11.5 Erase all
When erase is enabled, the whole Flash and UICR can be erased in one operation by using the ERASEALL
register. ERASEALL will not erase the factory information configuration registers (FICR).

The time it takes to perform an ERASEALL command is specified by tERASEALL The CPU is halted while the
NVMC performs the erase operation.

11.6 Cache
An instruction cache (I-Cache) can be enabled for the ICODE bus in the NVMC.

See the Memory map in Memory map on page 24 for the location of Flash.

A cache hit is an instruction fetch from the cache, and it has a 0 wait-state delay. The number of wait-states
for a cache miss, where the instruction is not available in the cache and needs to be fetched from Flash,
depends on the processor frequency and is shown in CPU on page 21

Enabling the cache can increase CPU performance and reduce power consumption by reducing the number
of wait cycles and the number of flash accesses. This will depend on the cache hit rate. Cache will use some
current when enabled. If the reduction in average current due to reduced flash accesses is larger than the
cache power requirement, the average current to execute the program code will reduce.

When disabled, the cache does not use current and does not retain its content.

It is possible to enable cache profiling to analyze the performance of the cache for your program using the
ICACHECNF register. When profiling is enabled, the IHIT and IMISS registers are incremented for every
instruction cache hit or miss respectively. The hit and miss profiling registers do not wrap around after
reaching the maximum value. If the maximum value is reached, consider profiling for a shorter duration to get
correct numbers.

11.7 Registers
Table 13: Instances

Table 14: Register Overview

11.7.1 READY
Address offset: 0x400

Ready flag

11 NVMC — Non-volatile memory controller

Page 31

11.7.2 CONFIG
Address offset: 0x504

Configuration register

11.7.3 ERASEPAGE
Address offset: 0x508

Register for erasing a page in Code area

11.7.4 ERASEPCR1 (Deprecated)
Address offset: 0x508

Register for erasing a page in Code area. Equivalent to ERASEPAGE.

11.7.5 ERASEALL
Address offset: 0x50C

Register for erasing all non-volatile user memory

11 NVMC — Non-volatile memory controller

Page 32

11.7.6 ERASEPCR0 (Deprecated)
Address offset: 0x510

Register for erasing a page in Code area. Equivalent to ERASEPAGE.

11.7.7 ERASEUICR
Address offset: 0x514

Register for erasing User Information Configuration Registers

11.7.8 ICACHECNF
Address offset: 0x540

I-Code cache configuration register.

11.7.9 IHIT
Address offset: 0x548

I-Code cache hit counter.

11 NVMC — Non-volatile memory controller

Page 33

11.7.10 IMISS
Address offset: 0x54C

I-Code cache miss counter.

11.8 Electrical specification

11.8.1 Flash programming

11.8.2 Cache size

12 BPROT — Block protection

Page 34

12 BPROT — Block protection
The mechanism for protecting non-volatile memory can be used to prevent application code from erasing or
writing to protected blocks.

Non-volatile memory can be protected from erases and writes depending on the settings in the CONFIG
registers. One bit in a CONFIG register represents one protected block of 4 kB. There are four CONFIG
registers of 32 bits, which means there are 128 protectable blocks in total.

Important: If an erase or write to a protected block is detected, the CPU will hard fault. If an
ERASEALL operation is attempted from the CPU while any block is protected, it will be blocked and
the CPU will hard fault.

On reset, all the protection bits are cleared. To ensure safe operation, the first task after reset must be to set
the protection bits. The only way of clearing protection bits is by resetting the device from any reset source.

The protection mechanism is turned off when in debug interface mode (a debugger is connected) and the
DISABLEINDEBUG register is set to disable. For more information, see Debug and trace on page 72.

Figure 9: Protected regions of program memory

12.1 Registers
Table 15: Instances

Table 16: Register Overview

12 BPROT — Block protection

Page 35

12.1.1 CONFIG0
Address offset: 0x600

Block protect configuration register 0

12 BPROT — Block protection

Page 36

12.1.2 CONFIG1
Address offset: 0x604

Block protect configuration register 1

12 BPROT — Block protection

Page 37

12 BPROT — Block protection

Page 38

12.1.3 DISABLEINDEBUG
Address offset: 0x608

Disable protection mechanism in debug interface mode

12 BPROT — Block protection

Page 39

12.1.4 CONFIG2
Address offset: 0x610

Block protect configuration register 2

12 BPROT — Block protection

Page 40

12 BPROT — Block protection

Page 41

12.1.5 CONFIG3
Address offset: 0x614

Block protect configuration register 3

12 BPROT — Block protection

Page 42

13 FICR — Factory information configuration
registers

Page 43

13 FICR — Factory information configuration registers
Factory information configuration registers (FICR) are pre-programmed in factory and cannot be erased by
the user. These registers contain chip-specific information and configuration.

13.1 Registers
Table 17: Instances

Table 18: Register Overview

13 FICR — Factory information configuration
registers

Page 44

13.1.1 CODEPAGESIZE
Address offset: 0x010

Code memory page size

13.1.2 CODESIZE
Address offset: 0x014

Code memory size

13.1.3 DEVICEID[0]
Address offset: 0x060

Device identifier

13.1.4 DEVICEID[1]
Address offset: 0x064

Device identifier

13 FICR — Factory information configuration
registers

Page 45

13.1.5 ER[0]
Address offset: 0x080

Encryption Root, word 0

13.1.6 ER[1]
Address offset: 0x084

Encryption Root, word 1

13.1.7 ER[2]
Address offset: 0x088

Encryption Root, word 2

13.1.8 ER[3]
Address offset: 0x08C

Encryption Root, word 3

13.1.9 IR[0]
Address offset: 0x090

Identity Root, word 0

13 FICR — Factory information configuration
registers

Page 46

13.1.10 IR[1]
Address offset: 0x094

Identity Root, word 1

13.1.11 IR[2]
Address offset: 0x098

Identity Root, word 2

13.1.12 IR[3]
Address offset: 0x09C

Identity Root, word 3

13.1.13 DEVICEADDRTYPE
Address offset: 0x0A0

Device address type

13.1.14 DEVICEADDR[0]
Address offset: 0x0A4

Device address 0

13 FICR — Factory information configuration
registers

Page 47

13.1.15 DEVICEADDR[1]
Address offset: 0x0A8

Device address 1

13.1.16 INFO.PART
Address offset: 0x100

Part code

13.1.17 INFO.VARIANT
Address offset: 0x104

Part Variant, Hardware version and Production configuration

13.1.18 INFO.PACKAGE
Address offset: 0x108

Package option

13 FICR — Factory information configuration
registers

Page 48

13.1.19 INFO.RAM
Address offset: 0x10C

RAM variant

13.1.20 INFO.FLASH
Address offset: 0x110

Flash variant

13.1.21 TEMP.A0
Address offset: 0x404

Slope definition A0.

13.1.22 TEMP.A1
Address offset: 0x408

Slope definition A1.

13 FICR — Factory information configuration
registers

Page 49

13.1.23 TEMP.A2
Address offset: 0x40C

Slope definition A2.

13.1.24 TEMP.A3
Address offset: 0x410

Slope definition A3.

13.1.25 TEMP.A4
Address offset: 0x414

Slope definition A4.

13.1.26 TEMP.A5
Address offset: 0x418

Slope definition A5.

13.1.27 TEMP.B0
Address offset: 0x41C

y-intercept B0.

13 FICR — Factory information configuration
registers

Page 50

13.1.28 TEMP.B1
Address offset: 0x420

y-intercept B1.

13.1.29 TEMP.B2
Address offset: 0x424

y-intercept B2.

13.1.30 TEMP.B3
Address offset: 0x428

y-intercept B3.

13.1.31 TEMP.B4
Address offset: 0x42C

y-intercept B4.

13.1.32 TEMP.B5
Address offset: 0x430

y-intercept B5.

13 FICR — Factory information configuration
registers

Page 51

13.1.33 TEMP.T0
Address offset: 0x434

Segment end T0.

13.1.34 TEMP.T1
Address offset: 0x438

Segment end T1.

13.1.35 TEMP.T2
Address offset: 0x43C

Segment end T2.

13.1.36 TEMP.T3
Address offset: 0x440

Segment end T3.

13.1.37 TEMP.T4
Address offset: 0x444

Segment end T4.

13 FICR — Factory information configuration
registers

Page 52

13.1.38 NFC.TAGHEADER0
Address offset: 0x450

Default header for NFC Tag. Software can read these values to populate NFCID1_3RD_LAST,
NFCID1_2ND_LAST and NFCID1_LAST.

13.1.39 NFC.TAGHEADER1
Address offset: 0x454

Default header for NFC Tag. Software can read these values to populate NFCID1_3RD_LAST,
NFCID1_2ND_LAST and NFCID1_LAST.

13.1.40 NFC.TAGHEADER2
Address offset: 0x458

Default header for NFC Tag. Software can read these values to populate NFCID1_3RD_LAST,
NFCID1_2ND_LAST and NFCID1_LAST.

13.1.41 NFC.TAGHEADER3
Address offset: 0x45C

Default header for NFC Tag. Software can read these values to populate NFCID1_3RD_LAST,
NFCID1_2ND_LAST and NFCID1_LAST.

13 FICR — Factory information configuration
registers

Page 53

14 UICR — User information configuration
registers

Page 54

14 UICR — User information configuration registers
The user information configuration registers (UICRs) are non-volatile memory (NVM) registers for configuring
user specific settings.

For information on writing UICR registers, see the NVMC — Non-volatile memory controller on page 29 and
Memory on page 23 chapters.

14.1 Registers
Table 19: Instances

Table 20: Register Overview

14 UICR — User information configuration
registers

Page 55

14.1.1 NRFFW[0]
Address offset: 0x014

Reserved for Nordic firmware design

14.1.2 NRFFW[1]
Address offset: 0x018

Reserved for Nordic firmware design

14.1.3 NRFFW[2]
Address offset: 0x01C

Reserved for Nordic firmware design

14 UICR — User information configuration
registers

Page 56

14.1.4 NRFFW[3]
Address offset: 0x020

Reserved for Nordic firmware design

14.1.5 NRFFW[4]
Address offset: 0x024

Reserved for Nordic firmware design

14.1.6 NRFFW[5]
Address offset: 0x028

Reserved for Nordic firmware design

14.1.7 NRFFW[6]
Address offset: 0x02C

Reserved for Nordic firmware design

14.1.8 NRFFW[7]
Address offset: 0x030

Reserved for Nordic firmware design

14 UICR — User information configuration
registers

Page 57

14.1.9 NRFFW[8]
Address offset: 0x034

Reserved for Nordic firmware design

14.1.10 NRFFW[9]
Address offset: 0x038

Reserved for Nordic firmware design

14.1.11 NRFFW[10]
Address offset: 0x03C

Reserved for Nordic firmware design

14.1.12 NRFFW[11]
Address offset: 0x040

Reserved for Nordic firmware design

14.1.13 NRFFW[12]
Address offset: 0x044

Reserved for Nordic firmware design

14.1.14 NRFFW[13]
Address offset: 0x048

Reserved for Nordic firmware design

14 UICR — User information configuration
registers

Page 58

14.1.15 NRFFW[14]
Address offset: 0x04C

Reserved for Nordic firmware design

14.1.16 NRFHW[0]
Address offset: 0x050

Reserved for Nordic hardware design

14.1.17 NRFHW[1]
Address offset: 0x054

Reserved for Nordic hardware design

14.1.18 NRFHW[2]
Address offset: 0x058

Reserved for Nordic hardware design

14.1.19 NRFHW[3]
Address offset: 0x05C

Reserved for Nordic hardware design

14 UICR — User information configuration
registers

Page 59

14.1.20 NRFHW[4]
Address offset: 0x060

Reserved for Nordic hardware design

14.1.21 NRFHW[5]
Address offset: 0x064

Reserved for Nordic hardware design

14.1.22 NRFHW[6]
Address offset: 0x068

Reserved for Nordic hardware design

14.1.23 NRFHW[7]
Address offset: 0x06C

Reserved for Nordic hardware design

14.1.24 NRFHW[8]
Address offset: 0x070

Reserved for Nordic hardware design

14.1.25 NRFHW[9]
Address offset: 0x074

Reserved for Nordic hardware design

14 UICR — User information configuration
registers

Page 60

14.1.26 NRFHW[10]
Address offset: 0x078

Reserved for Nordic hardware design

14.1.27 NRFHW[11]
Address offset: 0x07C

Reserved for Nordic hardware design

14.1.28 CUSTOMER[0]
Address offset: 0x080

Reserved for customer

14.1.29 CUSTOMER[1]
Address offset: 0x084

Reserved for customer

14.1.30 CUSTOMER[2]
Address offset: 0x088

Reserved for customer

14 UICR — User information configuration
registers

Page 61

14.1.31 CUSTOMER[3]
Address offset: 0x08C

Reserved for customer

14.1.32 CUSTOMER[4]
Address offset: 0x090

Reserved for customer

14.1.33 CUSTOMER[5]
Address offset: 0x094

Reserved for customer

14.1.34 CUSTOMER[6]
Address offset: 0x098

Reserved for customer

14.1.35 CUSTOMER[7]
Address offset: 0x09C

Reserved for customer

14.1.36 CUSTOMER[8]
Address offset: 0x0A0

Reserved for customer

14 UICR — User information configuration
registers

Page 62

14.1.37 CUSTOMER[9]
Address offset: 0x0A4

Reserved for customer

14.1.38 CUSTOMER[10]
Address offset: 0x0A8

Reserved for customer

14.1.39 CUSTOMER[11]
Address offset: 0x0AC

Reserved for customer

14.1.40 CUSTOMER[12]
Address offset: 0x0B0

Reserved for customer

14.1.41 CUSTOMER[13]
Address offset: 0x0B4

Reserved for customer

14 UICR — User information configuration
registers

Page 63

14.1.42 CUSTOMER[14]
Address offset: 0x0B8

Reserved for customer

14.1.43 CUSTOMER[15]
Address offset: 0x0BC

Reserved for customer

14.1.44 CUSTOMER[16]
Address offset: 0x0C0

Reserved for customer

14.1.45 CUSTOMER[17]
Address offset: 0x0C4

Reserved for customer

14.1.46 CUSTOMER[18]
Address offset: 0x0C8

Reserved for customer

14.1.47 CUSTOMER[19]
Address offset: 0x0CC

Reserved for customer

14 UICR — User information configuration
registers

Page 64

14.1.48 CUSTOMER[20]
Address offset: 0x0D0

Reserved for customer

14.1.49 CUSTOMER[21]
Address offset: 0x0D4

Reserved for customer

14.1.50 CUSTOMER[22]
Address offset: 0x0D8

Reserved for customer

14.1.51 CUSTOMER[23]
Address offset: 0x0DC

Reserved for customer

14.1.52 CUSTOMER[24]
Address offset: 0x0E0

Reserved for customer

14 UICR — User information configuration
registers

Page 65

14.1.53 CUSTOMER[25]
Address offset: 0x0E4

Reserved for customer

14.1.54 CUSTOMER[26]
Address offset: 0x0E8

Reserved for customer

14.1.55 CUSTOMER[27]
Address offset: 0x0EC

Reserved for customer

14.1.56 CUSTOMER[28]
Address offset: 0x0F0

Reserved for customer

14.1.57 CUSTOMER[29]
Address offset: 0x0F4

Reserved for customer

14.1.58 CUSTOMER[30]
Address offset: 0x0F8

Reserved for customer

14 UICR — User information configuration
registers

Page 66

14.1.59 CUSTOMER[31]
Address offset: 0x0FC

Reserved for customer

14.1.60 PSELRESET[0]
Address offset: 0x200

Mapping of the nRESET function (see POWER chapter for details)

All PSELRESET registers have to contain the same value for a pin mapping to be valid. If they don't, there
will be no nRESET function exposed on a GPIO, and the device will always start independently of the levels
present on any of the GPIOs.

14.1.61 PSELRESET[1]
Address offset: 0x204

Mapping of the nRESET function (see POWER chapter for details)

All PSELRESET registers have to contain the same value for a pin mapping to be valid. If they don't, there
will be no nRESET function exposed on a GPIO, and the device will always start independently of the levels
present on any of the GPIOs.

14.1.62 APPROTECT
Address offset: 0x208

Access Port protection

14 UICR — User information configuration
registers

Page 67

14.1.63 NFCPINS
Address offset: 0x20C

Setting of pins dedicated to NFC functionality: NFC antenna or GPIO

15 Peripheral interface

Page 68

15 Peripheral interface
Peripherals are controlled by the CPU by writing to configuration registers and task registers. Peripheral
events are indicated to the CPU by event registers and interrupts if they are configured for a given event.

Figure 10: Tasks, events, shortcuts, and interrupts

15.1 Peripheral ID
Every peripheral is assigned a fixed block of 0x1000 bytes of address space, which is equal to 1024 x 32 bit
registers.

See Instantiation on page 24 for more information about which peripherals are available and where they are
located in the address map.

There is a direct relationship between the peripheral ID and base address. For example, a peripheral with
base address 0x40000000 is assigned ID=0, a peripheral with base address 0x40001000 is assigned ID=1,
and a peripheral with base address 0x4001F000 is assigned ID=31.

Peripherals may share the same ID, which may impose one or more of the following limitations:

• Some peripherals share some registers or other common resources.
• Operation is mutually exclusive. Only one of the peripherals can be used at a time.
• Switching from one peripheral to another must follow a specific pattern (disable the first, then enable the

second peripheral).

15.2 Peripherals with shared ID
In general, and with the exception of ID 0, peripherals sharing an ID and base address may not be used
simultaneously. The user can only enable one at the time on this specific ID.

When switching between two peripherals that share an ID, the user should do the following to prevent
unwanted behavior:

• Disable the previously used peripheral

15 Peripheral interface

Page 69

• Remove any PPI connections set up for the peripheral that is being disabled
• Clear all bits in the INTEN register, i.e. INTENCLR = 0xFFFFFFFF.
• Explicitly configure the peripheral that you enable and do not rely on configuration values that may be

inherited from the peripheral that was disabled.
• Enable the now configured peripheral.

For each of the rows in the following table, the instance ID listed is shared by the peripherals in the same
row.

Table 21: Peripherals sharing an ID

15.3 Peripheral registers
Most peripherals feature an ENABLE register. Unless otherwise specified in the relevant chapter, the
peripheral registers (in particular the PSEL registers) must be configured before enabling the peripheral.

Note that the peripheral must be enabled before tasks and events can be used.

15.4 Bit set and clear
Registers with multiple single-bit bit fields may implement the "set-and-clear" pattern. This pattern enables
firmware to set and clear individual bits in a register without having to perform a read-modify-write operation
on the main register.

This pattern is implemented using three consecutive addresses in the register map where the main register
is followed by a dedicated SET and CLR register in that order.

The SET register is used to set individual bits in the main register while the CLR register is used to clear
individual bits in the main register. Writing a '1' to a bit in the SET or CLR register will set or clear the same
bit in the main register respectively. Writing a '0' to a bit in the SET or CLR register has no effect. Reading
the SET or CLR registers returns the value of the main register.

Restriction: The main register may not be visible and hence not directly accessible in all cases.

15.5 Tasks
Tasks are used to trigger actions in a peripheral, for example, to start a particular behavior. A peripheral can
implement multiple tasks with each task having a separate register in that peripheral's task register group.

A task is triggered when firmware writes a '1' to the task register or when the peripheral itself or another
peripheral toggles the corresponding task signal. See Figure 10: Tasks, events, shortcuts, and interrupts on
page 68.

15 Peripheral interface

Page 70

15.6 Events
Events are used to notify peripherals and the CPU about events that have happened, for example, a state
change in a peripheral. A peripheral may generate multiple events with each event having a separate
register in that peripheral’s event register group.

An event is generated when the peripheral itself toggles the corresponding event signal, and the event
register is updated to reflect that the event has been generated. See Figure 10: Tasks, events, shortcuts,
and interrupts on page 68. An event register is only cleared when firmware writes a '0' to it.

Events can be generated by the peripheral even when the event register is set to '1'.

15.7 Shortcuts
A shortcut is a direct connection between an event and a task within the same peripheral. If a shortcut is
enabled, its associated task is automatically triggered when its associated event is generated.

Using a shortcut is the equivalent to making the same connection outside the peripheral and through the
PPI. However, the propagation delay through the shortcut is usually shorter than the propagation delay
through the PPI.

Shortcuts are predefined, which means their connections cannot be configured by firmware. Each shortcut
can be individually enabled or disabled through the shortcut register, one bit per shortcut, giving a maximum
of 32 shortcuts for each peripheral.

15.8 Interrupts
All peripherals support interrupts. Interrupts are generated by events.

A peripheral only occupies one interrupt, and the interrupt number follows the peripheral ID. For example, the
peripheral with ID=4 is connected to interrupt number 4 in the Nested Vectored Interrupt Controller (NVIC).

Using the INTEN, INTENSET and INTENCLR registers, every event generated by a peripheral can be
configured to generate that peripheral’s interrupt. Multiple events can be enabled to generate interrupts
simultaneously. To resolve the correct interrupt source, the event registers in the event group of peripheral
registers will indicate the source.

Some peripherals implement only INTENSET and INTENCLR, and the INTEN register is not available
on those peripherals. Refer to the individual chapters for details. In all cases, however, reading back the
INTENSET or INTENCLR register returns the same information as in INTEN.

Each event implemented in the peripheral is associated with a specific bit position in the INTEN, INTENSET
and INTENCLR registers.

The relationship between tasks, events, shortcuts, and interrupts is shown in Figure 10: Tasks, events,
shortcuts, and interrupts on page 68.

15.8.1 Interrupt clearing
When clearing an interrupt by writing "0" to an event register, or disabling an interrupt using the INTENCLR
register, it can take up to four CPU clock cycles to take effect. This means that an interrupt may reoccur
immediatelly even if a new event has not come, if the program exits an interrupt handler after the interrupt is
cleared or disabled, but before four clock cycles have passed.

Important: To avoid an interrupt reoccurring before a new event has come, the program should
perform a read from one of the peripheral registers, for example, the event register that has been
cleared, or the INTENCLR register that has been used to disable the interrupt.

This will cause a one to three-cycle delay and ensure the interrupt is cleared before exiting the interrupt
handler. Care should be taken to ensure the compiler does not remove the read operation as an
optimization. If the program can guarantee a four-cycle delay after event clear or interrupt disable another
way, then a read of a register is not required.

15 Peripheral interface

Page 71

16 Debug and trace

Page 72

16 Debug and trace
The debug and trace system offers a flexible and powerful mechanism for non-intrusive debugging.

Figure 11: Debug and trace overview

The main features of the debug and trace system are:

• Two-pin Serial Wire Debug (SWD) interface
• Flash Patch and Breakpoint Unit (FPB) supports:

• Two literal comparators
• Six instruction comparators

• Data Watchpoint and Trace Unit (DWT)

• Four comparators
• Instrumentation Trace Macrocell (ITM)
• Embedded Trace Macrocell (ETM)
• Trace Port Interface Unit (TPIU)

• 4-bit parallel trace of ITM and ETM trace data
• Serial Wire Output (SWO) trace of ITM data

16.1 DAP - Debug Access Port
An external debugger can access the device via the DAP.

The DAP implements a standard ARM® CoreSight™ Serial Wire Debug Port (SW-DP).

The SW-DP implements the Serial Wire Debug protocol (SWD) that is a two-pin serial interface, see
SWDCLK and SWDIO in Figure 11: Debug and trace overview on page 72.

In addition to the default access port in the CPU (AHB-AP), the DAP includes a custom Control Access Port
(CTRL-AP). The CTRL-AP is described in more detail in CTRL-AP - Control Access Port on page 73.

Important:

• The SWDIO line has an internal pull-up resistor.
• The SWDCLK line has an internal pull-down resistor.

16 Debug and trace

Page 73

16.2 CTRL-AP - Control Access Port
The Control Access Port (CTRL-AP) is a custom access port that enables control of the device even if the
other access ports in the DAP are being disabled by the access port protection.

Access port protection blocks the debugger from read and write access to all CPU registers and memory-
mapped addresses. See the UICR register APPROTECT on page 66 for more information about enabling
access port protection.

This access port enables the following features:

• Soft reset, see Reset on page 82 for more information
• Disable access port protection

Access port protection can only be disabled by issuing an ERASEALL command via CTRL-AP. This
command will erase the Flash, UICR, and RAM.

16.2.1 Registers

Table 22: Register Overview

 RESET

Address offset: 0x000

Soft reset triggered through CTRL-AP

 ERASEALL

Address offset: 0x004

Erase all

 ERASEALLSTATUS

Address offset: 0x008

Status register for the ERASEALL operation

16 Debug and trace

Page 74

 APPROTECTSTATUS

Address offset: 0x00C

Status register for access port protection

 IDR

Address offset: 0x0FC

CTRL-AP Identification Register, IDR

16.3 Debug interface mode
Before the external debugger can access the CPU's access port (AHB-AP) or the Control Access Port
(CTRL-AP), the debugger must first request the device to power up via CxxxPWRUPREQ in the SWJ-DP.

As long as the debugger is requesting power via CxxxPWRUPREQ, the device will be in debug interface
mode. If the debugger is not requesting power via CxxxPWRUPREQ, the device will be in normal mode.

Some peripherals will behave differently in debug interface mode compared to normal mode. These
differences are described in more detail in the chapters of the peripherals that are affected.

When a debug session is over, the external debugger must make sure to put the device back into normal
mode since the overall power consumption will be higher in debug interface mode compared to normal
mode.

For details on how to use the debug capabilities please read the debug documentation of your IDE.

If the device is in System OFF when power is requested via CxxxPWRUPREQ, the system will wake up and
the DIF flag in RESETREAS on page 85 will be set.

16.4 Real-time debug
The nRF52832 supports real-time debugging.

16 Debug and trace

Page 75

Real-time debugging will allow interrupts to execute to completion in real time when breakpoints are set
in Thread mode or lower priority interrupts. This enables the developer to set a breakpoint and single-
step through their code without a failure of the real-time event-driven threads running at higher priority. For
example, this enables the device to continue to service the high-priority interrupts of an external controller or
sensor without failure or loss of state synchronization while the developer steps through code in a low-priority
thread.

16.5 Trace
The device supports ETM and ITM trace.

Trace data from the ETM and the ITM is sent to an external debugger via a 4-bit wide parallel trace port
(TPIU), see TRACEDATA[0] through TRACEDATA[3] and TRACECLK in Figure 11: Debug and trace
overview on page 72.

In addition to parallel trace, the TPIU supports serial trace via the Serial Wire Output (SWO) trace protocol.

Parallel and serial trace cannot be used at the same time.

ETM trace is only supported in parallel trace mode while ITM trace is supported in both parallel and serial
trace modes.

For details on how to use the trace capabilities, please read the debug documentation of your IDE.

TPIU's trace pins are multiplexed with GPIOs, and SWO and TRACEDATA[0] use the same GPIO, see Pin
assignments on page 13 for more information.

Trace speed is configured in the TRACECONFIG on page 108 register.

The speed of the trace pins depends on the DRIVE setting of the GPIOs that the trace pins are multiplexed
with, see PIN_CNF[14] on page 142, PIN_CNF[15] on page 143, PIN_CNF[16] on page 144,
PIN_CNF[18] on page 145 and PIN_CNF[20] on page 146. Only S0S1 and H0H1 drives are suitable
for debugging. S0S1 is the default DRIVE at reset. If parallel or serial trace port signals are not fast enough
in the debugging conditions, all GPIOs in use for tracing should be set to high drive (H0H1). The user shall
make sure that these GPIOs' DRIVE is not overwritten by software during the debugging session.

16.5.1 Electrical specification

 Trace port

17 Power and clock management

Page 76

17 Power and clock management
Power and clock management in nRF52832 is optimized for ultra-low power applications.

The core of the power and clock management system is the Power Management Unit (PMU) illustrated in
Figure 12: Power Management Unit on page 76.

Figure 12: Power Management Unit

The user application is not required to actively control power and clock, since the PMU is able to
automatically detect which resources are required by the different components in the system at any given
time. The PMU will continuously optimize the system based on this information to achieve the lowest power
consumption possible without user interaction.

17.1 Current consumption scenarios
As the system is being constantly tuned by the PMU, estimating the energy consumption of an application
can be challenging if the designer is not able to do measurements on the hardware directly. See Electrical
specification on page 76 for application scenarios showing average current drawn from the VDD supply.

Each scenario specifies a set of active operations and conditions applying to the given scenario. Table 23:
Current consumption scenarios, common conditions on page 76 shows the conditions used for a scenario
unless otherwise is stated in the scenario description.

Table 23: Current consumption scenarios, common conditions

17.1.1 Electrical specification

 Current consumption: Radio

17 Power and clock management

Page 77

 Current consumption: Radio protocol configurations

 Current consumption: Ultra-low power

18 POWER — Power supply

Page 78

18 POWER — Power supply

This device has the following power supply features:

• On-chip LDO and DC/DC regulators
• Global System ON/OFF modes
• Individual RAM section power control for all system modes
• Analog or digital pin wakeup from System OFF
• Supervisor HW to manage power on reset, brownout, and power fail
• Auto-controlled refresh modes for LDO and DC/DC regulators to maximize efficiency
• Automatic switching between LDO and DC/DC regulator based on load to maximize efficiency

Note: Two additional external passive components are required to use the DC/DC regulator.

18.1 Regulators
The following internal power regulator alternatives are supported:

• Internal LDO regulator
• Internal DC/DC regulator

The LDO is the default regulator.

The DC/DC regulator can be used as an alternative to the LDO regulator and is enabled through the
DCDCEN on page 88 register. Using the DC/DC regulator will reduce current consumption compared to
when using the LDO regulator, but the DC/DC regulator requires an external LC filter to be connected, as
shown in Figure 14: DC/DC regulator setup on page 79.

Figure 13: LDO regulator setup

18 POWER — Power supply

Page 79

Figure 14: DC/DC regulator setup

18.2 System OFF mode
System OFF is the deepest power saving mode the system can enter. In this mode, the system’s core
functionality is powered down and all ongoing tasks are terminated.

The device can be put into System OFF mode using the POWER register interface. When in System OFF
mode, the device can be woken up through one of the following signals:

1. The DETECT signal, optionally generated by the GPIO peripheral
2. The ANADETECT signal, optionally generated by the LPCOMP module
3. The SENSE signal, optionally generated by the NFC module to “wake-on-field”
4. A reset

When the system wakes up from System OFF mode, it gets reset. For more details, see Reset behavior on
page 83.

One or more RAM sections can be retained in System OFF mode depending on the settings in the
RAM[n].POWER registers.

RAM[n].POWER are retained registers, see Reset behavior. Note that these registers are usually overwritten
by the startup code provided with the nRF application examples.

Before entering System OFF mode, the user must make sure that all on-going EasyDMA transactions have
been completed. This is usually accomplished by making sure that the EasyDMA enabled peripheral is not
active when entering System OFF.

18.2.1 Emulated System OFF mode
If the device is in debug interface mode, System OFF will be emulated to secure that all required resources
needed for debugging are available during System OFF.

See Debug and trace on page 72 for more information. Required resources needed for debugging include
the following key components: Debug and trace on page 72, CLOCK — Clock control on page 101,
POWER — Power supply on page 78, NVMC — Non-volatile memory controller on page 29, CPU, Flash,
and RAM. Since the CPU is kept on in an emulated System OFF mode, it is recommended to add an infinite
loop directly after entering System OFF, to prevent the CPU from executing code that normally should not be
executed.

18 POWER — Power supply

Page 80

18.3 System ON mode
System ON is the default state after power-on reset. In System ON, all functional blocks such as the CPU or
peripherals, can be in IDLE or RUN mode, depending on the configuration set by the software and the state
of the application executing.

Register RESETREAS on page 85 provides information about the source that caused the wakeup or
reset.

The system can switch on and off the appropriate internal power sources, depending on how much power is
needed at any given time. The power requirement of a peripheral is directly related to its activity level, and
the activity level of a peripheral is usually raised and lowered when specific tasks are triggered or events are
generated.

18.3.1 Sub power modes
In System ON mode, when both the CPU and all the peripherals are in IDLE mode, the system can reside in
one of the two sub power modes.

The sub power modes are:

• Constant latency
• Low power

In constant latency mode the CPU wakeup latency and the PPI task response will be constant and kept at
a minimum. This is secured by forcing a set of base resources on while in sleep. The advantage of having
a constant and predictable latency will be at the cost of having increased power consumption. The constant
latency mode is selected by triggering the CONSTLAT task.

In low power mode the automatic power management system, described in System ON mode on page
80, ensures the most efficient supply option is chosen to save the most power. The advantage of having
the lowest power possible will be at the cost of having varying CPU wakeup latency and PPI task response.
The low power mode is selected by triggering the LOWPWR task.

When the system enters System ON mode, it will, by default, reside in the low power sub-power mode.

18.4 Power supply supervisor
The power supply supervisor initializes the system at power-on and provides an early warning of impending
power failure.

In addition, the power supply supervisor puts the system in a reset state if the supply voltage is too low for
safe operation (brownout). The power supply supervisor is illustrated in Figure 15: Power supply supervisor
on page 81.

18 POWER — Power supply

Page 81

Figure 15: Power supply supervisor

18.4.1 Power-fail comparator
The power-fail comparator (POF) can provide the CPU with an early warning of impending power failure. It
will not reset the system, but give the CPU time to prepare for an orderly power-down.

The comparator features a hysteresis of VHYST, as illustrated in Figure 16: Power-fail comparator (BOR =
Brownout reset) on page 81. The threshold VPOF is set in register POFCON on page 86. If the POF
is enabled and the supply voltage falls below VPOF, the POFWARN event will be generated. This event will
also be generated if the supply voltage is already below VPOF at the time the POF is enabled, or if VPOF is re-
configured to a level above the supply voltage.

If power-fail warning is enabled and the supply voltage is below VPOF the power-fail comparator will prevent
the NVMC from performing write operations to the NVM. See NVMC — Non-volatile memory controller on
page 29 for more information about the NVMC.

Figure 16: Power-fail comparator (BOR = Brownout reset)

To save power, the power-fail comparator is not active in System OFF or in System ON when HFCLK is not
running.

18 POWER — Power supply

Page 82

18.5 RAM sections
RAM section power control is used for retention in System OFF mode and for powering down unused
sections in System ON mode.

Each RAM section can power up and down independently in both System ON and System OFF mode. See
chapter Memory on page 23 for more information on RAM sections.

18.6 Reset
There are multiple sources that may trigger a reset.

After a reset has occurred, register RESETREAS can be read to determine which source generated the
reset.

18.6.1 Power-on reset
The power-on reset generator initializes the system at power-on.

The system is held in reset state until the supply has reached the minimum operating voltage and the internal
voltage regulators have started.

A step increase in supply voltage of 300 mV or more, with rise time of 300 ms or less, within the valid supply
range, may result in a system reset.

18.6.2 Pin reset
A pin reset is generated when the physical reset pin on the device is asserted.

Pin reset is configured via the PSELRESET[0] and PSELRESET[1] registers.

Note: Pin reset is not available on all pins.

18.6.3 Wakeup from System OFF mode reset
The device is reset when it wakes up from System OFF mode.

The DAP is not reset following a wake up from System OFF mode if the device is in debug interface mode.
Refer to chapter Debug and trace on page 72 for more information.

18.6.4 Soft reset
A soft reset is generated when the SYSRESETREQ bit of the Application Interrupt and Reset Control
Register (AIRCR register) in the ARM® core is set.

Refer to ARM documentation for more details.

A soft reset can also be generated via the RESET on page 73 register in the CTRL-AP.

18.6.5 Watchdog reset
A Watchdog reset is generated when the watchdog times out.

Refer to chapter WDT — Watchdog timer on page 409 for more information.

18.6.6 Brown-out reset
The brown-out reset generator puts the system in reset state if the supply voltage drops below the brownout
reset (BOR) threshold.

Refer to section Power fail comparator on page 99 for more information.

18 POWER — Power supply

Page 83

18.7 Retained registers
A retained register is a register that will retain its value in System OFF mode and through a reset, depending
on reset source. See individual peripheral chapters for information of which registers are retained for the
various peripherals.

18.8 Reset behavior

Note: The RAM is never reset, but depending on reset source, RAM content may be corrupted.

18.9 Registers
Table 24: Instances

Table 25: Register Overview

a All debug components excluding SWJ-DP. See Debug and trace on page 72 chapter for more
information about the different debug components in the system.

18 POWER — Power supply

Page 84

18.9.1 INTENSET
Address offset: 0x304

Enable interrupt

18.9.2 INTENCLR
Address offset: 0x308

Disable interrupt

18 POWER — Power supply

Page 85

18.9.3 RESETREAS
Address offset: 0x400

Reset reason

Unless cleared, the RESETREAS register will be cumulative. A field is cleared by writing '1' to it. If none of
the reset sources are flagged, this indicates that the chip was reset from the on-chip reset generator, which
will indicate a power-on-reset or a brownout reset.

18 POWER — Power supply

Page 86

18.9.4 RAMSTATUS (Deprecated)
Address offset: 0x428

RAM status register

Since this register is deprecated the following substitutions have been made: RAM block 0 is equivalent to
a block comprising RAM0.S0 and RAM1.S0, RAM block 1 is equivalent to a block comprising RAM2.S0 and
RAM3.S0, RAM block 2 is equivalent to a block comprising RAM4.S0 and RAM5.S0 and RAM block 3 is
equivalent to a block comprising RAM6.S0 and RAM7.S0. A RAM block field will indicate ON as long as any
of the RAM sections associated with a block are on.

18.9.5 SYSTEMOFF
Address offset: 0x500

System OFF register

18.9.6 POFCON
Address offset: 0x510

Power failure comparator configuration

18 POWER — Power supply

Page 87

18.9.7 GPREGRET
Address offset: 0x51C

General purpose retention register

18.9.8 GPREGRET2
Address offset: 0x520

General purpose retention register

18.9.9 RAMON (Deprecated)
Address offset: 0x524

RAM on/off register (this register is retained)

Since this register is deprecated the following substitutions have been made: RAM block 0 is equivalent to
a block comprising RAM0.S0 and RAM0.S1 and RAM block 1 is equivalent to a block comprising RAM1.S0
and RAM1.S1. For new designs it is recommended to use the POWER.RAM-0.POWER and its sibling
registers instead.

18 POWER — Power supply

Page 88

18.9.10 RAMONB (Deprecated)
Address offset: 0x554

RAM on/off register (this register is retained)

Since this register is deprecated the following substitutions have been made: RAM block 2 is equivalent to
a block comprising RAM2.S0 and RAM2.S1 and RAM block 3 is equivalent to a block comprising RAM3.S0
and RAM3.S1. For new designs it is recommended to use the POWER.RAM-0.POWER and its sibling
registers instead.

18.9.11 DCDCEN
Address offset: 0x578

DC/DC enable register

18.9.12 RAM[0].POWER
Address offset: 0x900

RAM0 power control register

18 POWER — Power supply

Page 89

18.9.13 RAM[0].POWERSET
Address offset: 0x904

RAM0 power control set register

When read, this register will return the value of the POWER register.

18.9.14 RAM[0].POWERCLR
Address offset: 0x908

RAM0 power control clear register

When read, this register will return the value of the POWER register.

18 POWER — Power supply

Page 90

18.9.15 RAM[1].POWER
Address offset: 0x910

RAM1 power control register

18.9.16 RAM[1].POWERSET
Address offset: 0x914

RAM1 power control set register

When read, this register will return the value of the POWER register.

18 POWER — Power supply

Page 91

18.9.17 RAM[1].POWERCLR
Address offset: 0x918

RAM1 power control clear register

When read, this register will return the value of the POWER register.

18.9.18 RAM[2].POWER
Address offset: 0x920

RAM2 power control register

18 POWER — Power supply

Page 92

18.9.19 RAM[2].POWERSET
Address offset: 0x924

RAM2 power control set register

When read, this register will return the value of the POWER register.

18.9.20 RAM[2].POWERCLR
Address offset: 0x928

RAM2 power control clear register

When read, this register will return the value of the POWER register.

18.9.21 RAM[3].POWER
Address offset: 0x930

RAM3 power control register

18 POWER — Power supply

Page 93

18.9.22 RAM[3].POWERSET
Address offset: 0x934

RAM3 power control set register

When read, this register will return the value of the POWER register.

18.9.23 RAM[3].POWERCLR
Address offset: 0x938

RAM3 power control clear register

When read, this register will return the value of the POWER register.

18 POWER — Power supply

Page 94

18.9.24 RAM[4].POWER
Address offset: 0x940

RAM4 power control register

18.9.25 RAM[4].POWERSET
Address offset: 0x944

RAM4 power control set register

When read, this register will return the value of the POWER register.

18.9.26 RAM[4].POWERCLR
Address offset: 0x948

RAM4 power control clear register

When read, this register will return the value of the POWER register.

18 POWER — Power supply

Page 95

18.9.27 RAM[5].POWER
Address offset: 0x950

RAM5 power control register

18.9.28 RAM[5].POWERSET
Address offset: 0x954

RAM5 power control set register

When read, this register will return the value of the POWER register.

18 POWER — Power supply

Page 96

18.9.29 RAM[5].POWERCLR
Address offset: 0x958

RAM5 power control clear register

When read, this register will return the value of the POWER register.

18.9.30 RAM[6].POWER
Address offset: 0x960

RAM6 power control register

18 POWER — Power supply

Page 97

18.9.31 RAM[6].POWERSET
Address offset: 0x964

RAM6 power control set register

When read, this register will return the value of the POWER register.

18.9.32 RAM[6].POWERCLR
Address offset: 0x968

RAM6 power control clear register

When read, this register will return the value of the POWER register.

18.9.33 RAM[7].POWER
Address offset: 0x970

RAM7 power control register

18 POWER — Power supply

Page 98

18.9.34 RAM[7].POWERSET
Address offset: 0x974

RAM7 power control set register

When read, this register will return the value of the POWER register.

18.9.35 RAM[7].POWERCLR
Address offset: 0x978

RAM7 power control clear register

When read, this register will return the value of the POWER register.

18 POWER — Power supply

Page 99

18.10 Electrical specification

18.10.1 Current consumption, sleep

18.10.2 Device startup times

18.10.3 Power fail comparator

18 POWER — Power supply

Page 100

19 CLOCK — Clock control

Page 101

19 CLOCK — Clock control
The clock control system can source the system clocks from a range of internal or external high and low
frequency oscillators and distribute them to modules based upon a module’s individual requirements. Clock
distribution is automated and grouped independently by module to limit current consumption in unused
branches of the clock tree.

Listed here are the main features for CLOCK:

• 64 MHz on-chip oscillator
• 64 MHz crystal oscillator, using external 32 MHz crystal
• 32.768 kHz +/-250 ppm RC oscillator
• 32.768 kHz crystal oscillator, using external 32.768 kHz crystal
• 32.768 kHz oscillator synthesized from 64 MHz oscillator
• Firmware (FW) override control of oscillator activity for low latency start up
• Automatic oscillator and clock control, and distribution for ultra-low power

Figure 17: Clock control

19.1 HFCLK clock controller
The HFCLK clock controller provides the following clocks to the system.

• HCLK64M: 64 MHz CPU clock
• PCLK1M: 1 MHz peripheral clock
• PCLK16M: 16 MHz peripheral clock
• PCLK32M: 32 MHz peripheral clock

The HFCLK controller supports the following high frequency clock (HFCLK) sources:

• 64 MHz internal oscillator (HFINT)
• 64 MHz crystal oscillator (HFXO)

For illustration, see Figure 17: Clock control on page 101.

19 CLOCK — Clock control

Page 102

When the system requests one or more clocks from the HFCLK controller, the HFCLK controller will
automatically provide them. If the system does not request any clocks provided by the HFCLK controller, the
controller will enter a power saving mode.

These clocks are only available when the system is in ON mode. When the system enters ON mode, the
internal oscillator (HFINT) clock source will automatically start to be able to provide the required HFCLK
clock(s) for the system.

The HFINT will be used when HFCLK is requested and HFXO has not been started. The HFXO is started by
triggering the HFCLKSTART task and stopped using the HFCLKSTOP task. A HFCLKSTARTED event will
be generated when the HFXO has started and its frequency is stable.

The HFXO must be running to use the RADIO, NFC module or the calibration mechanism associated with
the 32.768 kHz RC oscillator.

19.1.1 64 MHz crystal oscillator (HFXO)
The 64 MHz crystal oscillator (HFXO) is controlled by a 32 MHz external crystal

The crystal oscillator is designed for use with an AT-cut quartz crystal in parallel resonant mode. To achieve
correct oscillation frequency, the load capacitance must match the specification in the crystal data sheet.

Figure 18: Circuit diagram of the 64 MHz crystal oscillator on page 102 shows how the 32 MHz crystal is
connected to the 64 MHz crystal oscillator.

Figure 18: Circuit diagram of the 64 MHz crystal oscillator

The load capacitance (CL) is the total capacitance seen by the crystal across its terminals and is given by:

C1 and C2 are ceramic SMD capacitors connected between each crystal terminal and ground. For more
information, see Reference circuitry on page 545. Cpcb1 and Cpcb2 are stray capacitances on the PCB. Cpin
is the pin input capacitance on the and pins. See table 64 MHz crystal oscillator (HFXO) on page
109. The load capacitors C1 and C2 should have the same value.

For reliable operation, the crystal load capacitance, shunt capacitance, equivalent series resistance, and
drive level must comply with the specifications in table 64 MHz crystal oscillator (HFXO) on page 109. It is
recommended to use a crystal with lower than maximum load capacitance and/or shunt capacitance. A low
load capacitance will reduce both start up time and current consumption.

19 CLOCK — Clock control

Page 103

19.2 LFCLK clock controller
The system supports several low frequency clock sources.

As illustrated in Figure 17: Clock control on page 101, the system supports the following low frequency
clock sources:

• 32.768 kHz RC oscillator (LFRC)
• 32.768 kHz crystal oscillator (LFXO)
• 32.768 kHz synthesized from HFCLK (LFSYNT)

The LFCLK clock is started by first selecting the preferred clock source in register LFCLKSRC on page
108 and then triggering the LFCLKSTART task. If the LFXO is selected as the clock source, the LFCLK
will initially start running from the 32.768 kHz LFRC while the LFXO is starting up and automatically switch to
using the LFXO once this oscillator is running. The LFCLKSTARTED event will be generated when the LFXO
has been started.

The LFCLK clock is stopped by triggering the LFCLKSTOP task.

It is not allowed to write to register LFCLKSRC on page 108 when the LFCLK is running.

A LFCLKSTOP task will stop the LFCLK oscillator. However, the LFCLKSTOP task can only be triggered
after the STATE field in register LFCLKSTAT on page 107 indicates a 'LFCLK running' state.

The LFCLK clock controller and all of the LFCLK clock sources are always switched off when in OFF mode.

19.2.1 32.768 kHz RC oscillator (LFRC)
The default source of the low frequency clock (LFCLK) is the 32.768 kHz RC oscillator (LFRC).

The LFRC frequency will be affected by variation in temperature. The LFRC oscillator can be calibrated to
improve accuracy by using the HFXO as a reference oscillator during calibration. See Table 32.768 kHz RC
oscillator (LFRC) on page 109 for details on the default and calibrated accuracy of the LFRC oscillator.
The LFRC oscillator does not require additional external components.

19.2.2 Calibrating the 32.768 kHz RC oscillator
After the 32.768 kHz RC oscillator is started and running, it can be calibrated by triggering the CAL task. In
this case, the HFCLK will be temporarily switched on and used as a reference.

A DONE event will be generated when calibration has finished. The calibration mechanism will only work as
long as HFCLK is generated from the HFCLK crystal oscillator, it is therefore necessary to explicitly start this
crystal oscillator before calibration can be started, see HFCLKSTART task.

19.2.3 Calibration timer
The calibration timer can be used to time the calibration interval of the 32.768 kHz RC oscillator.

The calibration timer is started by triggering the CTSTART task and stopped by triggering the CTSTOP task.
The calibration timer will always start counting down from the value specified in CTIV and generate a CTTO
timeout event when it reaches 0. The Calibration timer will stop by itself when it reaches 0.

Figure 19: Calibration timer

Due to limitations in the calibration timer, only one task related to calibration, that is, CAL, CTSTART and
CTSTOP, can be triggered for every period of LFCLK.

19 CLOCK — Clock control

Page 104

19.2.4 32.768 kHz crystal oscillator (LFXO)
For higher LFCLK accuracy (when better than +/- 250 ppm accuracy is required), the low frequency crystal
oscillator (LFXO) must be used.

The following external clock sources are supported:

• Low swing clock signal applied to the XL1 pin. The XL2 pin shall then be grounded.
• Rail-to-rail clock signal applied to the XL1 pin. The XL2 pin shall then be grounded or left unconnected.

The LFCLKSRC on page 108 register controls the clock source, and its allowed swing. The truth table for
various situations is as follows:

Table 26: LFCLKSRC configuration depending on clock source

To achieve correct oscillation frequency, the load capacitance must match the specification in the crystal
data sheet. Figure 20: Circuit diagram of the 32.768 kHz crystal oscillator on page 104 shows the LFXO
circuitry.

Figure 20: Circuit diagram of the 32.768 kHz crystal oscillator

The load capacitance (CL) is the total capacitance seen by the crystal across its terminals and is given by:

C1 and C2 are ceramic SMD capacitors connected between each crystal terminal and ground. Cpcb1 and
Cpcb2 are stray capacitances on the PCB. Cpin is the pin input capacitance on the XC1 and XC2 pins (see
32.768 kHz crystal oscillator (LFXO) on page 109). The load capacitors C1 and C2 should have the same
value.

For more information, see Reference circuitry on page 545.

19 CLOCK — Clock control

Page 105

19.2.5 32.768 kHz synthesized from HFCLK (LFSYNT)
LFCLK can also be synthesized from the HFCLK clock source. The accuracy of LFCLK will then be the
accuracy of the HFCLK.

Using the LFSYNT clock avoids the requirement for a 32.768 kHz crystal, but increases average power
consumption as the HFCLK will need to be requested in the system.

19.3 Registers
Table 27: Instances

Table 28: Register Overview

19.3.1 INTENSET
Address offset: 0x304

Enable interrupt

19 CLOCK — Clock control

Page 106

19.3.2 INTENCLR
Address offset: 0x308

Disable interrupt

19.3.3 HFCLKRUN
Address offset: 0x408

Status indicating that HFCLKSTART task has been triggered

19 CLOCK — Clock control

Page 107

19.3.4 HFCLKSTAT
Address offset: 0x40C

HFCLK status

19.3.5 LFCLKRUN
Address offset: 0x414

Status indicating that LFCLKSTART task has been triggered

19.3.6 LFCLKSTAT
Address offset: 0x418

LFCLK status

19.3.7 LFCLKSRCCOPY
Address offset: 0x41C

Copy of LFCLKSRC register, set when LFCLKSTART task was triggered

19 CLOCK — Clock control

Page 108

19.3.8 LFCLKSRC
Address offset: 0x518

Clock source for the LFCLK

19.3.9 CTIV (Retained)
Address offset: 0x538

This register is a retained register

Calibration timer interval

19.3.10 TRACECONFIG
Address offset: 0x55C

Clocking options for the Trace Port debug interface

This register is a retained register. Reset behavior is the same as debug components.

19 CLOCK — Clock control

Page 109

19.4 Electrical specification

19.4.1 64 MHz internal oscillator (HFINT)

19.4.2 64 MHz crystal oscillator (HFXO)

19.4.3 32.768 kHz RC oscillator (LFRC)

19.4.4 32.768 kHz crystal oscillator (LFXO)

19 CLOCK — Clock control

Page 110

19.4.5 32.768 kHz synthesized from HFCLK (LFSYNT)

20 GPIO — General purpose input/output

Page 111

20 GPIO — General purpose input/output
The general purpose input/output (GPIO) is organized as one port with up to 32 I/Os (dependent on
package) enabling access and control of up to 32 pins through one port. Each GPIO can be accessed
individually.

GPIO has the following user-configurable features:

• Up to 32 GPIO
• 8 GPIO with Analog channels for SAADC, COMP or LPCOMP inputs
• Configurable output drive strength
• Internal pull-up and pull-down resistors
• Wake-up from high or low level triggers on all pins
• Trigger interrupt on state changes on any pin
• All pins can be used by the PPI task/event system
• One or more GPIO outputs can be controlled through PPI and GPIOTE channels
• All pins can be individually mapped to interface blocks for layout flexibility
• GPIO state changes captured on SENSE signal can be stored by LATCH register

The GPIO Port peripheral implements up to 32 pins, through . Each of these pins can be
individually configured in the PIN_CNF[n] registers (n=0..31).

The following parameters can be configured through these registers:

• Direction
• Drive strength
• Enabling of pull-up and pull-down resistors
• Pin sensing
• Input buffer disconnect
• Analog input (for selected pins)

The PIN_CNF registers are retained registers. See POWER — Power supply on page 78 chapter for more
information about retained registers.

20.1 Pin configuration
Pins can be individually configured, through the SENSE field in the PIN_CNF[n] register, to detect either a
high level or a low level on their input.

When the correct level is detected on any such configured pin, the sense mechanism will set the DETECT
signal high. Each pin has a separate DETECT signal, and the default behaviour, as defined by the
DETECTMODE register, is that the DETECT signal from all pins in the GPIO Port are combined into
a common DETECT signal that is routed throughout the system, which then can be utilized by other
peripherals, see Figure 21: GPIO Port and the GPIO pin details on page 112. This mechanism is functional
in both ON and OFF mode.

20 GPIO — General purpose input/output

Page 112

Figure 21: GPIO Port and the GPIO pin details

Figure 21: GPIO Port and the GPIO pin details on page 112 illustrates the GPIO port containing 32
individual pins, where is illustrated in more detail as a reference. All the signals on the left side of the
illustration are used by other peripherals in the system, and therefore, are not directly available to the CPU.

Make sure that a pin is in a level that cannot trigger the sense mechanism before enabling it. Detect will
go high immediately if the sense condition configured in the PIN_CNF registers is met when the sense
mechanism is enabled. This will trigger a PORT event if the DETECT signal was low before enabling the
sense mechanism. See GPIOTE — GPIO tasks and events on page 157.

See the following peripherals for more information about how the DETECT signal is used:

• POWER: uses the DETECT signal to exit from System OFF.
• GPIOTE: uses the DETECT signal to generate the PORT event.

When a pin's PINx.DETECT signal goes high, a flag will be set in the LATCH register, e.g. when the
PIN0.DETECT signal goes high, bit 0 in the LATCH register will be set to '1'.

The LATCH register will only be cleared if the CPU explicitly clears it by writing a '1' to the bit that shall be
cleared, i.e. the LATCH register will not be affected by a PINx.DETECT signal being set low.

If the CPU performs a clear operation on a bit in the LATCH register when the associated PINx.DETECT
signal is high, the bit in the LATCH register will not be cleared.

The LDETECT signal will be set high when one or more bits in the LATCH register are '1'. The LDETECT
signal will be set low when all bits in the LATCH register are successfully cleared to '0'.

If one or more bits in the LATCH register are '1' after the CPU has performed a clear operation on the
LATCH registers, a rising edge will be generated on the LDETECT signal, this is illustrated in Figure 22:
DETECT signal behavior on page 113.

Important: The CPU can read the LATCH register at any time to check if a SENSE condition has
been met on one or more of the the GPIO pins even if that condition is no longer met at the time the
CPU queries the LATCH register. This mechanism will work even if the LDETECT signal is not used
as the DETECT signal.

The LDETECT signal is by default not connected to the GPIO port's DETECT signal, but via the
DETECTMODE register it is possible to change the behaviour of the GPIO port's DETECT signal from the
default behaviour described above to instead be derived directly from the LDETECT signal, see Figure 21:
GPIO Port and the GPIO pin details on page 112. Figure 22: DETECT signal behavior on page 113
illustrates the DETECT signals behaviour for these two alternatives.

20 GPIO — General purpose input/output

Page 113

Figure 22: DETECT signal behavior

The input buffer of a GPIO pin can be disconnected from the pin to enable power savings when the pin is
not used as an input, see Figure 21: GPIO Port and the GPIO pin details on page 112. Inputs must be
connected in order to get a valid input value in the IN register and for the sense mechanism to get access to
the pin.

Other peripherals in the system can attach themselves to GPIO pins and override their output value and
configuration, or read their analog or digital input value, see Figure 21: GPIO Port and the GPIO pin details
on page 112.

Selected pins also support analog input signals, see ANAIN in Figure 21: GPIO Port and the GPIO pin
details on page 112. The assignment of the analog pins can be found in Pin assignments on page 13.

Important: When a pin is configured as digital input, care has been taken in the nRF52832 design
to minimize increased current consumption when the input voltage is between VIL and VIH. However,
it is a good practice to ensure that the external circuitry does not drive that pin to levels between VIL
and VIH for a long period of time.

20.2 GPIO located near the RADIO
Radio performance parameters, such as sensitivity, may be affected by high frequency digital I/O with large
sink/source current close to the radio power supply and antenna pins.

Refer to Pin assignments on page 13 for recommended usage guidelines to maximize radio performance in
an application.

20.3 Registers
Table 29: Instances

20 GPIO — General purpose input/output

Page 114

Table 30: Register Overview

20.3.1 OUT
Address offset: 0x504

Write GPIO port

20 GPIO — General purpose input/output

Page 115

20 GPIO — General purpose input/output

Page 116

20.3.2 OUTSET
Address offset: 0x508

Set individual bits in GPIO port

Read: reads value of OUT register.

20 GPIO — General purpose input/output

Page 117

20 GPIO — General purpose input/output

Page 118

20 GPIO — General purpose input/output

Page 119

20.3.3 OUTCLR
Address offset: 0x50C

Clear individual bits in GPIO port

Read: reads value of OUT register.

20 GPIO — General purpose input/output

Page 120

20 GPIO — General purpose input/output

Page 121

20.3.4 IN
Address offset: 0x510

Read GPIO port

20 GPIO — General purpose input/output

Page 122

20 GPIO — General purpose input/output

Page 123

20.3.5 DIR
Address offset: 0x514

Direction of GPIO pins

20 GPIO — General purpose input/output

Page 124

20 GPIO — General purpose input/output

Page 125

20.3.6 DIRSET
Address offset: 0x518

DIR set register

Read: reads value of DIR register.

20 GPIO — General purpose input/output

Page 126

20 GPIO — General purpose input/output

Page 127

20 GPIO — General purpose input/output

Page 128

20.3.7 DIRCLR
Address offset: 0x51C

DIR clear register

Read: reads value of DIR register.

20 GPIO — General purpose input/output

Page 129

20 GPIO — General purpose input/output

Page 130

20.3.8 LATCH
Address offset: 0x520

Latch register indicating what GPIO pins that have met the criteria set in the PIN_CNF[n].SENSE registers

20 GPIO — General purpose input/output

Page 131

20 GPIO — General purpose input/output

Page 132

20 GPIO — General purpose input/output

Page 133

20.3.9 DETECTMODE
Address offset: 0x524

Select between default DETECT signal behaviour and LDETECT mode

20.3.10 PIN_CNF[0]
Address offset: 0x700

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 134

20.3.11 PIN_CNF[1]
Address offset: 0x704

Configuration of GPIO pins

20.3.12 PIN_CNF[2]
Address offset: 0x708

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 135

20.3.13 PIN_CNF[3]
Address offset: 0x70C

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 136

20.3.14 PIN_CNF[4]
Address offset: 0x710

Configuration of GPIO pins

20.3.15 PIN_CNF[5]
Address offset: 0x714

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 137

20.3.16 PIN_CNF[6]
Address offset: 0x718

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 138

20.3.17 PIN_CNF[7]
Address offset: 0x71C

Configuration of GPIO pins

20.3.18 PIN_CNF[8]
Address offset: 0x720

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 139

20.3.19 PIN_CNF[9]
Address offset: 0x724

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 140

20.3.20 PIN_CNF[10]
Address offset: 0x728

Configuration of GPIO pins

20.3.21 PIN_CNF[11]
Address offset: 0x72C

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 141

20.3.22 PIN_CNF[12]
Address offset: 0x730

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 142

20.3.23 PIN_CNF[13]
Address offset: 0x734

Configuration of GPIO pins

20.3.24 PIN_CNF[14]
Address offset: 0x738

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 143

20.3.25 PIN_CNF[15]
Address offset: 0x73C

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 144

20.3.26 PIN_CNF[16]
Address offset: 0x740

Configuration of GPIO pins

20.3.27 PIN_CNF[17]
Address offset: 0x744

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 145

20.3.28 PIN_CNF[18]
Address offset: 0x748

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 146

20.3.29 PIN_CNF[19]
Address offset: 0x74C

Configuration of GPIO pins

20.3.30 PIN_CNF[20]
Address offset: 0x750

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 147

20.3.31 PIN_CNF[21]
Address offset: 0x754

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 148

20.3.32 PIN_CNF[22]
Address offset: 0x758

Configuration of GPIO pins

20.3.33 PIN_CNF[23]
Address offset: 0x75C

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 149

20.3.34 PIN_CNF[24]
Address offset: 0x760

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 150

20.3.35 PIN_CNF[25]
Address offset: 0x764

Configuration of GPIO pins

20.3.36 PIN_CNF[26]
Address offset: 0x768

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 151

20.3.37 PIN_CNF[27]
Address offset: 0x76C

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 152

20.3.38 PIN_CNF[28]
Address offset: 0x770

Configuration of GPIO pins

20.3.39 PIN_CNF[29]
Address offset: 0x774

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 153

20.3.40 PIN_CNF[30]
Address offset: 0x778

Configuration of GPIO pins

20 GPIO — General purpose input/output

Page 154

20.3.41 PIN_CNF[31]
Address offset: 0x77C

Configuration of GPIO pins

20.4 Electrical specification

20.4.1 GPIO Electrical Specification

20 GPIO — General purpose input/output

Page 155

The current drawn from the battery when GPIO is active as an output is calculated as follows:

IGPIO=VDD Cload f

Cload being the load capacitance and “f” is the switching frequency.

Figure 23: GPIO drive strength vs Voltage, standard drive, VDD = 3.0 V

20 GPIO — General purpose input/output

Page 156

Figure 24: GPIO drive strength vs Voltage, high drive, VDD = 3.0 V

Figure 25: Max sink current vs Voltage, standard drive

Figure 26: Max sink current vs Voltage, high drive

Figure 27: Rise and fall time vs Temperature, 10%-90%, 25pF load capacitance, VDD = 3.0 V

21 GPIOTE — GPIO tasks and events

Page 157

21 GPIOTE — GPIO tasks and events
The GPIO tasks and events (GPIOTE) module provides functionality for accessing GPIO pins using tasks
and events. Each GPIOTE channel can be assigned to one pin.

A GPIOTE block enables GPIOs to generate events on pin state change which can be used to carry out
tasks through the PPI system. A GPIO can also be driven to change state on system events using the PPI
system. Low power detection of pin state changes is possible when in System ON or System OFF.

Table 31: GPIOTE properties

Up to three tasks can be used in each GPIOTE channel for performing write operations to a pin. Two tasks
are fixed (SET and CLR), and one (OUT) is configurable to perform following operations:

• Set
• Clear
• Toggle

An event can be generated in each GPIOTE channel from one of the following input conditions:

• Rising edge
• Falling edge
• Any change

21.1 Pin events and tasks
The GPIOTE module has a number of tasks and events that can be configured to operate on individual
GPIO pins.

The tasks (SET[n], CLR[n] and OUT[n]) can be used for writing to individual pins, and the events (IN[n]) can
be generated from changes occurring at the inputs of individual pins.

The SET task will set the pin selected in CONFIG[n].PSEL to high.

The CLR task will set the pin low.

The effect of the OUT task on the pin is configurable in CONFIG[n].POLARITY , and can either set the pin
high, set it low, or toggle it.

The tasks and events are configured using the CONFIG[n] registers. Every set of SET, CLR and OUT[n]
tasks and IN[n] events has one CONFIG[n] register associated with it.

As long as a SET[n], CLR[n] and OUT[n] task or an IN[n] event is configured to control a pin n, the pin's
output value will only be updated by the GPIOTE module. The pin's output value as specified in the GPIO will
therefore be ignored as long as the pin is controlled by GPIOTE. Attempting to write a pin as a normal GPIO
pin will have no effect. When the GPIOTE is disconnected from a pin, see MODE field in CONFIG[n] register,
the associated pin will get the output and configuration values specified in the GPIO module.

When conflicting tasks are triggered simultaneously (i.e. during the same clock cycle) in one channel, the
precedence of the tasks will be as described in Table 32: Task priorities on page 157.

Table 32: Task priorities

21 GPIOTE — GPIO tasks and events

Page 158

When setting the CONFIG[n] registers, MODE=Disabled does not have the same effect as MODE=Task and
POLARITY=None. In the latter case, a CLR or SET task occurring at the exact same time as OUT will end
up with no change on the pin, according to the priorities described in the table above.

When a GPIOTE channel is configured to operate on a pin as a task, the initial value of that pin is configured
in the OUTINIT field of CONFIG[n].

21.2 Port event
PORT is an event that can be generated from multiple input pins using the GPIO DETECT signal.

The event will be generated on the rising edge of the DETECT signal. See GPIO — General purpose input/
output on page 111 for more information about the DETECT signal.

Putting the system into System ON IDLE while DETECT is high will not cause DETECT to wake the system
up again. Make sure to clear all DETECT sources before entering sleep. If the LATCH register is used as a
source, if any bit in LATCH is still high after clearing all or part of the register (for instance due to one of the
PINx.DETECT signal still high), a new rising edge will be generated on DETECT, see Pin configuration on
page 111.

Trying to put the system to System OFF while DETECT is high will cause a wakeup from System OFF reset.

This feature is always enabled although the peripheral itself appears to be IDLE, that is, no clocks or other
power intensive infrastructure have to be requested to keep this feature enabled. This feature can therefore
be used to wake up the CPU from a WFI or WFE type sleep in System ON with all peripherals and the CPU
idle, that is, lowest power consumption in System ON mode.

In order to prevent spurious interrupts from the PORT event while configuring the sources, the user
shall first disable interrupts on the PORT event (through INTENCLR.PORT), then configure the sources
(PIN_CNF[n].SENSE), clear any potential event that could have occurred during configuration (write '1' to
EVENTS_PORT), and finally enable interrupts (through INTENSET.PORT).

21.3 Tasks and events pin configuration
Each GPIOTE channel is associated with one physical GPIO pin through the CONFIG.PSEL field.

When Event mode is selected in CONFIG.MODE, the pin specified by CONFIG.PSEL will be configured as
an input, overriding the DIR setting in GPIO. Similarly, when Task mode is selected in CONFIG.MODE, the
pin specified by CONFIG.PSEL will be configured as an output overriding the DIR setting and OUT value
in GPIO. When Disabled is selected in CONFIG.MODE, the pin specified by CONFIG.PSEL will use its
configuration from the PIN[n].CNF registers in GPIO.

Only one GPIOTE channel can be assigned to one physical pin. Failing to do so may result in unpredictable
behavior.

21.4 Registers
Table 33: Instances

Table 34: Register Overview

21 GPIOTE — GPIO tasks and events

Page 159

21.4.1 INTENSET
Address offset: 0x304

Enable interrupt

21 GPIOTE — GPIO tasks and events

Page 160

21.4.2 INTENCLR
Address offset: 0x308

Disable interrupt

21 GPIOTE — GPIO tasks and events

Page 161

21.4.3 CONFIG[0]
Address offset: 0x510

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21 GPIOTE — GPIO tasks and events

Page 162

21.4.4 CONFIG[1]
Address offset: 0x514

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21 GPIOTE — GPIO tasks and events

Page 163

21.4.5 CONFIG[2]
Address offset: 0x518

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21 GPIOTE — GPIO tasks and events

Page 164

21.4.6 CONFIG[3]
Address offset: 0x51C

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21.4.7 CONFIG[4]
Address offset: 0x520

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21 GPIOTE — GPIO tasks and events

Page 165

21.4.8 CONFIG[5]
Address offset: 0x524

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21 GPIOTE — GPIO tasks and events

Page 166

21.4.9 CONFIG[6]
Address offset: 0x528

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21 GPIOTE — GPIO tasks and events

Page 167

21.4.10 CONFIG[7]
Address offset: 0x52C

Configuration for OUT[n], SET[n] and CLR[n] tasks and IN[n] event

21.5 Electrical specification

21.5.1 GPIOTE Electrical Specification

22 PPI — Programmable peripheral interconnect

Page 168

22 PPI — Programmable peripheral interconnect
The Programmable peripheral interconnect (PPI) enables peripherals to interact autonomously with each
other using tasks and events independent of the CPU. The PPI allows precise synchronization between
peripherals when real-time application constraints exist and eliminates the need for CPU activity to
implement behavior which can be predefined using PPI.

Figure 28: PPI block diagram

The PPI system has, in addition to the fully programmable peripheral interconnections, a set of channels
where the event end point (EEP) and task end points (TEP) are fixed in hardware. These fixed channels
can be individually enabled, disabled, or added to PPI channel groups in the same way as ordinary PPI
channels.

Table 35: Configurable and fixed PPI channels

The PPI provides a mechanism to automatically trigger a task in one peripheral as a result of an event
occurring in another peripheral. A task is connected to an event through a PPI channel. The PPI channel
is composed of three end point registers, one EEP and two TEPs. A peripheral task is connected to a TEP
using the address of the task register associated with the task. Similarly, a peripheral event is connected to
an EEP using the address of the event register associated with the event.

On each PPI channel, the signals are synchronized to the 16 MHz clock, to avoid any internal violation of
setup and hold timings. As a consequence, events that are synchronous to the 16 MHz clock will be delayed
by one clock period, while other asynchronous events will be delayed by up to one 16 MHz clock period.

22 PPI — Programmable peripheral interconnect

Page 169

Note that shortcuts (as defined in the SHORTS register in each peripheral) are not affected by this 16 MHz
synchronization, and are therefore not delayed.

Each TEP implements a fork mechanism that enables a second task to be triggered at the same time as
the task specified in the TEP is triggered. This second task is configured in the task end point register in the
FORK registers groups, e.g. FORK.TEP[0] is associated with PPI channel CH[0].

There are two ways of enabling and disabling PPI channels:

• Enable or disable PPI channels individually using the CHEN, CHENSET, and CHENCLR registers.
• Enable or disable PPI channels in PPI channel groups through the groups’ ENABLE and DISABLE tasks.

Prior to these tasks being triggered, the PPI channel group must be configured to define which PPI
channels belongs to which groups.

Note that when a channel belongs to two groups m and n, and CHG[m].EN and CHG[n].DIS occur
simultaneously (m and n can be equal or different), EN on that channel has priority.

PPI tasks (for example, CHG[0].EN) can be triggered through the PPI like any other task, which means
they can be hooked up to a PPI channel as a TEP. One event can trigger multiple tasks by using multiple
channels and one task can be triggered by multiple events in the same way.

22.1 Pre-programmed channels
Some of the PPI channels are pre-programmed. These channels cannot be configured by the CPU, but can
be added to groups and enabled and disabled like the general purpose PPI channels. The FORK TEP for
these channels are still programmable and can be used by the application.

For a list of pre-programmed PPI channels, see the table below.

Table 36: Pre-programmed channels

22.2 Registers
Table 37: Instances

Table 38: Register Overview

22 PPI — Programmable peripheral interconnect

Page 170

22 PPI — Programmable peripheral interconnect

Page 171

22.2.1 CHEN
Address offset: 0x500

Channel enable register

22 PPI — Programmable peripheral interconnect

Page 172

22 PPI — Programmable peripheral interconnect

Page 173

22.2.2 CHENSET
Address offset: 0x504

Channel enable set register

Read: reads value of CH{i} field in CHEN register.

22 PPI — Programmable peripheral interconnect

Page 174

22 PPI — Programmable peripheral interconnect

Page 175

22.2.3 CHENCLR
Address offset: 0x508

Channel enable clear register

22 PPI — Programmable peripheral interconnect

Page 176

Read: reads value of CH{i} field in CHEN register.

22 PPI — Programmable peripheral interconnect

Page 177

22 PPI — Programmable peripheral interconnect

Page 178

22.2.4 CH[0].EEP
Address offset: 0x510

Channel 0 event end-point

22.2.5 CH[0].TEP
Address offset: 0x514

Channel 0 task end-point

22.2.6 CH[1].EEP
Address offset: 0x518

Channel 1 event end-point

22 PPI — Programmable peripheral interconnect

Page 179

22.2.7 CH[1].TEP
Address offset: 0x51C

Channel 1 task end-point

22.2.8 CH[2].EEP
Address offset: 0x520

Channel 2 event end-point

22.2.9 CH[2].TEP
Address offset: 0x524

Channel 2 task end-point

22.2.10 CH[3].EEP
Address offset: 0x528

Channel 3 event end-point

22.2.11 CH[3].TEP
Address offset: 0x52C

Channel 3 task end-point

22 PPI — Programmable peripheral interconnect

Page 180

22.2.12 CH[4].EEP
Address offset: 0x530

Channel 4 event end-point

22.2.13 CH[4].TEP
Address offset: 0x534

Channel 4 task end-point

22.2.14 CH[5].EEP
Address offset: 0x538

Channel 5 event end-point

22.2.15 CH[5].TEP
Address offset: 0x53C

Channel 5 task end-point

22.2.16 CH[6].EEP
Address offset: 0x540

Channel 6 event end-point

22 PPI — Programmable peripheral interconnect

Page 181

22.2.17 CH[6].TEP
Address offset: 0x544

Channel 6 task end-point

22.2.18 CH[7].EEP
Address offset: 0x548

Channel 7 event end-point

22.2.19 CH[7].TEP
Address offset: 0x54C

Channel 7 task end-point

22.2.20 CH[8].EEP
Address offset: 0x550

Channel 8 event end-point

22.2.21 CH[8].TEP
Address offset: 0x554

Channel 8 task end-point

22 PPI — Programmable peripheral interconnect

Page 182

22.2.22 CH[9].EEP
Address offset: 0x558

Channel 9 event end-point

22.2.23 CH[9].TEP
Address offset: 0x55C

Channel 9 task end-point

22.2.24 CH[10].EEP
Address offset: 0x560

Channel 10 event end-point

22.2.25 CH[10].TEP
Address offset: 0x564

Channel 10 task end-point

22.2.26 CH[11].EEP
Address offset: 0x568

Channel 11 event end-point

22 PPI — Programmable peripheral interconnect

Page 183

22.2.27 CH[11].TEP
Address offset: 0x56C

Channel 11 task end-point

22.2.28 CH[12].EEP
Address offset: 0x570

Channel 12 event end-point

22.2.29 CH[12].TEP
Address offset: 0x574

Channel 12 task end-point

22.2.30 CH[13].EEP
Address offset: 0x578

Channel 13 event end-point

22.2.31 CH[13].TEP
Address offset: 0x57C

Channel 13 task end-point

22 PPI — Programmable peripheral interconnect

Page 184

22.2.32 CH[14].EEP
Address offset: 0x580

Channel 14 event end-point

22.2.33 CH[14].TEP
Address offset: 0x584

Channel 14 task end-point

22.2.34 CH[15].EEP
Address offset: 0x588

Channel 15 event end-point

22.2.35 CH[15].TEP
Address offset: 0x58C

Channel 15 task end-point

22.2.36 CH[16].EEP
Address offset: 0x590

Channel 16 event end-point

22 PPI — Programmable peripheral interconnect

Page 185

22.2.37 CH[16].TEP
Address offset: 0x594

Channel 16 task end-point

22.2.38 CH[17].EEP
Address offset: 0x598

Channel 17 event end-point

22.2.39 CH[17].TEP
Address offset: 0x59C

Channel 17 task end-point

22.2.40 CH[18].EEP
Address offset: 0x5A0

Channel 18 event end-point

22.2.41 CH[18].TEP
Address offset: 0x5A4

Channel 18 task end-point

22 PPI — Programmable peripheral interconnect

Page 186

22.2.42 CH[19].EEP
Address offset: 0x5A8

Channel 19 event end-point

22.2.43 CH[19].TEP
Address offset: 0x5AC

Channel 19 task end-point

22.2.44 CHG[0]
Address offset: 0x800

Channel group 0

22 PPI — Programmable peripheral interconnect

Page 187

22 PPI — Programmable peripheral interconnect

Page 188

22.2.45 CHG[1]
Address offset: 0x804

Channel group 1

22 PPI — Programmable peripheral interconnect

Page 189

22 PPI — Programmable peripheral interconnect

Page 190

22.2.46 CHG[2]
Address offset: 0x808

Channel group 2

22 PPI — Programmable peripheral interconnect

Page 191

22 PPI — Programmable peripheral interconnect

Page 192

22.2.47 CHG[3]
Address offset: 0x80C

Channel group 3

22 PPI — Programmable peripheral interconnect

Page 193

22 PPI — Programmable peripheral interconnect

Page 194

22.2.48 CHG[4]
Address offset: 0x810

Channel group 4

22 PPI — Programmable peripheral interconnect

Page 195

22 PPI — Programmable peripheral interconnect

Page 196

22.2.49 CHG[5]
Address offset: 0x814

Channel group 5

22 PPI — Programmable peripheral interconnect

Page 197

22 PPI — Programmable peripheral interconnect

Page 198

22.2.50 FORK[0].TEP
Address offset: 0x910

Channel 0 task end-point

22.2.51 FORK[1].TEP
Address offset: 0x914

Channel 1 task end-point

22.2.52 FORK[2].TEP
Address offset: 0x918

Channel 2 task end-point

22.2.53 FORK[3].TEP
Address offset: 0x91C

Channel 3 task end-point

22.2.54 FORK[4].TEP
Address offset: 0x920

Channel 4 task end-point

22 PPI — Programmable peripheral interconnect

Page 199

22.2.55 FORK[5].TEP
Address offset: 0x924

Channel 5 task end-point

22.2.56 FORK[6].TEP
Address offset: 0x928

Channel 6 task end-point

22.2.57 FORK[7].TEP
Address offset: 0x92C

Channel 7 task end-point

22.2.58 FORK[8].TEP
Address offset: 0x930

Channel 8 task end-point

22.2.59 FORK[9].TEP
Address offset: 0x934

Channel 9 task end-point

22 PPI — Programmable peripheral interconnect

Page 200

22.2.60 FORK[10].TEP
Address offset: 0x938

Channel 10 task end-point

22.2.61 FORK[11].TEP
Address offset: 0x93C

Channel 11 task end-point

22.2.62 FORK[12].TEP
Address offset: 0x940

Channel 12 task end-point

22.2.63 FORK[13].TEP
Address offset: 0x944

Channel 13 task end-point

22.2.64 FORK[14].TEP
Address offset: 0x948

Channel 14 task end-point

22.2.65 FORK[15].TEP
Address offset: 0x94C

Channel 15 task end-point

22 PPI — Programmable peripheral interconnect

Page 201

22.2.66 FORK[16].TEP
Address offset: 0x950

Channel 16 task end-point

22.2.67 FORK[17].TEP
Address offset: 0x954

Channel 17 task end-point

22.2.68 FORK[18].TEP
Address offset: 0x958

Channel 18 task end-point

22.2.69 FORK[19].TEP
Address offset: 0x95C

Channel 19 task end-point

22.2.70 FORK[20].TEP
Address offset: 0x960

Channel 20 task end-point

22 PPI — Programmable peripheral interconnect

Page 202

22.2.71 FORK[21].TEP
Address offset: 0x964

Channel 21 task end-point

22.2.72 FORK[22].TEP
Address offset: 0x968

Channel 22 task end-point

22.2.73 FORK[23].TEP
Address offset: 0x96C

Channel 23 task end-point

22.2.74 FORK[24].TEP
Address offset: 0x970

Channel 24 task end-point

22.2.75 FORK[25].TEP
Address offset: 0x974

Channel 25 task end-point

22.2.76 FORK[26].TEP
Address offset: 0x978

Channel 26 task end-point

22 PPI — Programmable peripheral interconnect

Page 203

22.2.77 FORK[27].TEP
Address offset: 0x97C

Channel 27 task end-point

22.2.78 FORK[28].TEP
Address offset: 0x980

Channel 28 task end-point

22.2.79 FORK[29].TEP
Address offset: 0x984

Channel 29 task end-point

22.2.80 FORK[30].TEP
Address offset: 0x988

Channel 30 task end-point

22.2.81 FORK[31].TEP
Address offset: 0x98C

Channel 31 task end-point

22 PPI — Programmable peripheral interconnect

Page 204

23 RADIO — 2.4 GHz Radio

Page 205

23 RADIO — 2.4 GHz Radio
The RADIO contains a 2.4 GHz radio receiver and a 2.4 GHz radio transmitter that is compatible with
Nordic's proprietary 1 Mbps and 2 Mbps radio modes in addition to 1 Mbps and 2 Mbps Bluetooth® low
energy mode.

EasyDMA in combination with an automated packet assembler and packet disassembler, and an automated
CRC generator and CRC checker, makes it very easy to configure and use the RADIO. See Figure 29:
RADIO block diagram on page 205 for details.

Figure 29: RADIO block diagram

The RADIO includes a Device Address Match unit and an interframe spacing control unit that can be
utilized to simplify address white listing and interframe spacing respectively, in Bluetooth Smart and similar
applications.

The RADIO also includes a Received Signal Strength Indicator (RSSI) and a bit counter. The bit counter
generates events when a preconfigured number of bits have been sent or received by the RADIO.

23.1 EasyDMA
The RADIO use EasyDMA for reading and writing of data packets from and to the RAM without CPU
involvement.

As illustrated in Figure 29: RADIO block diagram on page 205, the RADIO's EasyDMA utilizes the same
PACKETPTR for receiving and transmitting packets. The CPU should reconfigure this pointer every time
before the RADIO is started via the START task.

The structure of a radio packet is described in detail in Packet configuration on page 206. The data that
is stored in Data RAM and transported by EasyDMA consists of S0, LENGTH, S1, the payload itself, and a
static add-on sent immediately after the payload.

The size of each of the above elements in the frame is configurable (see Packet configuration on page
206), and the space occupied in RAM depends on these settings. A size of zero is possible for any of the
fields, it is up to the user to make sure that the resulting frame complies with the RF protocol chosen.

For the field sizes defined in bits, the occupation in RAM will always be rounded up to the next full byte size
(for instance 3 bit length will allocate 1 byte in RAM, 9 bit length will allocate 2 bytes, etc.).

23 RADIO — 2.4 GHz Radio

Page 206

In addition, the S0INCL field in PCNF0 determines if S0 is present in RAM at all if its length is zero. If
present, one byte is allocated in RAM.

The size of S0 is configured through the S0LEN field in PCNF0. The size of LENGTH is configured through
the LFLEN field in PCNF0. The size of S1 is configured through the S1LEN field in PCNF0. The size of the
payload is configured through the value in RAM corresponding to the LENGTH field. The size of the static
add-on to the payload is configured through the STATLEN field in PCNF1.

The MAXLEN field in the PCNF1 register configures the maximum packet payload plus add-on size in
number of bytes that can be transmitted or received by the RADIO. This feature can be used to ensure that
the RADIO does not overwrite, or read beyond, the RAM assigned to the packet payload. This means that
if the packet payload length defined by PCNF1.STATLEN and the LENGTH field in the packet specifies a
packet larger than MAXLEN, the payload will be truncated at MAXLEN.

Note that MAXLEN includes the payload and the add-on, but excludes the size occupied by the S0, LENGTH
and S1 fields. This has to be taken into account when allocating RAM.

If the payload plus add-on length is specified larger than MAXLEN, the RADIO will still transmit or receive in
the same way as before except the payload is now truncated to MAXLEN. The packet's LENGTH field will
not be altered when the payload is truncated. The RADIO will calculate CRC as if the packet length is equal
to MAXLEN.

If the PACKETPTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault
or RAM corruption. See Memory on page 23 for more information about the different memory regions.

The DISABLED event indicates that the EasyDMA has finished accessing the RAM.

23.2 Packet configuration
A Radio packet contains the following fields: PREAMBLE, ADDRESS, S0, LENGTH, S1, PAYLOAD and
CRC.

See Figure 30: On-air packet layout on page 206. Not shown in the figure is the static payload add-on (the
length of which is defined in STATLEN, and which is 0 bytes long in a standard BLE packet), and would be
sent between PAYLOAD and CRC. The Radio sends the different fields in the packet in the order they are
illustrated below, from left to right. The preamble will be sent least significant bit first on-air.

Figure 30: On-air packet layout

For all modes, except for 2 Mbit/s Bluetooth Low Energy mode, the preamble is one byte long. For 2 Mbit/s
Bluetooth Low Energy mode the preamble is 2 bytes long. If the first bit of the ADDRESS is 0 the preamble
will be set to 0xAA otherwise the PREAMBLE will be set to 0x55.

Radio packets are stored in memory inside instances of a radio packet data structure as illustrated in
Figure 31: In-RAM representation of radio packet, S0, LENGTH and S1 are optional on page 206. The
PREAMBLE, ADDRESS and CRC fields are omitted in this data structure.

Figure 31: In-RAM representation of radio packet, S0, LENGTH and S1 are optional

23 RADIO — 2.4 GHz Radio

Page 207

The byte ordering on air is always Least Significant Byte First for the ADDRESS and PAYLOAD fields and
Most Significant Byte First for the CRC field. The ADDRESS fields are always transmitted and received least
significant bit first on-air. The CRC field is always transmitted and received Most Significant Bit first. The bit-
endian, i.e. which order the bits are sent and received in, of the S0, LENGTH, S1 and PAYLOAD fields can
be configured via the ENDIAN in PCNF1.

The S0INCL field in PCNF0 determines if S0 is present in RAM at all if its length is zero. If present, one byte
is allocated in RAM.

The sizes of the S0, LENGTH and S1 fields can be individually configured via S0LEN, LFLEN and S1LEN in
PCNF0 respectively. If any of these fields are configured to be less than 8 bit long the, the least significant
bits of the fields, as seen from the RAM representation, are used.

If S0, LENGTH or S1 are specified with zero length their fields will be omitted in memory, otherwise each
field will be represented as a separate byte, regardless of the number of bits in their on-air counterpart.

23.3 Maximum packet length
Independent of the configuration of MAXLEN, the combined length of S0, LENGTH, S1 and PAYLOAD
cannot exceed 258 bytes.

23.4 Address configuration
The on-air radio ADDRESS field is composed of two parts, the base address field and the address prefix
field.

The size of the base address field is configurable via BALEN in PCNF1. The base address is truncated from
LSByte if the BALEN is less than 4. See Table 39: Definition of logical addresses on page 207.

The on-air addresses are defined in the BASEn and PREFIXn registers, and it is only when writing these
registers the user will have to relate to actual on-air addresses. For other radio address registers such as the
TXADDRESS, RXADDRESSES and RXMATCH registers, logical radio addresses ranging from 0 to 7 are
being used. The relationship between the on-air radio addresses and the logical addresses is described in
Table 39: Definition of logical addresses on page 207.

Table 39: Definition of logical addresses

23.5 Data whitening
The RADIO is able to do packet whitening and de-whitening.

See WHITEEN in PCNF1 register for how to enable whitening. When enabled, whitening and de-whitening
will be handled by the RADIO automatically as packets are sent and received.

The whitening word is generated using polynomial g(D) = D7+ D4 + 1, which then is XORed with the data
packet that is to be whitened, or de-whitened. See the figure below.

23 RADIO — 2.4 GHz Radio

Page 208

Figure 32: Data whitening and de-whitening

Whitening and de-whitening will be performed over the whole packet (except for the preamble and the
address field).

The linear feedback shift register, illustrated in Figure 32: Data whitening and de-whitening on page 208
can be initialised via the DATAWHITEIV register.

23.6 CRC
The CRC generator in the RADIO calculates the CRC over the whole packet excluding the preamble. If
desirable, the address field can be excluded from the CRC calculation as well

See CRCCNF register for more information.

The CRC polynomial is configurable as illustrated in Figure 33: CRC generation of an n bit CRC on page
208 where bit 0 in the CRCPOLY register corresponds to X0 and bit 1 corresponds to X1 etc. See
CRCPOLY for more information.

Figure 33: CRC generation of an n bit CRC

As illustrated in Figure 33: CRC generation of an n bit CRC on page 208, the CRC is calculated by feeding
the packet serially through the CRC generator. Before the packet is clocked through the CRC generator, the
CRC generator's latches b0 through bn will be initialized with a predefined value specified in the CRCINIT
register. When the whole packet is clocked through the CRC generator, latches b0 through bn will hold the
resulting CRC. This value will be used by the RADIO during both transmission and reception but it is not
available to be read by the CPU at any time. A received CRC can however be read by the CPU via the
RXCRC register independent of whether or not it has passed the CRC check.

The length (n) of the CRC is configurable, see CRCCNF for more information.

After the whole packet including the CRC has been received, the RADIO will generate a CRCOK event if no
CRC errors were detected, or alternatively generate a CRCERROR event if CRC errors were detected.

23 RADIO — 2.4 GHz Radio

Page 209

The status of the CRC check can be read from the CRCSTATUS register after a packet has been received.

23.7 Radio states
The RADIO can enter a number of states.

The RADIO can enter the states described the table below. An overview state diagram for the RADIO is
illustrated in Figure 34: Radio states on page 209. This figure shows how the tasks and events relate to
the RADIO's operation. The RADIO does not prevent a task from being triggered from the wrong state. If a
task is triggered from the wrong state, for example if the RXEN task is triggered from the RXDISABLE state,
this may lead to incorrect behaviour. As illustrated in Figure 34: Radio states on page 209, the PAYLOAD
event is always generated even if the payload is zero.

Table 40: RADIO state diagram

Figure 34: Radio states

23.8 Transmit sequence
Before the RADIO is able to transmit a packet, it must first ramp-up in TX mode.

See TXRU in Figure 34: Radio states on page 209 and Figure 35: Transmit sequence on page 210.
A TXRU ramp-up sequence is initiated when the TXEN task is triggered. After the radio has successfully
ramped up it will generate the READY event indicating that a packet transmission can be initiate. A packet
transmission is initiated by triggering the START task. As illustrated in Figure 34: Radio states on page 209
the START task can first be triggered after the RADIO has entered into the TXIDLE state.

Figure 35: Transmit sequence on page 210 illustrates a single packet transmission where the CPU
manually triggers the different tasks needed to control the flow of the RADIO, i.e. no shortcuts are used. If
shortcuts are not used, a certain amount of delay caused by CPU execution is expected between READY
and START, and between END and DISABLE. As illustrated in Figure 35: Transmit sequence on page 210

23 RADIO — 2.4 GHz Radio

Page 210

the RADIO will by default transmit '1's between READY and START, and between END and DISABLED.
What is transmitted can be programmed through the DTX field in the MODECNF0 register.

Figure 35: Transmit sequence

A slightly modified version of the transmit sequence from Figure 35: Transmit sequence on page 210 is
illustrated in Figure 36: Transmit sequence using shortcuts to avoid delays on page 210 where the RADIO
is configured to use shortcuts between READY and START, and between END and DISABLE, which means
that no delay is introduced.

Figure 36: Transmit sequence using shortcuts to avoid delays

The RADIO is able to send multiple packets one after the other without having to disable and re-enable the
RADIO between packets, this is illustrated in Figure 37: Transmission of multiple packets on page 211.

23 RADIO — 2.4 GHz Radio

Page 211

Figure 37: Transmission of multiple packets

23.9 Receive sequence
Before the RADIO is able to receive a packet, it must first ramp up in RX mode

See RXRU in Figure 34: Radio states on page 209 and Figure 38: Receive sequence on page 211.
An RXRU ramp-up sequence is initiated when the RXEN task is triggered. After the radio has successfully
ramped up it will generate the READY event indicating that a packet reception can be initiated. A packet
reception is initiated by triggering the START task. As illustrated in Figure 34: Radio states on page 209
the START task can, first be triggered after the RADIO has entered into the RXIDLE state.

Figure 38: Receive sequence on page 211 illustrates a single packet reception where the CPU manually
triggers the different tasks needed to control the flow of the RADIO, i.e. no shortcuts are used. If shortcuts
are not used, a certain amount of delay, caused by CPU execution, is expected between READY and
START, and between END and DISABLE. As illustrated Figure 38: Receive sequence on page 211 the
RADIO will be listening and possibly receiving undefined data, illustrated with an 'X', from START and until a
packet with valid preamble (P) is received.

Figure 38: Receive sequence

A slightly modified version of the receive sequence from Figure 38: Receive sequence on page 211 is
illustrated in Figure 39: Receive sequence using shortcuts to avoid delays on page 212 where the the
RADIO is configured to use shortcuts between READY and START, and between END and DISABLE, which
means that no delay is introduced.

23 RADIO — 2.4 GHz Radio

Page 212

Figure 39: Receive sequence using shortcuts to avoid delays

The RADIO is able to receive multiple packets one after the other without having to disable and re-enable
the RADIO between packets, this is illustrated Figure 40: Reception of multiple packets on page 212.

Figure 40: Reception of multiple packets

23.10 Received Signal Strength Indicator (RSSI)
The radio implements a mechanism for measuring the power in the received radio signal. This feature is
called Received Signal Strength Indicator (RSSI).

Sampling of the received signal strength is started by using the RSSISTART task. The sample can be read
from the RSSISAMPLE register.

The sample period of the RSSI is defined by RSSIPERIOD, see the device product specification for details.
The RSSI sample will hold the average received signal strength during this sample period.

For the RSSI sample to be valid the radio has to be enabled in receive mode (RXEN task) and the reception
has to be started (READY event followed by START task).

23.11 Interframe spacing
Interframe spacing is the time interval between two consecutive packets.

It is defined as the time, in micro seconds, from the end of the last bit of the previous packet received and
to the start of the first bit of the subsequent packet that is transmitted. The RADIO is able to enforce this

23 RADIO — 2.4 GHz Radio

Page 213

interval as specified in the TIFS register as long as TIFS is not specified to be shorter than the RADIO’s turn-
around time, i.e. the time needed to switch off the receiver, and switch back on the transmitter.

TIFS is only enforced if END_DISABLE and DISABLED_TXEN or END_DISABLE and DISABLED_RXEN
shortcuts are enabled. TIFS is only qualified for use in BLE_1MBIT mode, and default ramp-up mode.

23.12 Device address match
The device address match feature is tailored for address white listing in a Bluetooth Smart and similar
implementations.

This feature enables on-the-fly device address matching while receiving a packet on air. This feature only
works in receive mode and as long as RADIO is configured for little endian, see PCNF1.ENDIAN.

The Device Address match unit assumes that the 48 first bits of the payload is the device address and that
bit number 6 in S0 is the TxAdd bit. See the Bluetooth Core Specification for more information about device
addresses, TxAdd and whitelisting.

The RADIO is able to listen for eight different device addresses at the same time. These addresses are
specified in a DAB/DAP register pair, one pair per address, in addition to a TxAdd bit configured in the
DACNF register. The DAB register specifies the 32 least significant bits of the device address, while the DAP
register specifies the 16 most significant bits of the device address.

Each of the device addresses can be individually included or excluded from the matching mechanism. This is
configured in the DACNF register.

23.13 Bit counter
The RADIO implements a simple counter that can be configured to generate an event after a specific number
of bits have been transmitted or received.

By using shortcuts, this counter can be started from different events generated by the RADIO and hence
count relative to these.

The bit counter is started by triggering the BCSTART task, and stopped by triggering the BCSTOP task.
A BCMATCH event will be generated when the bit counter has counted the number of bits specified in the
BCC register. The bit counter will continue to count bits until the DISABLED event is generated or until the
BCSTOP task is triggered. The CPU can therefore, after a BCMATCH event, reconfigure the BCC value for
new BCMATCH events within the same packet.

The bit counter can only be started after the RADIO has received the ADDRESS event.

The bit counter will stop and reset on BCSTOP, STOP, END and DISABLE tasks.

The figure below illustrates how the bit counter can be used to generate a BCMATCH event in the beginning
of the packet payload, and again generate a second BCMATCH event after sending 2 bytes (16 bits) of the
payload.

23 RADIO — 2.4 GHz Radio

Page 214

Figure 41: Bit counter example

23.14 Registers
Table 41: Instances

Table 42: Register Overview

23 RADIO — 2.4 GHz Radio

Page 215

23.14.1 SHORTS
Address offset: 0x200

Shortcut register

23 RADIO — 2.4 GHz Radio

Page 216

23.14.2 INTENSET
Address offset: 0x304

Enable interrupt

23 RADIO — 2.4 GHz Radio

Page 217

23.14.3 INTENCLR
Address offset: 0x308

Disable interrupt

23 RADIO — 2.4 GHz Radio

Page 218

23 RADIO — 2.4 GHz Radio

Page 219

23.14.4 CRCSTATUS
Address offset: 0x400

CRC status

23.14.5 RXMATCH
Address offset: 0x408

Received address

23.14.6 RXCRC
Address offset: 0x40C

CRC field of previously received packet

23.14.7 DAI
Address offset: 0x410

Device address match index

23.14.8 PACKETPTR
Address offset: 0x504

23 RADIO — 2.4 GHz Radio

Page 220

Packet pointer

23.14.9 FREQUENCY
Address offset: 0x508

Frequency

23.14.10 TXPOWER
Address offset: 0x50C

Output power

23.14.11 MODE
Address offset: 0x510

Data rate and modulation

23 RADIO — 2.4 GHz Radio

Page 221

23.14.12 PCNF0
Address offset: 0x514

Packet configuration register 0

23.14.13 PCNF1
Address offset: 0x518

Packet configuration register 1

23 RADIO — 2.4 GHz Radio

Page 222

23.14.14 BASE0
Address offset: 0x51C

Base address 0

23.14.15 BASE1
Address offset: 0x520

Base address 1

23.14.16 PREFIX0
Address offset: 0x524

Prefixes bytes for logical addresses 0-3

23.14.17 PREFIX1
Address offset: 0x528

Prefixes bytes for logical addresses 4-7

23 RADIO — 2.4 GHz Radio

Page 223

23.14.18 TXADDRESS
Address offset: 0x52C

Transmit address select

23.14.19 RXADDRESSES
Address offset: 0x530

Receive address select

23.14.20 CRCCNF
Address offset: 0x534

CRC configuration

23 RADIO — 2.4 GHz Radio

Page 224

23.14.21 CRCPOLY
Address offset: 0x538

CRC polynomial

23.14.22 CRCINIT
Address offset: 0x53C

CRC initial value

23.14.23 TIFS
Address offset: 0x544

Inter Frame Spacing in us

23.14.24 RSSISAMPLE
Address offset: 0x548

RSSI sample

23 RADIO — 2.4 GHz Radio

Page 225

23.14.25 STATE
Address offset: 0x550

Current radio state

23.14.26 DATAWHITEIV
Address offset: 0x554

Data whitening initial value

23.14.27 BCC
Address offset: 0x560

Bit counter compare

23 RADIO — 2.4 GHz Radio

Page 226

23.14.28 DAB[0]
Address offset: 0x600

Device address base segment 0

23.14.29 DAB[1]
Address offset: 0x604

Device address base segment 1

23.14.30 DAB[2]
Address offset: 0x608

Device address base segment 2

23.14.31 DAB[3]
Address offset: 0x60C

Device address base segment 3

23.14.32 DAB[4]
Address offset: 0x610

Device address base segment 4

23.14.33 DAB[5]
Address offset: 0x614

Device address base segment 5

23 RADIO — 2.4 GHz Radio

Page 227

23.14.34 DAB[6]
Address offset: 0x618

Device address base segment 6

23.14.35 DAB[7]
Address offset: 0x61C

Device address base segment 7

23.14.36 DAP[0]
Address offset: 0x620

Device address prefix 0

23.14.37 DAP[1]
Address offset: 0x624

Device address prefix 1

23.14.38 DAP[2]
Address offset: 0x628

Device address prefix 2

23 RADIO — 2.4 GHz Radio

Page 228

23.14.39 DAP[3]
Address offset: 0x62C

Device address prefix 3

23.14.40 DAP[4]
Address offset: 0x630

Device address prefix 4

23.14.41 DAP[5]
Address offset: 0x634

Device address prefix 5

23.14.42 DAP[6]
Address offset: 0x638

Device address prefix 6

23.14.43 DAP[7]
Address offset: 0x63C

Device address prefix 7

23.14.44 DACNF
Address offset: 0x640

Device address match configuration

23 RADIO — 2.4 GHz Radio

Page 229

23.14.45 MODECNF0
Address offset: 0x650

Radio mode configuration register 0

23 RADIO — 2.4 GHz Radio

Page 230

23.14.46 POWER
Address offset: 0xFFC

Peripheral power control

23.15 Electrical specification

23.15.1 General Radio Characteristics

23.15.2 Radio current consumption (Transmitter)

23 RADIO — 2.4 GHz Radio

Page 231

23.15.3 Radio current consumption (Receiver)

23.15.4 Transmitter specification

23.15.5 Receiver operation

23 RADIO — 2.4 GHz Radio

Page 232

23.15.6 RX selectivity
RX selectivity with equal modulation on interfering signal20

23.15.7 RX intermodulation
RX intermodulation21

20 Wanted signal level at PIN = -67 dBm. One interferer is used, having equal modulation as the wanted
signal. The input power of the interferer where the sensitivity equals BER = 0.1% is presented

21 Wanted signal level at PIN = -64 dBm. Two interferers with equal input power are used. The interferer
closest in frequency is not modulated, the other interferer is modulated equal with the wanted signal.
The input power of the interferers where the sensitivity equals BER = 0.1% is presented.

23 RADIO — 2.4 GHz Radio

Page 233

23.15.8 Radio timing

23.15.9 Received Signal Strength Indicator (RSSI) specifications

23.15.10 Jitter

23.15.11 Delay when disabling the RADIO

24 TIMER — Timer/counter

Page 234

24 TIMER — Timer/counter
The TIMER can operate in two modes: timer and counter.

Figure 42: Block schematic for timer/counter

The timer/counter runs on the high-frequency clock source (HFCLK) and includes a four-bit (1/2X) prescaler
that can divide the timer input clock from the HFCLK controller. Clock source selection between PCLK16M
and PCLK1M is automatic according to TIMER base frequency set by the prescaler. The TIMER base
frequency is always given as 16 MHz divided by the prescaler value.

The PPI system allows a TIMER event to trigger a task of any other system peripheral of the device. The
PPI system also enables the TIMER task/event features to generate periodic output and PWM signals to any
GPIO. The number of input/outputs used at the same time is limited by the number of GPIOTE channels.

The TIMER can operate in two modes, Timer mode and Counter mode. In both modes, the TIMER is started
by triggering the START task, and stopped by triggering the STOP task. After the timer is stopped the timer
can resume timing/counting by triggering the START task again. When timing/counting is resumed, the timer
will continue from the value it had prior to being stopped.

In Timer mode, the TIMER's internal Counter register is incremented by one for every tick of the timer
frequency fTIMER as illustrated in Figure 42: Block schematic for timer/counter on page 234. The timer
frequency is derived from PCLK16M as shown below, using the values specified in the PRESCALER
register:

When fTIMER <= 1 MHz the TIMER will use PCLK1M instead of PCLK16M for reduced power consumption.

In counter mode, the TIMER's internal Counter register is incremented by one each time the COUNT task
is triggered, that is, the timer frequency and the prescaler are not utilized in counter mode. Similarly, the
COUNT task has no effect in Timer mode.

The TIMER's maximum value is configured by changing the bit-width of the timer in the BITMODE on page
239 register.

PRESCALER on page 239 and the BITMODE on page 239 must only be updated when the timer
is stopped. If these registers are updated while the TIMER is started then this may result in unpredictable
behavior.

24 TIMER — Timer/counter

Page 235

When the timer is incremented beyond its maximum value the Counter register will overflow and the TIMER
will automatically start over from zero.

The Counter register can be cleared, that is, its internal value set to zero explicitly, by triggering the CLEAR
task.

The TIMER implements multiple capture/compare registers.

Independent of prescaler setting the accuracy of the TIMER is equivalent to one tick of the timer frequency
fTIMER as illustrated in Figure 42: Block schematic for timer/counter on page 234.

24.1 Capture
The TIMER implements one capture task for every available capture/compare register.

Every time the CAPTURE[n] task is triggered, the Counter value is copied to the CC[n] register.

24.2 Compare
The TIMER implements one COMPARE event for every available capture/compare register.

A COMPARE event is generated when the Counter is incremented and then becomes equal to the value
specified in one of the capture compare registers. When the Counter value becomes equal to the value
specified in a capture compare register CC[n], the corresponding compare event COMPARE[n] is generated.

BITMODE on page 239 specifies how many bits of the Counter register and the capture/compare register
that are used when the comparison is performed. Other bits will be ignored.

24.3 Task delays
After the TIMER is started, the CLEAR task, COUNT task and the STOP task will guarantee to take effect
within one clock cycle of the PCLK16M.

24.4 Task priority
If the START task and the STOP task are triggered at the same time, that is, within the same period of
PCLK16M, the STOP task will be prioritized.

24.5 Registers
Table 43: Instances

Table 44: Register Overview

24 TIMER — Timer/counter

Page 236

24.5.1 SHORTS
Address offset: 0x200

Shortcut register

24 TIMER — Timer/counter

Page 237

24.5.2 INTENSET
Address offset: 0x304

Enable interrupt

24 TIMER — Timer/counter

Page 238

24.5.3 INTENCLR
Address offset: 0x308

Disable interrupt

24 TIMER — Timer/counter

Page 239

24.5.4 MODE
Address offset: 0x504

Timer mode selection

24.5.5 BITMODE
Address offset: 0x508

Configure the number of bits used by the TIMER

24.5.6 PRESCALER
Address offset: 0x510

Timer prescaler register

24.5.7 CC[0]
Address offset: 0x540

Capture/Compare register 0

24 TIMER — Timer/counter

Page 240

24.5.8 CC[1]
Address offset: 0x544

Capture/Compare register 1

24.5.9 CC[2]
Address offset: 0x548

Capture/Compare register 2

24.5.10 CC[3]
Address offset: 0x54C

Capture/Compare register 3

24.5.11 CC[4]
Address offset: 0x550

Capture/Compare register 4

24 TIMER — Timer/counter

Page 241

24.5.12 CC[5]
Address offset: 0x554

Capture/Compare register 5

24.6 Electrical specification

24.6.1 Timers Electrical Specification

25 RTC — Real-time counter

Page 242

25 RTC — Real-time counter
The Real-time counter (RTC) module provides a generic, low power timer on the low-frequency clock source
(LFCLK).

Figure 43: RTC block schematic

The RTC module features a 24-bit COUNTER, a 12-bit (1/X) prescaler, capture/compare registers, and a tick
event generator for low power, tickless RTOS implementation.

25.1 Clock source
The RTC will run off the LFCLK.

The COUNTER resolution will therefore be 30.517 μs. Depending on the source, the RTC is able to run while
the HFCLK is OFF and PCLK16M is not available.

The software has to explicitely start LFCLK before using the RTC.

See CLOCK — Clock control on page 101 for more information about clock sources.

25.2 Resolution versus overflow and the PRESCALER
Counter increment frequency:

The PRESCALER register is read/write when the RTC is stopped. The PRESCALER register is read-only
once the RTC is STARTed. Writing to the PRESCALER register when the RTC is started has no effect.

The PRESCALER is restarted on START, CLEAR and TRIGOVRFLW, that is, the prescaler value is latched
to an internal register (<<PRESC>>) on these tasks.

Examples:

1. Desired COUNTER frequency 100 Hz (10 ms counter period)

PRESCALER = round(32.768 kHz / 100 Hz) - 1 = 327

fRTC = 99.9 Hz

25 RTC — Real-time counter

Page 243

10009.576 μs counter period
2. Desired COUNTER frequency 8 Hz (125 ms counter period)

PRESCALER = round(32.768 kHz / 8 Hz) – 1 = 4095

fRTC = 8 Hz

125 ms counter period

Table 45: RTC resolution versus overflow

25.3 COUNTER register
The COUNTER increments on LFCLK when the internal PRESCALER register (<<PRESC>>) is 0x00.
<<PRESC>> is reloaded from the PRESCALER register. If enabled, the TICK event occurs on each
increment of the COUNTER. The TICK event is disabled by default.

Figure 44: Timing diagram - COUNTER_PRESCALER_0

Figure 45: Timing diagram - COUNTER_PRESCALER_1

25.4 Overflow features
The TRIGOVRFLW task sets the COUNTER value to 0xFFFFF0 to allow SW test of the overflow condition.

OVRFLW occurs when COUNTER overflows from 0xFFFFFF to 0.

Important: The OVRFLW event is disabled by default.

25.5 TICK event
The TICK event enables low power "tick-less" RTOS implementation as it optionally provides a regular
interrupt source for a RTOS without the need to use the ARM® SysTick feature.

25 RTC — Real-time counter

Page 244

Using the RTC TICK event rather than the SysTick allows the CPU to be powered down while still keeping
RTOS scheduling active.

Important: The TICK event is disabled by default.

25.6 Event control feature
To optimize RTC power consumption, events in the RTC can be individually disabled to prevent PCLK16M
and HFCLK being requested when those events are triggered. This is managed using the EVTEN register.

For example, if the TICK event is not required for an application, this event should be disabled as it is
frequently occurring and may increase power consumption if HFCLK otherwise could be powered down for
long durations.

This means that the RTC implements a slightly different task and event system compared to the standard
system described in Peripheral interface on page 68. The RTC task and event system is illustrated in Figure
46: Tasks, events and interrupts in the RTC on page 244.

Figure 46: Tasks, events and interrupts in the RTC

25.7 Compare feature
There are a number of Compare registers.

For more information, see Registers on page 248.

When setting a compare register, the following behavior of the RTC compare event should be noted:

• If a CC register value is 0 when a CLEAR task is set, this will not trigger a COMPARE event.

25 RTC — Real-time counter

Page 245

Figure 47: Timing diagram - COMPARE_CLEAR
• If a CC register is N and the COUNTER value is N when the START task is set, this will not trigger a

COMPARE event.

Figure 48: Timing diagram - COMPARE_START
• COMPARE occurs when a CC register is N and the COUNTER value transitions from N-1 to N.

Figure 49: Timing diagram - COMPARE
• If the COUNTER is N, writing N+2 to a CC register is guaranteed to trigger a COMPARE event at N+2.

25 RTC — Real-time counter

Page 246

Figure 50: Timing diagram - COMPARE_N+2
• If the COUNTER is N, writing N or N+1 to a CC register may not trigger a COMPARE event.

Figure 51: Timing diagram - COMPARE_N+1
• If the COUNTER is N and the current CC register value is N+1 or N+2 when a new CC value is written,

a match may trigger on the previous CC value before the new value takes effect. If the current CC value
greater than N+2 when the new value is written, there will be no event due to the old value.

Figure 52: Timing diagram - COMPARE_N-1

25.8 TASK and EVENT jitter/delay
Jitter or delay in the RTC is due to the peripheral clock being a low frequency clock (LFCLK) which is not
synchronous to the faster PCLK16M.

Registers in the peripheral interface, part of the PCLK16M domain, have a set of mirrored registers in the
LFCLK domain. For example, the COUNTER value accessible from the CPU is in the PCLK16M domain
and is latched on read from an internal register called COUNTER in the LFCLK domain. COUNTER is the
register which is actually modified each time the RTC ticks. These registers must be synchronised between
clock domains (PCLK16M and LFCLK).

The following is a summary of the jitter introduced on tasks and events. Figures illustrating jitter follow.

25 RTC — Real-time counter

Page 247

Table 46: RTC jitter magnitudes on tasks

Table 47: RTC jitter magnitudes on events

1. CLEAR and STOP (and TRIGOVRFLW; not shown) will be delayed as long as it takes for the peripheral
to clock a falling edge and rising of the LFCLK. This is between 15.2585 μs and 45.7755 μs – rounded to
15 μs and 46 μs for the remainder of the section.

Figure 53: Timing diagram - DELAY_CLEAR

Figure 54: Timing diagram - DELAY_STOP
2. The START task will start the RTC. Assuming that the LFCLK was previously running and stable, the

first increment of COUNTER (and instance of TICK event) will be typically after 30.5 μs +/-15 μs. In
some cases, in particular if the RTC is STARTed before the LFCLK is running, that timing can be up to
~250 μs. The software should therefore wait for the first TICK if it has to make sure the RTC is running.
Sending a TRIGOVRFLW task sets the COUNTER to a value close to overflow. However, since the
update of COUNTER relies on a stable LFCLK, sending this task while LFCLK is not running will start
LFCLK, but the update will then be delayed by the same amount of time of up to ~250 us. The figures
show the smallest and largest delays to on the START task which appears as a +/-15 μs jitter on the first
COUNTER increment.

25 RTC — Real-time counter

Page 248

Figure 55: Timing diagram - JITTER_START-

Figure 56: Timing diagram - JITTER_START+

25.9 Reading the COUNTER register
To read the COUNTER register, the internal <<COUNTER>> value is sampled.

To ensure that the <<COUNTER>> is safely sampled (considering an LFCLK transition may occur during
a read), the CPU and core memory bus are halted for three cycles by lowering the core PREADY signal.
The Read takes the CPU 2 cycles in addition resulting in the COUNTER register read taking a fixed five
PCLK16M clock cycles.

Figure 57: Timing diagram - COUNTER_READ

25.10 Registers
Table 48: Instances

25 RTC — Real-time counter

Page 249

Table 49: Register Overview

25.10.1 INTENSET
Address offset: 0x304

Enable interrupt

25 RTC — Real-time counter

Page 250

25.10.2 INTENCLR
Address offset: 0x308

Disable interrupt

25 RTC — Real-time counter

Page 251

25.10.3 EVTEN
Address offset: 0x340

Enable or disable event routing

25.10.4 EVTENSET
Address offset: 0x344

Enable event routing

25 RTC — Real-time counter

Page 252

25.10.5 EVTENCLR
Address offset: 0x348

Disable event routing

25 RTC — Real-time counter

Page 253

25.10.6 COUNTER
Address offset: 0x504

Current COUNTER value

25.10.7 PRESCALER
Address offset: 0x508

12 bit prescaler for COUNTER frequency (32768/(PRESCALER+1)).Must be written when RTC is stopped

25.10.8 CC[0]
Address offset: 0x540

Compare register 0

25.10.9 CC[1]
Address offset: 0x544

Compare register 1

25.10.10 CC[2]
Address offset: 0x548

Compare register 2

25 RTC — Real-time counter

Page 254

25.10.11 CC[3]
Address offset: 0x54C

Compare register 3

25.11 Electrical specification

25.11.1 RTC Electrical Specification

26 RNG — Random number generator

Page 255

26 RNG — Random number generator
The Random number generator (RNG) generates true non-deterministic random numbers based on internal
thermal noise that are suitable for cryptographic purposes. The RNG does not require a seed value.

Figure 58: Random number generator

The RNG is started by triggering the START task and stopped by triggering the STOP task. When started,
new random numbers are generated continuously and written to the VALUE register when ready. A VALRDY
event is generated for every new random number that is written to the VALUE register. This means that after
a VALRDY event is generated the CPU has the time until the next VALRDY event to read out the random
number from the VALUE register before it is overwritten by a new random number.

26.1 Bias correction
A bias correction algorithm is employed on the internal bit stream to remove any bias toward '1' or '0'. The
bits are then queued into an eight-bit register for parallel readout from the VALUE register.

It is possible to enable bias correction in the CONFIG register. This will result in slower value generation, but
will ensure a statistically uniform distribution of the random values.

26.2 Speed
The time needed to generate one random byte of data is unpredictable, and may vary from one byte to the
next. This is especially true when bias correction is enabled.

26.3 Registers
Table 50: Instances

Table 51: Register Overview

26.3.1 SHORTS
Address offset: 0x200

Shortcut register

26 RNG — Random number generator

Page 256

26.3.2 INTENSET
Address offset: 0x304

Enable interrupt

26.3.3 INTENCLR
Address offset: 0x308

Disable interrupt

26.3.4 CONFIG
Address offset: 0x504

Configuration register

26.3.5 VALUE
Address offset: 0x508

Output random number

26 RNG — Random number generator

Page 257

26.4 Electrical specification

26.4.1 RNG Electrical Specification

27 TEMP — Temperature sensor

Page 258

27 TEMP — Temperature sensor
The temperature sensor measures die temperature over the temperature range of the device. Linearity
compensation can be implemented if required by the application.

Listed here are the main features for TEMP:

• Temperature range is greater than or equal to operating temperature of the device
• Resolution is 0.25 degrees

TEMP is started by triggering the START task.

When the temperature measurement is completed, a DATARDY event will be generated and the result of the
measurement can be read from the TEMP register.

To achieve the measurement accuracy stated in the electrical specification, the crystal oscillator must be
selected as the HFCLK source, see CLOCK — Clock control on page 101 for more information.

When the temperature measurement is completed, TEMP analog electronics power down to save power.

TEMP only supports one-shot operation, meaning that every TEMP measurement has to be explicitly started
using the START task.

27.1 Registers
Table 52: Instances

Table 53: Register Overview

27 TEMP — Temperature sensor

Page 259

27.1.1 INTENSET
Address offset: 0x304

Enable interrupt

27.1.2 INTENCLR
Address offset: 0x308

Disable interrupt

27.1.3 TEMP
Address offset: 0x508

Temperature in °C (0.25° steps)

27.1.4 A0
Address offset: 0x520

Slope of 1st piece wise linear function

27.1.5 A1
Address offset: 0x524

27 TEMP — Temperature sensor

Page 260

Slope of 2nd piece wise linear function

27.1.6 A2
Address offset: 0x528

Slope of 3rd piece wise linear function

27.1.7 A3
Address offset: 0x52C

Slope of 4th piece wise linear function

27.1.8 A4
Address offset: 0x530

Slope of 5th piece wise linear function

27.1.9 A5
Address offset: 0x534

Slope of 6th piece wise linear function

27.1.10 B0
Address offset: 0x540

y-intercept of 1st piece wise linear function

27 TEMP — Temperature sensor

Page 261

27.1.11 B1
Address offset: 0x544

y-intercept of 2nd piece wise linear function

27.1.12 B2
Address offset: 0x548

y-intercept of 3rd piece wise linear function

27.1.13 B3
Address offset: 0x54C

y-intercept of 4th piece wise linear function

27.1.14 B4
Address offset: 0x550

y-intercept of 5th piece wise linear function

27.1.15 B5
Address offset: 0x554

y-intercept of 6th piece wise linear function

27 TEMP — Temperature sensor

Page 262

27.1.16 T0
Address offset: 0x560

End point of 1st piece wise linear function

27.1.17 T1
Address offset: 0x564

End point of 2nd piece wise linear function

27.1.18 T2
Address offset: 0x568

End point of 3rd piece wise linear function

27.1.19 T3
Address offset: 0x56C

End point of 4th piece wise linear function

27.1.20 T4
Address offset: 0x570

End point of 5th piece wise linear function

27 TEMP — Temperature sensor

Page 263

27.2 Electrical specification

27.2.1 Temperature Sensor Electrical Specification

28 ECB — AES electronic codebook mode
encryption

Page 264

28 ECB — AES electronic codebook mode encryption
The AES electronic codebook mode encryption (ECB) can be used for a range of cryptographic functions
like hash generation, digital signatures, and keystream generation for data encryption/decryption. The ECB
encryption block supports 128 bit AES encryption (encryption only, not decryption).

AES ECB operates with EasyDMA access to system Data RAM for in-place operations on cleartext
and ciphertext during encryption. ECB uses the same AES core as the CCM and AAR blocks and is an
asynchronous operation which may not complete if the AES core is busy.

AES ECB features:

• 128 bit AES encryption
• Supports standard AES ECB block encryption
• Memory pointer support
• DMA data transfer

AES ECB performs a 128 bit AES block encrypt. At the STARTECB task, data and key is loaded into
the algorithm by EasyDMA. When output data has been written back to memory, the ENDECB event is
triggered.

AES ECB can be stopped by triggering the STOPECB task.

28.1 Shared resources
The ECB, CCM, and AAR share the same AES module. The ECB will always have lowest priority and if there
is a sharing conflict during encryption, the ECB operation will be aborted and an ERRORECB event will be
generated.

28.2 EasyDMA
The ECB implements an EasyDMA mechanism for reading and writing to the Data RAM. This DMA cannot
access the program memory or any other parts of the memory area except RAM.

If the ECBDATAPTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault
or RAM corruption. See Memory on page 23 for more information about the different memory regions.

The EasyDMA will have finished accessing the Data RAM when the ENDECB or ERRORECB is generated.

28.3 ECB data structure
Input to the block encrypt and output from the block encrypt are stored in the same data structure.
ECBDATAPTR should point to this data structure before STARTECB is initiated.

Table 54: ECB data structure overview

28 ECB — AES electronic codebook mode
encryption

Page 265

28.4 Registers
Table 55: Instances

Table 56: Register Overview

28.4.1 INTENSET
Address offset: 0x304

Enable interrupt

28.4.2 INTENCLR
Address offset: 0x308

Disable interrupt

28 ECB — AES electronic codebook mode
encryption

Page 266

28.4.3 ECBDATAPTR
Address offset: 0x504

ECB block encrypt memory pointers

28.5 Electrical specification

28.5.1 ECB Electrical Specification

29 CCM — AES CCM mode encryption

Page 267

29 CCM — AES CCM mode encryption
Cipher block chaining - message authentication code (CCM) mode is an authenticated encryption algorithm
designed to provide both authentication and confidentiality during data transfer. CCM combines counter
mode encryption and CBC-MAC authentication. The CCM terminology "Message authentication code
(MAC)" is called the "Message integrity check (MIC)" in 'Bluetooth terminology and also in this document.

The CCM block generates an encrypted keystream that is applied to input data using the XOR operation
and generates the 4 byte MIC field in one operation. The CCM and radio can be configured to work
synchronously. The CCM will encrypt in time for transmission and decrypt after receiving bytes into memory
from the Radio. All operations can complete within the packet RX or TX time. CCM on this device is
implemented according to Bluetooth requirements and the algorithm as defined in IETF RFC3610, and
depends on the AES-128 block cipher. A description of the CCM algorithm can also be found in NIST Special
Publication 800-38C. The Bluetooth specification describes the configuration of counter mode blocks and
encryption blocks to implement compliant encryption for BLE.

The CCM block uses EasyDMA to load key, counter mode blocks (including the nonce required), and to
read/write plain text and cipher text.

The AES CCM supports three operations: key-stream generation, packet encryption, and packet decryption.
All these operations are done in compliance with the Bluetooth specification.23A new key-stream must be
generated before a new packet encryption or packet decryption operation can be started.

A key-stream is generated by triggering the KSGEN task. An ENDKSGEN event will be generated when the
new key-stream has been generated. The key-stream will be stored in the AES CCM’s temporary memory
area, specified by the SCRATCHPTR, where it will be used in subsequent encryption and decryption
operations.

Encryption is started by triggering the CRYPT task with the MODE register set to ENCRYPTION. Similarly,
decryption is started by triggering the same task with MODE set to DECRYPTION. An ENDCRYPT event
will be generated when packet encryption is completed as well as when packet decryption is completed, see
Figure 59: Key-stream generation followed by encryption or decryption. The shortcut is optional. on page
267.

Figure 59: Key-stream generation followed by encryption or decryption. The shortcut is optional.

Key-stream generation, packet encryption, and packet decryption operations utilize the configuration
specified in the data structure pointed to by the CNFPTR pointer. It is necessary to configure this pointer and
its underlying data structure, and the MODE register before the KSGEN task is triggered. It is also necessary
to configure the INPTR pointer and the OUTPTR pointer before the CRYPT task is triggered.

If a shortcut is used between ENDKSGEN event and CRYPT task, the INPTR pointer and the OUTPTR
pointer must be configured before the KSGEN task is triggered.

The AES CCM supports different packet lengths, this is configured via the PACKETLENGTH field in the
MODE register.

23 Bluetooth AES CCM 128 bit block encryption, see Bluetooth Core specification Version 4.0.

29 CCM — AES CCM mode encryption

Page 268

29.1 Shared resources
The CCM shares registers and other resources with other peripherals that have the same ID as the CCM.
The user must therefore disable all peripherals that have the same ID as the CCM before the CCM can be
configured and used.

Disabling a peripheral that have the same ID as the CCM will not reset any of the registers that are shared
with the CCM. It is therefore important to configure all relevant CCM registers explicitly to secure that it
operates correctly.

See the Instantiation table in Instantiation on page 24 for details on peripherals and their IDs.

29.2 Encryption
During packet encryption, the AES CCM will read the unencrypted packet located in RAM at the address
specified in the INPTR pointer, encrypt the packet and append a four byte long Message Integrity Check
(MIC) field to the packet.

The AES CCM will also modify the length field of the packet to adjust for the appended MIC field, that is,
add four bytes to the length, and store the resulting packet back into RAM at the address specified in the
OUTPTR pointer, see Figure 60: Encryption on page 268.

Empty packets (length field is set to 0) will not be encrypted but instead moved unmodified through the AES
CCM.

Figure 60: Encryption

29.3 Decryption
During packet decryption, the AES CCM will read the encrypted packet located in RAM at the address
specified in the INPTR pointer, decrypt the packet, authenticate the packet’s MIC field and generate the
appropriate MIC status.

The AES CCM will also modify the length field of the packet to adjust for the MIC field, that is, subtract
four bytes from the length, and then store the decrypted packet into RAM at the address pointed to by the
OUTPTR pointer, see Figure 61: Decryption on page 269.

The CCM is only able to decrypt packets that are at least 5 bytes long, that is, 1 byte or more encrypted
payload (EPL) and 4 bytes of MIC. The CCM will therefore generate a MIC error for packets where the length
field is set to 1, 2, 3 or 4.

Empty packets (length field is set to 0) will not be decrypted but instead moved unmodified through the AES
CCM, these packets will always pass the MIC check.

29 CCM — AES CCM mode encryption

Page 269

Figure 61: Decryption

29.4 AES CCM and RADIO concurrent operation
The AES CCM is designed to run in parallel with the RADIO to enable on-the-fly encryption and decryption
of RADIO packets without CPU involvement. To facilitate this, the RADIO has to be configured with specific
settings.

Table 57: Radio configuration settings

29.5 Encrypting packets on-the-fly in radio transmit mode
When the AES CCM is encrypting a packet on-the-fly at the same time as the RADIO is transmitting it, the
RADIO must read the encrypted packet from the same memory location as the AES CCM is writing to.

The OUTPTR pointer in the AES CCM must therefore point to the same memory location as the
PACKETPTR pointer in the RADIO, see Figure 62: Configuration of on-the-fly encryption on page 269.

Figure 62: Configuration of on-the-fly encryption

In order to match the RADIO’s timing, the KSGEN task must be triggered no later than when the START task
in the RADIO is triggered, in addition the shortcut between the ENDKSGEN event and the CRYPT task must
be enabled. This use-case is illustrated in Figure 63: On-the-fly encryption using a PPI connection on page
270 using a PPI connection between the READY event in the RADIO and the KSGEN task in the AES
CCM.

29 CCM — AES CCM mode encryption

Page 270

Figure 63: On-the-fly encryption using a PPI connection

29.6 Decrypting packets on-the-fly in radio receive mode
When the AES CCM is decrypting a packet on-the-fly at the same time as the RADIO is receiving it, the AES
CCM must read the encrypted packet from the same memory location as the RADIO is writing to.

The INPTR pointer in the AES CCM must therefore point to the same memory location as the PACKETPTR
pointer in the RADIO, see Figure 64: Configuration of on-the-fly decryption on page 270.

Figure 64: Configuration of on-the-fly decryption

In order to match the RADIO’s timing, the KSGEN task must be triggered no later than when the START task
in the RADIO is triggered. In addition, the CRYPT task must be triggered no earlier than when the ADDRESS
event is generated by the RADIO.

If the CRYPT task is triggered exactly at the same time as the ADDRESS event is generated by the RADIO,
the AES CCM will guarantee that the decryption is completed no later than when the END event in the
RADIO is generated.

This use-case is illustrated in Figure 65: On-the-fly decryption using a PPI connection between the READY
event in the RADIO and the KSGEN task in the AES CCM on page 271 using a PPI connection between
the ADDRESS event in the RADIO and the CRYPT task in the AES CCM. The KSGEN task is triggered from
the READY event in the RADIO through a PPI connection.

29 CCM — AES CCM mode encryption

Page 271

Figure 65: On-the-fly decryption using a PPI connection between the READY event in the RADIO and
the KSGEN task in the AES CCM

29.7 CCM data structure
The CCM data structure is located in Data RAM at the memory location specified by the CNFPTR pointer
register.

Table 58: CCM data structure overview

The NONCE vector (as specified by the Bluetooth Core Specification) will be generated by hardware based
on the information specified in the CCM data structure from Table 58: CCM data structure overview on page
271 .

Table 59: Data structure for unencrypted packet

Table 60: Data structure for encrypted packet

29 CCM — AES CCM mode encryption

Page 272

29.8 EasyDMA and ERROR event
The CCM implements an EasyDMA mechanism for reading and writing to the RAM.

In some scenarios where the CPU and other DMA enabled peripherals are accessing the RAM at the same
time, the CCM DMA could experience some bus conflicts which may also result in an error during encryption.
If this happens, the ERROR event will be generated.

The EasyDMA will have finished accessing the RAM when the ENDKSGEN and ENDCRYPT events are
generated.

If the CNFPTR, SCRATCHPTR, INPTR and the OUTPTR are not pointing to the Data RAM region,
an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 23 for more
information about the different memory regions.

29.9 Registers
Table 61: Instances

Table 62: Register Overview

29.9.1 SHORTS
Address offset: 0x200

Shortcut register

29 CCM — AES CCM mode encryption

Page 273

29.9.2 INTENSET
Address offset: 0x304

Enable interrupt

29.9.3 INTENCLR
Address offset: 0x308

Disable interrupt

29.9.4 MICSTATUS
Address offset: 0x400

MIC check result

29 CCM — AES CCM mode encryption

Page 274

29.9.5 ENABLE
Address offset: 0x500

Enable

29.9.6 MODE
Address offset: 0x504

Operation mode

29.9.7 CNFPTR
Address offset: 0x508

Pointer to data structure holding AES key and NONCE vector

29.9.8 INPTR
Address offset: 0x50C

Input pointer

29 CCM — AES CCM mode encryption

Page 275

29.9.9 OUTPTR
Address offset: 0x510

Output pointer

29.9.10 SCRATCHPTR
Address offset: 0x514

Pointer to data area used for temporary storage

30 AAR — Accelerated address resolver

Page 276

30 AAR — Accelerated address resolver
Accelerated address resolver is a cryptographic support function for implementing the "Resolvable Private
Address Resolution Procedure" described in the Bluetooth Core specification v4.0. "Resolvable private
address generation" should be achieved using ECB and is not supported by AAR.

The procedure allows two devices that share a secret key to generate and resolve a hash based on their
device address. The AAR block enables real-time address resolution on incoming packets when configured
as described in this chapter. This allows real-time packet filtering (whitelisting) using a list of known shared
keys (Identity Resolving Keys (IRK) in Bluetooth).

30.1 Shared resources
The AAR shares registers and other resources with the peripherals that have the same ID as the AAR.
The user must therefore disable all peripherals that have the same ID as the AAR before the AAR can be
configured and used.

Disabling a peripheral that have the same ID as the AAR will not reset any of the registers that are shared
with the AAR. It is therefore important to configure all relevant AAR registers explicitly to secure that it
operates correctly.

See the Instantiation table in Instantiation on page 24 for details on peripherals and their IDs.

30.2 EasyDMA
The AAR implements EasyDMA for reading and writing to the RAM. The EasyDMA will have finished
accessing the RAM when the END, RESOLVED, and NOTRESOLVED events are generated.

If the IRKPTR, ADDRPTR and the SCRATCHPTR is not pointing to the Data RAM region, an EasyDMA
transfer may result in a HardFault or RAM corruption. See Memory on page 23 for more information about
the different memory regions.

30.3 Resolving a resolvable address
As per Bluetooth specification, a private resolvable address is composed of six bytes.

Figure 66: Resolvable address

To resolve an address the ADDRPTR register must point to the start of packet. The resolver is started by
triggering the START task. A RESOLVED event is generated when the AAR manages to resolve the address
using one of the Identity Resolving Keys (IRK) found in the IRK data structure. The AAR will use the IRK
specified in the register IRK0 to IRK15 starting from IRK0. How many to be used is specified by the NIRK
register. The AAR module will generate a NOTRESOLVED event if it is not able to resolve the address using
the specified list of IRKs.

The AAR will go through the list of available IRKs in the IRK data structure and for each IRK try to resolve
the address according to the Resolvable Private Address Resolution Procedure described in the Bluetooth
Specification24. The time it takes to resolve an address may vary depending on where in the list the

24 Bluetooth Specification Version 4.0 [Vol 3] chapter 10.8.2.3.

30 AAR — Accelerated address resolver

Page 277

resolvable address is located. The resolution time will also be affected by RAM accesses performed by other
peripherals and the CPU. See the Electrical specifications for more information about resolution time.

The AAR will only do a comparison of the received address to those programmed in the module. And not
check what type of address it actually is.

The AAR will stop as soon as it has managed to resolve the address, or after trying to resolve the address
using NIRK number of IRKs from the IRK data structure. The AAR will generate an END event after it has
stopped.

Figure 67: Address resolution with packet preloaded into RAM

30.4 Use case example for chaining RADIO packet reception with
address resolution using AAR
The AAR may be started as soon as the 6 bytes required by the AAR have been received by the RADIO and
stored in RAM. The ADDRPTR pointer must point to the start of packet.

Figure 68: Address resolution with packet loaded into RAM by the RADIO

30.5 IRK data structure
The IRK data structure is located in RAM at the memory location specified by the CNFPTR pointer register.

Table 63: IRK data structure overview

30 AAR — Accelerated address resolver

Page 278

30.6 Registers
Table 64: Instances

Table 65: Register Overview

30.6.1 INTENSET
Address offset: 0x304

Enable interrupt

30.6.2 INTENCLR
Address offset: 0x308

Disable interrupt

30 AAR — Accelerated address resolver

Page 279

30.6.3 STATUS
Address offset: 0x400

Resolution status

30.6.4 ENABLE
Address offset: 0x500

Enable AAR

30.6.5 NIRK
Address offset: 0x504

Number of IRKs

30.6.6 IRKPTR
Address offset: 0x508

30 AAR — Accelerated address resolver

Page 280

Pointer to IRK data structure

30.6.7 ADDRPTR
Address offset: 0x510

Pointer to the resolvable address

30.6.8 SCRATCHPTR
Address offset: 0x514

Pointer to data area used for temporary storage

30.7 Electrical specification

30.7.1 AAR Electrical Specification

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 281

31 SPIM — Serial peripheral interface master with
EasyDMA
The SPI master can communicate with multiple slaves using individual chip select signals for each of the
slave devices attached to a bus.

Listed here are the main features for the SPIM

• Three SPIM instances
• SPI mode 0-3
• EasyDMA direct transfer to/from RAM for both SPI Slave and SPI Master
• Individual selection of IO pin for each SPI signal

Figure 69: SPIM — SPI master with EasyDMA

The SPIM does not implement support for chip select directly. Therefore, the CPU must use available GPIOs
to select the correct slave and control this independently of the SPI master. The SPIM supports SPI modes 0
through 3. The CONFIG register allows setting CPOL and CPHA appropriately.

Table 66: SPI modes

31.1 Shared resources
The SPI shares registers and other resources with other peripherals that have the same ID as the SPI.
Therefore, the user must disable all peripherals that have the same ID as the SPI before the SPI can be
configured and used.

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 282

Disabling a peripheral that has the same ID as the SPI will not reset any of the registers that are shared with
the SPI. It is therefore important to configure all relevant SPI registers explicitly to secure that it operates
correctly.

See the Instantiation table in Instantiation on page 24 for details on peripherals and their IDs.

31.2 EasyDMA
The SPI master implements EasyDMA for reading and writing of data packets from and to the DATA RAM
without CPU involvement.

The RXD.PTR and TXD.PTR point to the RXD buffer (receive buffer) and TXD buffer (transmit buffer)
respectively, see Figure 69: SPIM — SPI master with EasyDMA on page 281. RXD.MAXCNT and
TXD.MAXCNT specify the maximum number of bytes allocated to the buffers.

The SPI master will automatically stop transmitting after TXD.MAXCNT bytes have been transmitted and
RXD.MAXCNT bytes have been received. If TXD.MAXCNT is larger than RXD.MAXCNT, the superfluous
received bytes will be ignored. If RXD.MAXCNT is larger than TXD.MAXCNT, the remaining transmitted
bytes will contain the value defined in the ORC register.

If the RXD.PTR and the TXD.PTR are not pointing to the Data RAM region, an EasyDMA transfer may result
in a HardFault or RAM corruption. See Memory on page 23 for more information about the different memory
regions.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next
transmission immediately after having received the STARTED event.

The ENDRX/ENDTX event indicate that EasyDMA has finished accessing respectively the RX/TX buffer in
RAM. The END event gets generated when both RX and TX are finished accessing the buffers in RAM.

31.2.1 EasyDMA list
EasyDMA supports one list type.

The supported list type is:

• Array list

EasyDMA array list
The EasyDMA array list can be represented by the data structure ArrayList_type.

For illustration, see the code example below. This data structure includes only a buffer with size equal
to Channel.MAXCNT. EasyDMA will use the Channel.MAXCNT register to determine when the buffer
is full. Replace 'Channel' by the specific data channel you want to use, for instance 'NRF_SPIM->RXD',
'NRF_SPIM->TXD', 'NRF_TWIM->RXD', etc.

The Channel.MAXCNT register cannot be specified larger than the actual size of the buffer. If
Channel.MAXCNT is specified larger than the size of the buffer, the EasyDMA channel may overflow the
buffer.

This array list does not provide a mechanism to explicitly specify where the next item in the list is located.
Instead, it assumes that the list is organized as a linear array where items are located one after the other in
RAM.

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 283

Figure 70: EasyDMA array list

31.3 SPI master transaction sequence
An SPI master transaction consists of a sequence started by the START task followed by a number of
events, and finally the STOP task.

An SPI master transaction is started by triggering the START task. The ENDTX event will be generated
when the transmitter has transmitted all bytes in the TXD buffer as specified in the TXD.MAXCNT register.
The ENDRX event will be generated when the receiver has filled the RXD buffer, i.e. received the last
possible byte as specified in the RXD.MAXCNT register.

Following a START task, the SPI master will generate an END event when both ENDRX and ENDTX have
been generated.

The SPI master is stopped by triggering the STOP task. A STOPPED event is generated when the SPI
master has stopped.

If the ENDRX event has not already been generated when the SPI master has come to a stop, the SPI
master will generate the ENDRX event explicitly even though the RX buffer is not full.

If the ENDTX event has not already been generated when the SPI master has come to a stop, the SPI
master will generate the ENDTX event explicitly even though all bytes in the TXD buffer, as specified in the
TXD.MAXCNT register, have not been transmitted.

The SPI master is a synchronous interface, and for every byte that is sent, a different byte will be received at
the same time; this is illustrated in Figure 71: SPI master transaction on page 284.

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 284

Figure 71: SPI master transaction

31.4 Low power
When putting the system in low power and the peripheral is not needed, lowest possible power consumption
is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent,
software shall wait until the STOPPED event was received as a response before disabling the peripheral
through the ENABLE register.

31.5 Master mode pin configuration
The SCK, MOSI, and MISO signals associated with the SPI master are mapped to physical pins according to
the configuration specified in the PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers respectively.

The PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers and their configurations are only used as long as
the SPI master is enabled, and retained only as long as the device is in ON mode. PSEL.SCK, PSEL.MOSI
and PSEL.MISO must only be configured when the SPI master is disabled.

To secure correct behavior in the SPI, the pins used by the SPI must be configured in the GPIO peripheral
as described in Table 67: GPIO configuration on page 284 prior to enabling the SPI. This configuration
must be retained in the GPIO for the selected IOs as long as the SPI is enabled.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behavior.

Table 67: GPIO configuration

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 285

31.6 Registers
Table 68: Instances

Table 69: Register Overview

31.6.1 SHORTS
Address offset: 0x200

Shortcut register

31.6.2 INTENSET
Address offset: 0x304

Enable interrupt

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 286

31.6.3 INTENCLR
Address offset: 0x308

Disable interrupt

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 287

31.6.4 ENABLE
Address offset: 0x500

Enable SPIM

31.6.5 PSEL.SCK
Address offset: 0x508

Pin select for SCK

31.6.6 PSEL.MOSI
Address offset: 0x50C

Pin select for MOSI signal

31.6.7 PSEL.MISO
Address offset: 0x510

Pin select for MISO signal

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 288

31.6.8 FREQUENCY
Address offset: 0x524

SPI frequency. Accuracy depends on the HFCLK source selected.

31.6.9 RXD.PTR
Address offset: 0x534

Data pointer

31.6.10 RXD.MAXCNT
Address offset: 0x538

Maximum number of bytes in receive buffer

31.6.11 RXD.AMOUNT
Address offset: 0x53C

Number of bytes transferred in the last transaction

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 289

31.6.12 RXD.LIST
Address offset: 0x540

EasyDMA list type

31.6.13 TXD.PTR
Address offset: 0x544

Data pointer

31.6.14 TXD.MAXCNT
Address offset: 0x548

Maximum number of bytes in transmit buffer

31.6.15 TXD.AMOUNT
Address offset: 0x54C

Number of bytes transferred in the last transaction

31.6.16 TXD.LIST
Address offset: 0x550

EasyDMA list type

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 290

31.6.17 CONFIG
Address offset: 0x554

Configuration register

31.6.18 ORC
Address offset: 0x5C0

Over-read character. Character clocked out in case and over-read of the TXD buffer.

31.7 Electrical specification

31.7.1 SPIM master interface electrical specifications

31.7.2 Serial Peripheral Interface Master (SPIM) timing specifications

31 SPIM — Serial peripheral interface master with
EasyDMA

Page 291

Figure 72: SPIM timing diagram

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 292

32 SPIS — Serial peripheral interface slave with
EasyDMA
SPI slave (SPIS) is implemented with EasyDMA support for ultra low power serial communication from an
external SPI master. EasyDMA in conjunction with hardware-based semaphore mechanisms removes all
real-time requirements associated with controlling the SPI slave from a low priority CPU execution context.

Figure 73: SPI slave

The SPIS supports SPI modes 0 through 3. The CONFIG register allows setting CPOL and CPHA
appropriately.

Table 70: SPI modes

32.1 Shared resources
The SPI slave shares registers and other resources with other peripherals that have the same ID as the SPI
slave. Therefore, you must disable all peripherals that have the same ID as the SPI slave before the SPI
slave can be configured and used.

Disabling a peripheral that has the same ID as the SPI slave will not reset any of the registers that are
shared with the SPI slave. It is important to configure all relevant SPI slave registers explicitly to secure that
it operates correctly.

The Instantiation table in Instantiation on page 24 shows which peripherals have the same ID as the SPI
slave.

32.2 EasyDMA
The SPI slave implements EasyDMA for reading and writing to and from the RAM. The END event indicates
that EasyDMA has finished accessing the buffer in RAM.

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 293

If the TXD.PTR and the RXD.PTR are not pointing to the Data RAM region, an EasyDMA transfer may result
in a HardFault or RAM corruption. See Memory on page 23 for more information about the different memory
regions.

32.3 SPI slave operation
SPI slave uses two memory pointers, RXD.PTR and TXD.PTR, that point to the RXD buffer (receive
buffer) and TXD buffer (transmit buffer) respectively. Since these buffers are located in RAM, which can be
accessed by both the SPI slave and the CPU, a hardware based semaphore mechanism is implemented to
enable safe sharing.

See Figure 74: SPI transaction when shortcut between END and ACQUIRE is enabled on page 294.

Before the CPU can safely update the RXD.PTR and TXD.PTR pointers it must first acquire the SPI
semaphore. The CPU can acquire the semaphore by triggering the ACQUIRE task and then receiving
the ACQUIRED event. When the CPU has updated the RXD.PTR and TXD.PTR pointers the CPU must
release the semaphore before the SPI slave will be able to acquire it. The CPU releases the semaphore by
triggering the RELEASE task. This is illustrated in Figure 74: SPI transaction when shortcut between END
and ACQUIRE is enabled on page 294. Triggering the RELEASE task when the semaphore is not granted
to the CPU will have no effect.

The semaphore mechanism does not, at any time, prevent the CPU from performing read or write access
to the RXD.PTR register, the TXD.PTR registers, or the RAM that these pointers are pointing to. The
semaphore is only telling when these can be updated by the CPU so that safe sharing is achieved.

The semaphore is by default assigned to the CPU after the SPI slave is enabled. No ACQUIRED event will
be generated for this initial semaphore handover. An ACQUIRED event will be generated immediately if the
ACQUIRE task is triggered while the semaphore is assigned to the CPU.

The SPI slave will try to acquire the semaphore when CSN goes low. If the SPI slave does not manage to
acquire the semaphore at this point, the transaction will be ignored. This means that all incoming data on
MOSI will be discarded, and the DEF (default) character will be clocked out on the MISO line throughout
the whole transaction. This will also be the case even if the semaphore is released by the CPU during the
transaction. In case of a race condition where the CPU and the SPI slave try to acquire the semaphore at
the same time, as illustrated in lifeline item 2 in Figure 74: SPI transaction when shortcut between END and
ACQUIRE is enabled on page 294, the semaphore will be granted to the CPU.

If the SPI slave acquires the semaphore, the transaction will be granted. The incoming data on MOSI will be
stored in the RXD buffer and the data in the TXD buffer will be clocked out on MISO.

When a granted transaction is completed and CSN goes high, the SPI slave will automatically release the
semaphore and generate the END event.

As long as the semaphore is available the SPI slave can be granted multiple transactions one after the
other. If the CPU is not able to reconfigure the TXD.PTR and RXD.PTR between granted transactions, the
same TX data will be clocked out and the RX buffers will be overwritten. To prevent this from happening,
the END_ACQUIRE shortcut can be used. With this shortcut enabled the semaphore will be handed over to
the CPU automatically after the granted transaction has completed, giving the CPU the ability to update the
TXPTR and RXPTR between every granted transaction.

If the CPU tries to acquire the semaphore while it is assigned to the SPI slave, an immediate handover
will not be granted. However, the semaphore will be handed over to the CPU as soon as the SPI slave
has released the semaphore after the granted transaction is completed. If the END_ACQUIRE shortcut is
enabled and the CPU has triggered the ACQUIRE task during a granted transaction, only one ACQUIRE
request will be served following the END event.

The MAXRX register specifies the maximum number of bytes the SPI slave can receive in one granted
transaction. If the SPI slave receives more than MAXRX number of bytes, an OVERFLOW will be indicated
in the STATUS register and the incoming bytes will be discarded.

The MAXTX parameter specifies the maximum number of bytes the SPI slave can transmit in one granted
transaction. If the SPI slave is forced to transmit more than MAXTX number of bytes, an OVERREAD will be
indicated in the STATUS register and the ORC character will be clocked out.

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 294

The RXD.AMOUNT and TXD.AMOUNT registers are updated when a granted transaction is completed.
The TXD.AMOUNT register indicates how many bytes were read from the TX buffer in the last transaction,
that is, ORC (over-read) characters are not included in this number. Similarly, the RXD.AMOUNT register
indicates how many bytes were written into the RX buffer in the last transaction.

The ENDRX event is generated when the RX buffer has been filled.

Figure 74: SPI transaction when shortcut between END and ACQUIRE is enabled

32.4 Pin configuration
The CSN, SCK, MOSI, and MISO signals associated with the SPI slave are mapped to physical pins
according to the configuration specified in the PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO
registers respectively. If the CONNECT field of any of these registers is set to Disconnected, the associated
SPI slave signal will not be connected to any physical pins.

The PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO registers and their configurations are only used
as long as the SPI slave is enabled, and retained only as long as the device is in System ON mode, see
POWER — Power supply on page 78 chapter for more information about power modes. When the peripheral
is disabled, the pins will behave as regular GPIOs, and use the configuration in their respective OUT bit field
and PIN_CNF[n] register. PSEL.CSN, PSEL.SCK, PSEL.MOSI, and PSEL.MISO must only be configured
when the SPI slave is disabled.

To secure correct behavior in the SPI slave, the pins used by the SPI slave must be configured in the GPIO
peripheral as described in Table 71: GPIO configuration before enabling peripheral on page 295 before
enabling the SPI slave. This is to secure that the pins used by the SPI slave are driven correctly if the SPI

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 295

slave itself is temporarily disabled, or if the device temporarily enters System OFF. This configuration must
be retained in the GPIO for the selected I/Os as long as the SPI slave is to be recognized by an external SPI
master.

The MISO line is set in high impedance as long as the SPI slave is not selected with CSN.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behavior.

Table 71: GPIO configuration before enabling peripheral

32.5 Registers
Table 72: Instances

Table 73: Register Overview

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 296

32.5.1 SHORTS
Address offset: 0x200

Shortcut register

32.5.2 INTENSET
Address offset: 0x304

Enable interrupt

32.5.3 INTENCLR
Address offset: 0x308

Disable interrupt

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 297

32.5.4 SEMSTAT
Address offset: 0x400

Semaphore status register

32.5.5 STATUS
Address offset: 0x440

Status from last transaction

Individual bits are cleared by writing a '1' to the bits that shall be cleared

32.5.6 ENABLE
Address offset: 0x500

Enable SPI slave

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 298

32.5.7 PSELSCK (Deprecated)
Address offset: 0x508

Pin select for SCK

32.5.8 PSELMISO (Deprecated)
Address offset: 0x50C

Pin select for MISO

32.5.9 PSELMOSI (Deprecated)
Address offset: 0x510

Pin select for MOSI

32.5.10 PSELCSN (Deprecated)
Address offset: 0x514

Pin select for CSN

32.5.11 PSEL.SCK
Address offset: 0x508

Pin select for SCK

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 299

32.5.12 PSEL.MISO
Address offset: 0x50C

Pin select for MISO signal

32.5.13 PSEL.MOSI
Address offset: 0x510

Pin select for MOSI signal

32.5.14 PSEL.CSN
Address offset: 0x514

Pin select for CSN signal

32.5.15 RXDPTR (Deprecated)
Address offset: 0x534

RXD data pointer

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 300

32.5.16 MAXRX (Deprecated)
Address offset: 0x538

Maximum number of bytes in receive buffer

32.5.17 AMOUNTRX (Deprecated)
Address offset: 0x53C

Number of bytes received in last granted transaction

32.5.18 RXD.PTR
Address offset: 0x534

RXD data pointer

32.5.19 RXD.MAXCNT
Address offset: 0x538

Maximum number of bytes in receive buffer

32.5.20 RXD.AMOUNT
Address offset: 0x53C

Number of bytes received in last granted transaction

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 301

32.5.21 TXDPTR (Deprecated)
Address offset: 0x544

TXD data pointer

32.5.22 MAXTX (Deprecated)
Address offset: 0x548

Maximum number of bytes in transmit buffer

32.5.23 AMOUNTTX (Deprecated)
Address offset: 0x54C

Number of bytes transmitted in last granted transaction

32.5.24 TXD.PTR
Address offset: 0x544

TXD data pointer

32.5.25 TXD.MAXCNT
Address offset: 0x548

Maximum number of bytes in transmit buffer

32.5.26 TXD.AMOUNT
Address offset: 0x54C

Number of bytes transmitted in last granted transaction

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 302

32.5.27 CONFIG
Address offset: 0x554

Configuration register

32.5.28 DEF
Address offset: 0x55C

Default character. Character clocked out in case of an ignored transaction.

32.5.29 ORC
Address offset: 0x5C0

Over-read character

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 303

32.6 Electrical specification

32.6.1 SPIS slave interface electrical specifications

32.6.2 Serial Peripheral Interface Slave (SPIS) timing specifications

Figure 75: SPIS timing diagram

32 SPIS — Serial peripheral interface slave with
EasyDMA

Page 304

Figure 76: Common SPIM and SPIS timing diagram

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 305

33 TWIM — I2C compatible two-wire interface master
with EasyDMA
TWI master with EasyDMA (TWIM) is a two-wire half-duplex master which can communicate with multiple
slave devices connected to the same bus

Listed here are the main features for TWIM:

• I2C compatible
• 100 kbps, 250 kbps, or 400 kbps
• Support for clock stretching
• EasyDMA

The two-wire interface can communicate with a bi-directional wired-AND bus with two lines (SCL, SDA).
The protocol makes it possible to interconnect up to 127 individually addressable devices. TWIM is not
compatible with CBUS.

The GPIOs used for each two-wire interface line can be chosen from any GPIO on the device and are
independently configurable. This enables great flexibility in device pinout and efficient use of board space
and signal routing.

Figure 77: TWI master with EasyDMA

A typical TWI setup consists of one master and one or more slaves. For an example, see Figure 78: A typical
TWI setup comprising one master and three slaves on page 306. This TWIM is only able to operate as a
single master on the TWI bus. Multi-master bus configuration is not supported.

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 306

Figure 78: A typical TWI setup comprising one master and three slaves

This TWI master supports clock stretching performed by the slaves. The TWI master is started by triggering
the STARTTX or STARTRX tasks, and stopped by triggering the STOP task. The TWI master will generate a
STOPPED event when it has stopped following a STOP task.

The TWI master cannot get stopped while it is suspended, so the STOP task has to be issued after the TWI
master has been resumed.

After the TWI master is started, the STARTTX task or the STARTRX task should not be triggered again
before the TWI master has stopped, i.e. following a LASTRX, LASTTX or STOPPED event.

If a NACK is clocked in from the slave, the TWI master will generate an ERROR event.

33.1 Shared resources
The TWI master shares registers and other resources with other peripherals that have the same ID as the
TWI master. Therefore, you must disable all peripherals that have the same ID as the TWI master before the
TWI master can be configured and used.

Disabling a peripheral that has the same ID as the TWI master will not reset any of the registers that are
shared with the TWI master. It is therefore important to configure all relevant registers explicitly to secure that
the TWI master operates correctly.

The Instantiation table in Instantiation on page 24 shows which peripherals have the same ID as the TWI.

33.2 EasyDMA
The TWI master implements EasyDMA for reading and writing to and from the RAM.

If the TXD.PTR and the RXD.PTR are not pointing to the Data RAM region, an EasyDMA transfer may result
in a HardFault or RAM corruption. See Memory on page 23 for more information about the different memory
regions.

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next RX/
TX transmission immediately after having received the RXSTARTED/TXSTARTED event.

The STOPPED event indicates that EasyDMA has finished accessing the buffer in RAM.

33.2.1 EasyDMA list
EasyDMA supports one list type.

The supported list type is:

• Array list

EasyDMA array list
The EasyDMA array list can be represented by the data structure ArrayList_type.

For illustration, see the code example below. This data structure includes only a buffer with size equal
to Channel.MAXCNT. EasyDMA will use the Channel.MAXCNT register to determine when the buffer
is full. Replace 'Channel' by the specific data channel you want to use, for instance 'NRF_SPIM->RXD',
'NRF_SPIM->TXD', 'NRF_TWIM->RXD', etc.

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 307

The Channel.MAXCNT register cannot be specified larger than the actual size of the buffer. If
Channel.MAXCNT is specified larger than the size of the buffer, the EasyDMA channel may overflow the
buffer.

This array list does not provide a mechanism to explicitly specify where the next item in the list is located.
Instead, it assumes that the list is organized as a linear array where items are located one after the other in
RAM.

Figure 79: EasyDMA array list

33.3 Master write sequence
A TWI master write sequence is started by triggering the STARTTX task. After the STARTTX task has
been triggered, the TWI master will generate a start condition on the TWI bus, followed by clocking out the
address and the READ/WRITE bit set to 0 (WRITE=0, READ=1).

The address must match the address of the slave device that the master wants to write to. The READ/
WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) generated by the slave.

After receiving the ACK bit, the TWI master will clock out the data bytes found in the transmit buffer located
in RAM at the address specified in the TXD.PTR register. Each byte clocked out from the master will be
followed by an ACK/NACK bit clocked in from the slave.

A typical TWI master write sequence is illustrated in Figure 80: TWI master writing data to a slave on page
308. Occurrence 2 in the figure illustrates clock stretching performed by the TWI master following a
SUSPEND task.

A SUSPENDED event indicates that the SUSPEND task has taken effect; this event can be used to
synchronize the software.

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 308

Figure 80: TWI master writing data to a slave

The TWI master will generate a LASTTX event when it starts to transmit the last byte, this is illustrated in
Figure 80: TWI master writing data to a slave on page 308

The TWI master is stopped by triggering the STOP task, this task should be triggered during the
transmission of the last byte to secure that the TWI will stop as fast as possible after sending the last byte. It
is safe to use the shortcut between LASTTX and STOP to accomplish this.

Note that the TWI master does not stop by itself when the whole RAM buffer has been sent, or when an error
occurs. The STOP task must be issued, through the use of a local or PPI shortcut, or in software as part of
the error handler.

The TWI master cannot get stopped while it is suspended, so the STOP task has to be issued after the TWI
master has been resumed.

33.4 Master read sequence
A TWI master read sequence is started by triggering the STARTRX task. After the STARTRX task has been
triggered the TWI master will generate a start condition on the TWI bus, followed by clocking out the address
and the READ/WRITE bit set to 1 (WRITE = 0, READ = 1). The address must match the address of the slave
device that the master wants to read from. The READ/WRITE bit is followed by an ACK/NACK bit (ACK=0 or
NACK = 1) generated by the slave.

After having sent the ACK bit the TWI slave will send data to the master using the clock generated by the
master.

Data received will be stored in RAM at the address specified in the RXD.PTR register. The TWI master will
generate an ACK after all but the last byte received from the slave. The TWI master will generate a NACK
after the last byte received to indicate that the read sequence shall stop.

A typical TWI master read sequence is illustrated in Figure 81: The TWI master reading data from a slave on
page 309. Occurrence 2 in the figure illustrates clock stretching performed by the TWI master following a
SUSPEND task.

A SUSPENDED event indicates that the SUSPEND task has taken effect; this event can be used to
synchronize the software.

The TWI master will generate a LASTRX event when it is ready to receive the last byte, this is illustrated
in Figure 81: The TWI master reading data from a slave on page 309. If RXD.MAXCNT > 1 the LASTRX
event is generated after sending the ACK of the previously received byte. If RXD.MAXCNT = 1 the LASTRX
event is generated after receiving the ACK following the address and READ bit.

The TWI master is stopped by triggering the STOP task, this task must be triggered before the NACK bit
is supposed to be transmitted. The STOP task can be triggered at any time during the reception of the last
byte. It is safe to use the shortcut between LASTRX and STOP to accomplish this.

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 309

Note that the TWI master does not stop by itself when the RAM buffer is full, or when an error occurs. The
STOP task must be issued, through the use of a local or PPI shortcut, or in software as part of the error
handler.

The TWI master cannot get stopped while it is suspended, so the STOP task has to be issued after the TWI
master has been resumed.

Figure 81: The TWI master reading data from a slave

33.5 Master repeated start sequence
A typical repeated start sequence is one in which the TWI master writes two bytes to the slave followed by
reading four bytes from the slave. This example uses shortcuts to perform the simplest type of repeated start
sequence, i.e. one write followed by one read. The same approach can be used to perform a repeated start
sequence where the sequence is read followed by write.

The figure Figure 82: A repeated start sequence, where the TWI master writes two bytes followed by reading
4 bytes from the slave on page 309 illustrates this:

Figure 82: A repeated start sequence, where the TWI master writes two bytes followed by reading 4
bytes from the slave

If a more complex repeated start sequence is needed and the TWI firmware drive is serviced in a low priority
interrupt it may be necessary to use the SUSPEND task and SUSPENDED event to guarantee that the
correct tasks are generated at the correct time. This is illustrated in Figure 83: A double repeated start
sequence using the SUSPEND task to secure safe operation in low priority interrupts on page 310.

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 310

Figure 83: A double repeated start sequence using the SUSPEND task to secure safe operation in low
priority interrupts

33.6 Low power
When putting the system in low power and the peripheral is not needed, lowest possible power consumption
is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent,
software shall wait until the STOPPED event was received as a response before disabling the peripheral
through the ENABLE register.

33.7 Master mode pin configuration
The SCL and SDA signals associated with the TWI master are mapped to physical pins according to the
configuration specified in the PSEL.SCL and PSEL.SDA registers respectively.

The PSEL.SCL and PSEL.SDA registers and their configurations are only used as long as the TWI master
is enabled, and retained only as long as the device is in ON mode. When the peripheral is disabled, the pins
will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN_CNF[n]
register. PSEL.SCL, PSEL.SDA must only be configured when the TWI master is disabled.

To secure correct signal levels on the pins used by the TWI master when the system is in OFF mode, and
when the TWI master is disabled, these pins must be configured in the GPIO peripheral as described in
Table 74: GPIO configuration before enabling peripheral on page 310.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behavior.

Table 74: GPIO configuration before enabling peripheral

33.8 Registers
Table 75: Instances

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 311

Table 76: Register Overview

33.8.1 SHORTS
Address offset: 0x200

Shortcut register

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 312

33.8.2 INTEN
Address offset: 0x300

Enable or disable interrupt

33.8.3 INTENSET
Address offset: 0x304

Enable interrupt

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 313

33.8.4 INTENCLR
Address offset: 0x308

Disable interrupt

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 314

33.8.5 ERRORSRC
Address offset: 0x4C4

Error source

33.8.6 ENABLE
Address offset: 0x500

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 315

Enable TWIM

33.8.7 PSEL.SCL
Address offset: 0x508

Pin select for SCL signal

33.8.8 PSEL.SDA
Address offset: 0x50C

Pin select for SDA signal

33.8.9 FREQUENCY
Address offset: 0x524

TWI frequency

33.8.10 RXD.PTR
Address offset: 0x534

Data pointer

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 316

33.8.11 RXD.MAXCNT
Address offset: 0x538

Maximum number of bytes in receive buffer

33.8.12 RXD.AMOUNT
Address offset: 0x53C

Number of bytes transferred in the last transaction

33.8.13 RXD.LIST
Address offset: 0x540

EasyDMA list type

33.8.14 TXD.PTR
Address offset: 0x544

Data pointer

33.8.15 TXD.MAXCNT
Address offset: 0x548

Maximum number of bytes in transmit buffer

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 317

33.8.16 TXD.AMOUNT
Address offset: 0x54C

Number of bytes transferred in the last transaction

33.8.17 TXD.LIST
Address offset: 0x550

EasyDMA list type

33.8.18 ADDRESS
Address offset: 0x588

Address used in the TWI transfer

33.9 Electrical specification

33.9.1 TWIM interface electrical specifications

33 TWIM — I2C compatible two-wire interface
master with EasyDMA

Page 318

33.9.2 Two Wire Interface Master (TWIM) timing specifications

Figure 84: TWIM timing diagram, 1 byte transaction

Figure 85: Recommended TWIM pullup value vs. line capacitance

• The I2C specification allows a line capacitance of 400 pF at most.
• The nRF52832 internal pullup has a fixed value of typ. 13 kOhm, see RPU in the GPIO chapter.

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 319

34 TWIS — I2C compatible two-wire interface slave with
EasyDMA
TWI slave with EasyDMA (TWIS) is compatible with I2C operating at 100 kHz and 400 kHz. The TWI
transmitter and receiver implement EasyDMA.

Figure 86: TWI slave with EasyDMA

A typical TWI setup consists of one master and one or more slaves. For an example, see Figure 87: A typical
TWI setup comprising one master and three slaves on page 319. TWIS is only able to operate with a single
master on the TWI bus.

Figure 87: A typical TWI setup comprising one master and three slaves

The TWI slave state machine is illustrated in Figure 88: TWI slave state machine on page 320 and Table
77: TWI slave state machine symbols on page 320 is explaining the different symbols used in the state
machine.

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 320

Figure 88: TWI slave state machine

Table 77: TWI slave state machine symbols

The TWI slave supports clock stretching performed by the master.

The TWI slave operates in a low power mode while waiting for a TWI master to initiate a transfer. As long as
the TWI slave is not addressed, it will remain in this low power mode.

To secure correct behaviour of the TWI slave, PSEL.SCL, PSEL.SDA, CONFIG and the ADDRESS[n]
registers, must be configured prior to enabling the TWI slave through the ENABLE register. Similarly,
changing these settings must be performed while the TWI slave is disabled. Failing to do so may result in
unpredictable behaviour.

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 321

34.1 Shared resources
The TWI slave shares registers and other resources with other peripherals that have the same ID as the TWI
slave.

Therefore, you must disable all peripherals that have the same ID as the TWI slave before the TWI slave can
be configured and used. Disabling a peripheral that has the same ID as the TWI slave will not reset any of
the registers that are shared with the TWI slave. It is therefore important to configure all relevant registers
explicitly to secure that the TWI slave operates correctly.

The Instantiation table in Instantiation on page 24 shows which peripherals have the same ID as the TWI
slave.

34.2 EasyDMA
The TWI slave implements EasyDMA for reading and writing to and from the RAM.

The STOPPED event indicates that EasyDMA has finished accessing the buffer in RAM.

If the TXD.PTR and the RXD.PTR are not pointing to the Data RAM region, an EasyDMA transfer may result
in a HardFault or RAM corruption. See Memory on page 23 for more information about the different memory
regions.

34.3 TWI slave responding to a read command
Before the TWI slave can respond to a read command the TWI slave must be configured correctly and
enabled via the ENABLE register. When enabled the TWI slave will be in its IDLE state where it will consume
IIDLE .

A read command is started when the TWI master generates a start condition on the TWI bus, followed by
clocking out the address and the READ/WRITE bit set to 1 (WRITE=0, READ=1). The READ/WRITE bit is
followed by an ACK/NACK bit (ACK=0 or NACK=1) response from the TWI slave.

The TWI slave is able to listen for up to two addresses at the same time. Which addresses to listen for is
configured in the ADDRESS registers and the CONFIG register.

The TWI slave will only acknowledge (ACK) the read command if the address presented by the master
matches one of the addresses the slave is configured to listen for. The TWI slave will generate a READ
event when it acknowledges the read command.

The TWI slave is only able to detect a read command from the IDLE state.

The TWI slave will set an internal 'TX prepared' flag when the PREPARETX task is triggered.

When the read command is received the TWI slave will enter the TX state if the internal 'TX prepared' flag is
set.

If the internal 'TX prepared' flag is not set when the read command is received, the TWI slave will stretch the
master's clock until the PREPARETX task is triggered and the internal 'TX prepared' flag is set.

The TWI slave will generate the TXSTARTED event and clear the 'TX prepared' flag ('unprepare TX') when
it enters the TX state. In this state the TWI slave will send the data bytes found in the transmit buffer to the
master using the master's clock. The TWI slave will consume ITX in this mode.

The TWI slave will go back to the IDLE state if the TWI slave receives a restart command when it is in the TX
state.

The TWI slave is stopped when it receives the stop condition from the TWI master. A STOPPED event will
be generated when the transaction has stopped. The TWI slave will clear the 'TX prepared' flag ('unprepare
TX') and go back to the IDLE state when it has stopped.

The transmit buffer is located in RAM at the address specified in the TXD.PTR register. The TWI slave will
only be able to send TXD.MAXCNT bytes from the transmit buffer for each transaction. If the TWI master

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 322

forces the slave to send more than TXD.MAXCNT bytes, the slave will send the byte specified in the ORC
register to the master instead. If this happens, an ERROR event will be generated.

The EasyDMA configuration registers, see TXD.PTR etc., are latched when the TXSTARTED event is
generated.

The TWI slave can be forced to stop by triggering the STOP task. A STOPPED event will be generated when
the TWI slave has stopped. The TWI slave will clear the 'TX prepared' flag and go back to the IDLE state
when it has stopped, see also Terminating an ongoing TWI transaction on page 324.

Each byte sent from the slave will be followed by an ACK/NACK bit sent from the master. The TWI master
will generate a NACK following the last byte that it wants to receive to tell the slave to release the bus so
that the TWI master can generate the stop condition. The TXD.AMOUNT register can be queried after a
transaction to see how many bytes were sent.

A typical TWI slave read command response is illustrated in Figure 89: The TWI slave responding to a read
command on page 322. Occurrence 2 in the figure illustrates clock stretching performed by the TWI slave
following a SUSPEND task.

Figure 89: The TWI slave responding to a read command

34.4 TWI slave responding to a write command
Before the TWI slave can respond to a write command the TWI slave must be configured correctly and
enabled via the ENABLE register. When enabled the TWI slave will be in its IDLE state where it will consume
IIDLE.

A write command is started when the TWI master generates a start condition on the TWI bus, followed by
clocking out the address and the READ/WRITE bit set to 0 (WRITE=0, READ=1). The READ/WRITE bit is
followed by an ACK/NACK bit (ACK=0 or NACK=1) response from the slave.

The TWI slave is able to listen for up to two addresses at the same time. Which addresses to listen for is
configured in the ADDRESS registers and the CONFIG register.

The TWI slave will only acknowledge (ACK) the write command if the address presented by the master
matches one of the addresses the slave is configured to listen for. The TWI slave will generate a WRITE
event if it acknowledges the write command.

The TWI slave is only able to detect a write command from the IDLE state.

The TWI slave will set an internal 'RX prepared' flag when the PREPARERX task is triggered.

When the write command is received the TWI slave will enter the RX state if the internal 'RX prepared' flag is
set.

If the internal 'RX prepared' flag is not set when the write command is received, the TWI slave will stretch the
master's clock until the PREPARERX task is triggered and the internal 'RX prepared' flag is set.

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 323

The TWI slave will generate the RXSTARTED event and clear the internal 'RX prepared' flag ('unprepare
RX') when it enters the RX state. In this state the TWI slave will be able to receive the bytes sent by the TWI
master. The TWI slave will consume IRX in this mode.

The TWI slave will go back to the IDLE state if the TWI slave receives a restart command when it is in the
RX state.

The TWI slave is stopped when it receives the stop condition from the TWI master. A STOPPED event will
be generated when the transaction has stopped. The TWI slave will clear the internal 'RX prepared' flag
('unprepare RX') and go back to the IDLE state when it has stopped.

The receive buffer is located in RAM at the address specified in the TXD.PTR register. The TWI slave will
only be able to receive as many bytes as specified in the RXD.MAXCNT register. If the TWI master tries to
send more bytes to the slave than the slave is able to receive,these bytes will be discarded and the bytes will
be NACKed by the slave. If this happens, an ERROR event will be generated.

The EasyDMA configuration registers, see RXD.PTR etc., are latched when the RXSTARTED event is
generated.

The TWI slave can be forced to stop by triggering the STOP task. A STOPPED event will be generated when
the TWI slave has stopped. The TWI slave will clear the internal 'RX prepared' flag and go back to the IDLE
state when it has stopped, see also Terminating an ongoing TWI transaction on page 324.

The TWI slave will generate an ACK after every byte received from the master. The RXD.AMOUNT register
can be queried after a transaction to see how many bytes were received.

A typical TWI slave write command response is illustrated in Figure 90: The TWI slave responding to a write
command on page 323. Occurrence 2 in the figure illustrates clock stretching performed by the TWI slave
following a SUSPEND task.

Figure 90: The TWI slave responding to a write command

34.5 Master repeated start sequence
An example of a repeated start sequence is one in which the TWI master writes two bytes to the slave
followed by reading four bytes from the slave.

This is illustrated in Figure 91: A repeated start sequence, where the TWI master writes two bytes followed
by reading four bytes from the slave on page 324.

It is here assumed that the receiver does not know in advance what the master wants to read, and that
this information is provided in the first two bytes received in the write part of the repeated start sequence.
To guarantee that the CPU is able to process the received data before the TWI slave starts to reply to the
read command, the SUSPEND task is triggered via a shortcut from the READ event generated when the
read command is received. When the CPU has processed the incoming data and prepared the correct data
response, the CPU will resume the transaction by triggering the RESUME task.

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 324

Figure 91: A repeated start sequence, where the TWI master writes two bytes followed by reading
four bytes from the slave

34.6 Terminating an ongoing TWI transaction
In some situations, e.g. if the external TWI master is not responding correctly, it may be required to terminate
an ongoing transaction.

This can be achieved by triggering the STOP task. In this situation a STOPPED event will be generated
when the TWI has stopped independent of whether or not a STOP condition has been generated on the TWI
bus. The TWI slave will release the bus when it has stopped and go back to its IDLE state.

34.7 Low power
When putting the system in low power and the peripheral is not needed, lowest possible power consumption
is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent,
software shall wait until the STOPPED event was received as a response before disabling the peripheral
through the ENABLE register.

34.8 Slave mode pin configuration
The SCL and SDA signals associated with the TWI slave are mapped to physical pins according to the
configuration specified in the PSEL.SCL and PSEL.SDA registers respectively.

The PSEL.SCL and PSEL.SDA registers and their configurations are only used as long as the TWI slave is
enabled, and retained only as long as the device is in ON mode. When the peripheral is disabled, the pins
will behave as regular GPIOs, and use the configuration in their respective OUT bit field and PIN_CNF[n]
register. PSEL.SCL and PSEL.SDA must only be configured when the TWI slave is disabled.

To secure correct signal levels on the pins used by the TWI slave when the system is in OFF mode, and
when the TWI slave is disabled, these pins must be configured in the GPIO peripheral as described in Table
78: GPIO configuration before enabling peripheral on page 324.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behavior.

Table 78: GPIO configuration before enabling peripheral

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 325

34.9 Registers
Table 79: Instances

Table 80: Register Overview

34.9.1 SHORTS
Address offset: 0x200

Shortcut register

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 326

34.9.2 INTEN
Address offset: 0x300

Enable or disable interrupt

34.9.3 INTENSET
Address offset: 0x304

Enable interrupt

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 327

34.9.4 INTENCLR
Address offset: 0x308

Disable interrupt

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 328

34.9.5 ERRORSRC
Address offset: 0x4D0

Error source

34.9.6 MATCH
Address offset: 0x4D4

Status register indicating which address had a match

34.9.7 ENABLE
Address offset: 0x500

Enable TWIS

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 329

34.9.8 PSEL.SCL
Address offset: 0x508

Pin select for SCL signal

34.9.9 PSEL.SDA
Address offset: 0x50C

Pin select for SDA signal

34.9.10 RXD.PTR
Address offset: 0x534

RXD Data pointer

34.9.11 RXD.MAXCNT
Address offset: 0x538

Maximum number of bytes in RXD buffer

34.9.12 RXD.AMOUNT
Address offset: 0x53C

Number of bytes transferred in the last RXD transaction

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 330

34.9.13 TXD.PTR
Address offset: 0x544

TXD Data pointer

34.9.14 TXD.MAXCNT
Address offset: 0x548

Maximum number of bytes in TXD buffer

34.9.15 TXD.AMOUNT
Address offset: 0x54C

Number of bytes transferred in the last TXD transaction

34.9.16 ADDRESS[0]
Address offset: 0x588

TWI slave address 0

34.9.17 ADDRESS[1]
Address offset: 0x58C

TWI slave address 1

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 331

34.9.18 CONFIG
Address offset: 0x594

Configuration register for the address match mechanism

34.9.19 ORC
Address offset: 0x5C0

Over-read character. Character sent out in case of an over-read of the transmit buffer.

34.10 Electrical specification

34.10.1 TWIS slave interface electrical specifications

34.10.2 TWIS slave timing specifications

34 TWIS — I2C compatible two-wire interface
slave with EasyDMA

Page 332

Figure 92: TWIS timing diagram, 1 byte transaction

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 333

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA
The Universal asynchronous receiver/transmitter with EasyDMA (UARTE) offers fast, full-duplex,
asynchronous serial communication with built-in flow control (CTS, RTS) support in hardware at a rate up to
1 Mbps, and EasyDMA data transfer from/to RAM.

Listed here are the main features for UARTE:

• Full-duplex operation
• Automatic hardware flow control
• Parity checking and generation for the 9th data bit
• EasyDMA
• Up to 1 Mbps baudrate
• Return to IDLE between transactions supported (when using HW flow control)
• One stop bit
• Least significant bit (LSB) first

Figure 93: UARTE configuration

The GPIOs used for each UART interface can be chosen from any GPIO on the device and are
independently configurable. This enables great flexibility in device pinout and efficient use of board space
and signal routing.

35.1 Shared resources
The UARTE shares registers and other resources with other peripherals that have the same ID as the
UARTE.

Therefore, you must disable all peripherals that have the same ID as the UARTE before the UARTE can be
configured and used. Disabling a peripheral that has the same ID as the UARTE will not reset any of the
registers that are shared with the UARTE. It is therefore important to configure all relevant UARTE registers
explicitly to ensure that it operates correctly.

See the Instantiation table in Instantiation on page 24 for details on peripherals and their IDs.

35.2 EasyDMA
The UARTE implements EasyDMA for reading and writing to and from the RAM.

If the TXD.PTR and the RXD.PTR are not pointing to the Data RAM region, an EasyDMA transfer may result
in a HardFault or RAM corruption. See Memory on page 23 for more information about the different memory
regions.

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 334

The .PTR and .MAXCNT registers are double-buffered. They can be updated and prepared for the next RX/
TX transmission immediately after having received the RXSTARTED/TXSTARTED event.

The ENDRX/ENDTX event indicates that EasyDMA has finished accessing respectively the RX/TX buffer in
RAM.

35.3 Transmission
The first step of a DMA transmission is storing bytes in the transmit buffer and configuring EasyDMA. This
is achieved by writing the initial address pointer to TXD.PTR, and the number of bytes in the RAM buffer to
TXD.MAXCNT. The UARTE transmission is started by triggering the STARTTX task.

After each byte has been sent over the TXD line, a TXDRDY event will be generated.

When all bytes in the TXD buffer, as specified in the TXD.MAXCNT register, have been transmitted, the
UARTE transmission will end automatically and an ENDTX event will be generated.

A UARTE transmission sequence is stopped by triggering the STOPTX task, a TXSTOPPED event will be
generated when the UARTE transmitter has stopped.

If the ENDTX event has not already been generated when the UARTE transmitter has come to a stop, the
UARTE will generate the ENDTX event explicitly even though all bytes in the TXD buffer, as specified in the
TXD.MAXCNT register, have not been transmitted.

If flow control is enabled, a transmission will be automatically suspended when CTS is deactivated and
resumed when CTS is activated again, as illustrated in Figure 94: UARTE transmission on page 334.
A byte that is in transmission when CTS is deactivated will be fully transmitted before the transmission is
suspended.

Figure 94: UARTE transmission

The UARTE transmitter will be in its lowest activity level, and consume the least amount of energy, when
it is stopped, i.e. before it is started via STARTTX or after it has been stopped via STOPTX and the
TXSTOPPED event has been generated. See POWER — Power supply on page 78 for more information
about power modes.

35.4 Reception
The UARTE receiver is started by triggering the STARTRX task. The UARTE receiver is using EasyDMA to
store incoming data in an RX buffer in RAM.

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 335

The RX buffer is located at the address specified in the RXD.PTR register. The RXD.PTR register is double-
buffered and it can be updated and prepared for the next STARTRX task immediately after the RXSTARTED
event is generated. The size of the RX buffer is specified in the RXD.MAXCNT register and the UARTE will
generate an ENDRX event when it has filled up the RX buffer, see Figure 95: UARTE reception on page
335.

For each byte received over the RXD line, an RXDRDY event will be generated. This event is likely to occur
before the corresponding data has been transferred to Data RAM.

The RXD.AMOUNT register can be queried following an ENDRX event to see how many new bytes have
been transferred to the RX buffer in RAM since the previous ENDRX event.

Figure 95: UARTE reception

The UARTE receiver is stopped by triggering the STOPRX task. An RXTO event is generated when the
UARTE has stopped. The UARTE will make sure that an impending ENDRX event will be generated before
the RXTO event is generated. This means that the UARTE will guarantee that no ENDRX event will be
generated after RXTO, unless the UARTE is restarted or a FLUSHRX command is issued after the RXTO
event is generated.

Important: If the ENDRX event has not already been generated when the UARTE receiver has
come to a stop, which implies that all pending content in the RX FIFO has been moved to the RX
buffer, the UARTE will generate the ENDRX event explicitly even though the RX buffer is not full. In
this scenario the ENDRX event will be generated before the RXTO event is generated.

To be able to know how many bytes have actually been received into the RX buffer, the CPU can read the
RXD.AMOUNT register following the ENDRX event or the RXTO event.

The UARTE is able to receive up to four bytes after the STOPRX task has been triggered as long as these
are sent in succession immediately after the RTS signal is deactivated. This is possible because after the
RTS is deactivated the UARTE is able to receive bytes for an extended period equal to the time it takes to
send 4 bytes on the configured baud rate.

After the RXTO event is generated the internal RX FIFO may still contain data, and to move this data to RAM
the FLUSHRX task must be triggered. To make sure that this data does not overwrite data in the RX buffer,
the RX buffer should be emptied or the RXD.PTR should be updated before the FLUSHRX task is triggered.

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 336

To make sure that all data in the RX FIFO is moved to the RX buffer, the RXD.MAXCNT register must be set
to RXD.MAXCNT > 4, see Figure 96: UARTE reception with forced stop via STOPRX on page 336. The
UARTE will generate the ENDRX event after completing the FLUSHRX task even if the RX FIFO was empty
or if the RX buffer does not get filled up. To be able to know how many bytes have actually been received
into the RX buffer in this case, the CPU can read the RXD.AMOUNT register following the ENDRX event.

Figure 96: UARTE reception with forced stop via STOPRX

If HW flow control is enabled the RTS signal will be deactivated when the receiver is stopped via the
STOPRX task or when the UARTE is only able to receive four more bytes in its internal RX FIFO.

With flow control disabled, the UARTE will function in the same way as when the flow control is enabled
except that the RTS line will not be used. This means that no signal will be generated when the UARTE has
reached the point where it is only able to receive four more bytes in its internal RX FIFO. Data received when
the internal RX FIFO is filled up, will be lost.

The UARTE receiver will be in its lowest activity level, and consume the least amount of energy, when it is
stopped, i.e. before it is started via STARTRX or after it has been stopped via STOPRX and the RXTO event
has been generated. See POWER — Power supply on page 78 for more information about power modes.

35.5 Error conditions
An ERROR event, in the form of a framing error, will be generated if a valid stop bit is not detected in a
frame. Another ERROR event, in the form of a break condition, will be generated if the RXD line is held
active low for longer than the length of a data frame. Effectively, a framing error is always generated before a
break condition occurs.

An ERROR event will not stop reception. If the error was a parity error, the received byte will still be
transferred into Data RAM, and so will following incoming bytes. If there was a framing error (wrong stop bit),
that specific byte will NOT be stored into Data RAM, but following incoming bytes will.

35.6 Using the UARTE without flow control
If flow control is not enabled, the interface will behave as if the CTS and RTS lines are kept active all the
time.

35.7 Parity configuration
When parity is enabled, the parity will be generated automatically from the even parity of TXD and RXD for
transmission and reception respectively.

35.8 Low power
When putting the system in low power and the peripheral is not needed, lowest possible power consumption
is achieved by stopping, and then disabling the peripheral.

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 337

The STOPTX and STOPRX tasks may not be always needed (the peripheral might already be stopped),
but if STOPTX and/or STOPRX is sent, software shall wait until the TXSTOPPED and/or RXTO event is
received in response, before disabling the peripheral through the ENABLE register.

35.9 Pin configuration
The different signals RXD, CTS (Clear To Send, active low), RTS (Request To Send, active low), and TXD
associated with the UARTE are mapped to physical pins according to the configuration specified in the
PSEL.RXD, PSEL.CTS, PSEL.RTS, and PSEL.TXD registers respectively.

The PSEL.RXD, PSEL.CTS, PSEL.RTS, and PSEL.TXD registers and their configurations are only used
as long as the UARTE is enabled, and retained only for the duration the device is in ON mode. PSEL.RXD,
PSEL.RTS, PSEL.RTS and PSEL.TXD must only be configured when the UARTE is disabled.

To secure correct signal levels on the pins by the UARTE when the system is in OFF mode, the pins must be
configured in the GPIO peripheral as described in Table 81: GPIO configuration before enabling peripheral
on page 337.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behavior.

Table 81: GPIO configuration before enabling peripheral

35.10 Registers
Table 82: Instances

Table 83: Register Overview

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 338

35.10.1 SHORTS
Address offset: 0x200

Shortcut register

35.10.2 INTEN
Address offset: 0x300

Enable or disable interrupt

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 339

35.10.3 INTENSET
Address offset: 0x304

Enable interrupt

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 340

35.10.4 INTENCLR
Address offset: 0x308

Disable interrupt

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 341

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 342

35.10.5 ERRORSRC
Address offset: 0x480

Error source

35.10.6 ENABLE
Address offset: 0x500

Enable UART

35.10.7 PSEL.RTS
Address offset: 0x508

Pin select for RTS signal

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 343

35.10.8 PSEL.TXD
Address offset: 0x50C

Pin select for TXD signal

35.10.9 PSEL.CTS
Address offset: 0x510

Pin select for CTS signal

35.10.10 PSEL.RXD
Address offset: 0x514

Pin select for RXD signal

35.10.11 BAUDRATE
Address offset: 0x524

Baud rate. Accuracy depends on the HFCLK source selected.

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 344

35.10.12 RXD.PTR
Address offset: 0x534

Data pointer

35.10.13 RXD.MAXCNT
Address offset: 0x538

Maximum number of bytes in receive buffer

35.10.14 RXD.AMOUNT
Address offset: 0x53C

Number of bytes transferred in the last transaction

35.10.15 TXD.PTR
Address offset: 0x544

Data pointer

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 345

35.10.16 TXD.MAXCNT
Address offset: 0x548

Maximum number of bytes in transmit buffer

35.10.17 TXD.AMOUNT
Address offset: 0x54C

Number of bytes transferred in the last transaction

35.10.18 CONFIG
Address offset: 0x56C

Configuration of parity and hardware flow control

35.11 Electrical specification

35.11.1 UARTE electrical specification

35 UARTE — Universal asynchronous receiver/
transmitter with EasyDMA

Page 346

36 QDEC — Quadrature decoder

Page 347

36 QDEC — Quadrature decoder
The Quadrature decoder (QDEC) provides buffered decoding of quadrature-encoded sensor signals. It is
suitable for mechanical and optical sensors.

The sample period and accumulation are configurable to match application requirements. The QDEC
provides the following:

• Decoding of digital waveform from off-chip quadrature encoder.
• Sample accumulation eliminating hard real-time requirements to be enforced on application.
• Optional input de-bounce filters.
• Optional LED output signal for optical encoders.

Figure 97: Quadrature decoder configuration

36.1 Sampling and decoding
The QDEC decodes the output from an incremental motion encoder by sampling the QDEC phase input pins
(A and B).

The off-chip quadrature encoder is an incremental motion encoder outputting two waveforms, phase A and
phase B. The two output waveforms are always 90 degrees out of phase, meaning that one always changes
level before the other. The direction of movement is indicated by which of these two waveforms that changes
level first. Invalid transitions may occur, that is when the two waveforms switch simultaneously. This may
occur if the wheel rotates too fast relative to the sample rate set for the decoder.

36 QDEC — Quadrature decoder

Page 348

The QDEC decodes the output from the off-chip encoder by sampling the QDEC phase input pins (A and B)
at a fixed rate as specified in the SAMPLEPER register.

If the SAMPLEPER value needs to be changed, the QDEC shall be stopped using the STOP task.
SAMPLEPER can be then changed upon receiving the STOPPED event, and QDEC can be restarted using
the START task. Failing to do so may result in unpredictable behaviour.

It is good practice to change other registers (LEDPOL, REPORTPER, DBFEN and LEDPRE) only when the
QDEC is stopped.

When started, the decoder continuously samples the two input waveforms and decodes these by comparing
the current sample pair (n) with the previous sample pair (n-1).

The decoding of the sample pairs is described in the table below.

Table 84: Sampled value encoding

36.2 LED output
The LED output follows the sample period, and the LED is switched on a given period before sampling and
switched off immediately after the inputs are sampled. The period the LED is switched on before sampling is
given in the LEDPRE register.

The LED output pin polarity is specified in the LEDPOL register.

For using off-chip mechanical encoders not requiring a LED, the LED output can be disabled by writing
value 'Disconnected' to the CONNECT field of the PSEL.LED register. In this case the QDEC will not acquire
access to a LED output pin and the pin can be used for other purposes by the CPU.

36.3 Debounce filters
Each of the two-phase inputs have digital debounce filters.

When enabled through the DBFEN register, the filter inputs are sampled at a fixed 1 MHz frequency during
the entire sample period (which is specified in the SAMPLEPER register), and the filters require all of the
samples within this sample period to equal before the input signal is accepted and transferred to the output
of the filter.

As a result, only input signal with a steady state longer than twice the period specified in SAMPLEPER are
guaranteed to pass through the filter, and any signal with a steady state shorter than SAMPLEPER will
always be suppressed by the filter. (This is assumed that the frequency during the debounce period never
exceeds 500 kHz (as required by the Nyquist theorem when using a 1 MHz sample frequency).

The LED will always be ON when the debounce filters are enabled, as the inputs in this case will be sampled
continuously.

36 QDEC — Quadrature decoder

Page 349

Note that when when the debounce filters are enabled, displacements reported by the QDEC peripheral are
delayed by one SAMPLEPER period.

36.4 Accumulators
The quadrature decoder contains two accumulator registers, ACC and ACCDBL, that accumulate
respectively valid motion sample values and the number of detected invalid samples (double transitions).

The ACC register will accumulate all valid values (1/-1) written to the SAMPLE register. This can be useful
for preventing hard real-time requirements from being enforced on the application. When using the ACC
register the application does not need to read every single sample from the SAMPLE register, but can
instead fetch the ACC register whenever it fits the application. The ACC register will always hold the relative
movement of the external mechanical device since the previous clearing of the ACC register. Sample values
indicating a double transition (2) will not be accumulated in the ACC register.

An ACCOF event will be generated if the ACC receives a SAMPLE value that would cause the register to
overflow or underflow. Any SAMPLE value that would cause an ACC overflow or underflow will be discarded,
but any samples not causing the ACC to overflow or underflow will still be accepted.

The accumulator ACCDBL accumulates the number of detected double transitions since the previous
clearing of the ACCDBL register.

The ACC and ACCDBL registers can be cleared by the READCLRACC and subsequently read using the
ACCREAD and ACCDBLREAD registers.

The ACC register can be separately cleared by the RDCLRACC and subsequently read using the ACCREAD
registers.

The ACCDBL register can be separately cleared by the RDCLRDBL and subsequently read using the
ACCDBLREAD registers.

The REPORTPER register allows automating the capture of several samples before it can send out a
REPORTRDY event in case a non-null displacement has been captured and accumulated, and a DBLRDY
event in case one or more double-displacements have been captured and accumulated. The REPORTPER
field in this register selects after how many samples the accumulators contents are evaluated to send (or not)
REPORTRDY and DBLRDY events.

Using the RDCLRACC task (manually sent upon receiving the event, or using the DBLRDY_RDCLRACC
shortcut), ACCREAD can then be read.

In case at least one double transition has been captured and accumulated, a DBLRDY event is sent. Using
the RDCLRDBL task (manually sent upon receiving the event, or using the DBLRDY_RDCLRDBL shortcut),
ACCDBLREAD can then be read.

36.5 Output/input pins
The QDEC uses a three-pin interface to the off-chip quadrature encoder.

These pins will be acquired when the QDEC is enabled in the ENABLE register. The pins acquired by the
QDEC cannot be written by the CPU, but they can still be read by the CPU.

The pin numbers to be used for the QDEC are selected using the PSEL.n registers.

36.6 Pin configuration
The Phase A, Phase B, and LED signals are mapped to physical pins according to the configuration
specified in the PSEL.A, PSEL.B, and PSEL.LED registers respectively.

If the CONNECT field value 'Disconnected' is specified in any of these registers, the associated signal
will not be connected to any physical pin. The PSEL.A, PSEL.B, and PSEL.LED registers and their
configurations are only used as long as the QDEC is enabled, and retained only as long as the device is in

36 QDEC — Quadrature decoder

Page 350

ON mode. When the peripheral is disabled, the pins will behave as regular GPIOs, and use the configuration
in their respective OUT bit field and PIN_CNF[n] register.

To secure correct behavior in the QDEC, the pins used by the QDEC must be configured in the GPIO
peripheral as described in Table 85: GPIO configuration before enabling peripheral on page 350 before
enabling the QDEC. This configuration must be retained in the GPIO for the selected IOs as long as the
QDEC is enabled.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behavior.

Table 85: GPIO configuration before enabling peripheral

36.7 Registers
Table 86: Instances

Table 87: Register Overview

36.7.1 SHORTS
Address offset: 0x200

Shortcut register

36 QDEC — Quadrature decoder

Page 351

36.7.2 INTENSET
Address offset: 0x304

Enable interrupt

36 QDEC — Quadrature decoder

Page 352

36.7.3 INTENCLR
Address offset: 0x308

Disable interrupt

36.7.4 ENABLE
Address offset: 0x500

Enable the quadrature decoder

36 QDEC — Quadrature decoder

Page 353

36.7.5 LEDPOL
Address offset: 0x504

LED output pin polarity

36.7.6 SAMPLEPER
Address offset: 0x508

Sample period

36.7.7 SAMPLE
Address offset: 0x50C

Motion sample value

36 QDEC — Quadrature decoder

Page 354

36.7.8 REPORTPER
Address offset: 0x510

Number of samples to be taken before REPORTRDY and DBLRDY events can be generated

36.7.9 ACC
Address offset: 0x514

Register accumulating the valid transitions

36.7.10 ACCREAD
Address offset: 0x518

Snapshot of the ACC register, updated by the READCLRACC or RDCLRACC task

36 QDEC — Quadrature decoder

Page 355

36.7.11 PSEL.LED
Address offset: 0x51C

Pin select for LED signal

36.7.12 PSEL.A
Address offset: 0x520

Pin select for A signal

36.7.13 PSEL.B
Address offset: 0x524

Pin select for B signal

36.7.14 DBFEN
Address offset: 0x528

Enable input debounce filters

36 QDEC — Quadrature decoder

Page 356

36.7.15 LEDPRE
Address offset: 0x540

Time period the LED is switched ON prior to sampling

36.7.16 ACCDBL
Address offset: 0x544

Register accumulating the number of detected double transitions

36.7.17 ACCDBLREAD
Address offset: 0x548

Snapshot of the ACCDBL, updated by the READCLRACC or RDCLRDBL task

36.8 Electrical specification

36.8.1 QDEC Electrical Specification

37 SAADC — Successive approximation analog-
to-digital converter

Page 357

37 SAADC — Successive approximation analog-to-
digital converter
The ADC is a differential successive approximation register (SAR) analog-to-digital converter.

Listed here are the main features of SAADC:

• 8/10/12-bit resolution, 14-bit resolution with oversampling
• Up to eight input channels

• One channel per single-ended input and two channels per differential input
• Scan mode can be configured with both single-ended channels and differential channels.

• Full scale input range (0 to VDD)
• Sampling triggered via a task from software or a PPI channel for full flexibility on sample frequency

source from low power 32.768kHz RTC or more accurate 1/16MHz Timers
• One-shot conversion mode to sample a single channel
• Scan mode to sample a series of channels in sequence. Sample delay between channels is tack + tconv

which may vary between channels according to user configuration of tack.
• Support for direct sample transfer to RAM using EasyDMA
• Interrupts on single sample and full buffer events
• Samples stored as 16-bit 2’s complement values for differential and single-ended sampling
• Continuous sampling without the need of an external timer
• Internal resistor string
• Limit checking on the fly

37.1 Shared resources
The ADC can coexist with COMP and other peripherals using one of , provided these are
assigned to different pins.

It is not recommended to select the same analog input pin for both modules.

37.2 Overview
The ADC supports up to eight external analog input channels, depending on package variant. It can be
operated in a one-shot mode with sampling under software control, or a continuous conversion mode with a
programmable sampling rate.

The analog inputs can be configured as eight single-ended inputs, four differential inputs or a combination
of these. Each channel can be configured to select to pins, or the pin. Channels can be
sampled individually in one-shot or continuous sampling modes, or, using scan mode, multiple channels can
be sampled in sequence. Channels can also be oversampled to improve noise performance.

37 SAADC — Successive approximation analog-
to-digital converter

Page 358

Figure 98: Simplified ADC block diagram

Internally, the ADC is always a differential analog-to-digital converter, but by default it is configured with
single-ended input in the MODE field of the CH[n].CONFIG register. In single-ended mode, the negative
input will be shorted to ground internally.

The assumption in single-ended mode is that the internal ground of the ADC is the same as the external
ground that the measured voltage is referred to. The ADC is thus sensitive to ground bounce on the PCB in
single-ended mode. If this is a concern we recommend using differential measurement.

37.3 Digital output
The output result of the ADC depends on the settings in the CH[n].CONFIG and RESOLUTION registers as
follows:

where

V(P)
is the voltage at input P

V(N)
is the voltage at input N

GAIN
is the selected gain setting

REFERENCE
is the selected reference voltage

and m=0 if CONFIG.MODE=SE, or m=1 if CONFIG.MODE=Diff.

The result generated by the ADC will deviate from the expected due DC errors like offset, gain, differential
non-linearity (DNL), and integral non-linearity (INL). See Electrical specification for details on these
parameters. The result can also vary due to AC errors like non-linearities in the GAIN block, settling errors
due to high source impedance and sampling jitter. For battery measurement the DC errors are most
noticeable.

37 SAADC — Successive approximation analog-
to-digital converter

Page 359

The ADC has a wide selection of gains controlled in the GAIN field of the CH[n].CONFIG register. If
CH[n].CONFIG.REFSEL=0, the input range of the ADC core is nominally ±0.6 V differential and the input
must be scaled accordingly.

The ADC has a temperature dependent offset. If the ADC is to operate over a large temperature range, we
recommend running CALIBRATEOFFSET at regular intervals, a CALIBRATEDONE event will be fired when
the calibration is complete

37.4 Analog inputs and channels
Up to eight analog input channels, CH[n](n=0..7), can be configured.

See Shared resources on page 357 for shared input with comparators.

Any one of the available channels can be enabled for the ADC to operate in one-shot mode. If more than
one CH[n] is configured, the ADC enters scan mode.

An analog input is selected as a positive converter input if CH[n].PSELP is set, setting CH[n].PSELP also
enables the particular channel.

An analog input is selected as a negative converter input if CH[n].PSELN is set. The CH[n].PSELN register
will have no effect unless differential mode is enabled, see MODE field in CH[n].CONFIG register.

If more than one of the CH[n].PSELP registers is set, the device enters scan mode. Input selections in scan
mode are controlled by the CH[n].PSELP and CH[n].PSELN registers, where CH[n].PSELN is only used if
the particular scan channel is specified as differential, see MODE field in CH[n].CONFIG register.

Important: Channels selected for COMP cannot be used at the same time for ADC sampling, though
channels not selected for use by these blocks can be used by the ADC.

Table 88: Legal connectivity CH[n] vs. analog input

37.5 Operation modes
The ADC input configuration supports one-shot mode, continuous mode and scan mode.

Scan mode and oversampling cannot be combined.

37.5.1 One-shot mode
One-shot operation is configured by enabling only one of the available channels defined by CH[n].PSELP,
CH[n].PSELN, and CH[n].CONFIG registers.

Upon a SAMPLE task, the ADC starts to sample the input voltage. The CH[n].CONFIG.TACQ controls the
acquisition time.

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event has the same meaning as DONE when no oversampling takes place.
Note that both events may occur before the actual value has been transferred into RAM by EasyDMA. For
more information, see EasyDMA on page 361.

37.5.2 Continuous mode
Continuous sampling can be achieved by using the internal timer in the ADC, or triggering the SAMPLE task
from one of the general purpose timers through the PPI.

Care shall be taken to ensure that the sample rate fulfils the following criteria, depending on how many
channels are active:

SAMPLE ACQ conv

37 SAADC — Successive approximation analog-
to-digital converter

Page 360

The SAMPLERATE register can be used as a local timer instead of triggering individual SAMPLE tasks.
When SAMPLERATE.MODE is set to Timers, it is sufficient to trigger SAMPLE task only once in order to
start the SAADC and triggering the STOP task will stop sampling. The SAMPLERATE.CC field controls the
sample rate.

The SAMPLERATE timer mode cannot be combined with SCAN mode, and only one channel can be
enabled in this mode.

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event has the same meaning as DONE when no oversampling takes place.
Note that both events may occur before the actual value has been transferred into RAM by EasyDMA.

37.5.3 Oversampling
An accumulator in the ADC can be used to average noise on the analog input. In general, oversampling
improves the signal-to-noise ratio (SNR). Oversampling, however, does not improve the integral non-linearity
(INL), or differential non-linearity (DNL).

Oversampling and scan should not be combined, since oversampling and scan will average over input
channels.

The accumulator is controlled in the OVERSAMPLE register. The SAMPLE task must be set 2OVERSAMPLE

number of times before the result is written to RAM. This can be achieved by:

• Configuring a fixed sampling rate using the local timer or a general purpose timer and PPI to trigger a
SAMPLE task

• Triggering SAMPLE 2OVERSAMPLE times from software
• Enabling BURST mode

CH[n].CONFIG.BURST can be enabled to avoid setting SAMPLE task 2OVERSAMPLE times. With
BURST = 1 the ADC will sample the input 2OVERSAMPLE times as fast as it can (actual timing:
<(tACQ+tCONV)×2OVERSAMPLE). Thus, for the user it will just appear like the conversion took a bit longer time,
but other than that, it is similar to one-shot mode. Scan mode can be combined with BURST=1, if burst is
enabled on all channels.

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event signals that enough conversions have taken place for an
oversampled result to get transferred into RAM. Note that both events may occur before the actual value has
been transferred into RAM by EasyDMA.

37.5.4 Scan mode
A channel is considered enabled if CH[n].PSELP is set. If more than one channel, CH[n], is enabled, the
ADC enters scan mode.

In scan mode, one SAMPLE task will trigger one conversion per enabled channel. The time it takes to
sample all channels is:

A DONE event signals that one sample has been taken.

In this mode, the RESULTDONE event signals has the same meaning as DONE when no oversampling
takes place. Note that both events may occur before the actual values have been transferred into RAM by
EasyDMA.

Figure 99: Example of RAM placement (even RESULT.MAXCNT), channels 1, 2 and 5 enabled on page
361 provides an example of results placement in Data RAM, with an even RESULT.MAXCNT. In this
example, channels 1, 2 and 5 are enabled, all others are disabled.

37 SAADC — Successive approximation analog-
to-digital converter

Page 361

Figure 99: Example of RAM placement (even RESULT.MAXCNT), channels 1, 2 and 5 enabled

Figure 100: Example of RAM placement (odd RESULT.MAXCNT), channels 1, 2 and 5 enabled on page
361 provides an example of results placement in Data RAM, with an odd RESULT.MAXCNT. In this
example, channels 1, 2 and 5 are enabled, all others are disabled. The last 32-bit word is populated only with
one 16-bit result.

Figure 100: Example of RAM placement (odd RESULT.MAXCNT), channels 1, 2 and 5 enabled

37.6 EasyDMA
After configuring RESULT.PTR and RESULT.MAXCNT, the ADC resources are started by triggering the
START task. The ADC is using EasyDMA to store results in a Result buffer in RAM.

The Result buffer is located at the address specified in the RESULT.PTR register. The RESULT.PTR
register is double-buffered and it can be updated and prepared for the next START task immediately after
the STARTED event is generated. The size of the Result buffer is specified in the RESULT.MAXCNT register
and the ADC will generate an END event when it has filled up the Result buffer, see Figure 101: ADC on
page 362. Results are stored in little-endian byte order in Data RAM. Every sample will be sign extended to
16 bit before stored in the Result buffer.

The ADC is stopped by triggering the STOP task. The STOP task will terminate an ongoing sampling. The
ADC will generate a STOPPED event when it has stopped. If the ADC is already stopped when the STOP
task is triggered, the STOPPED event will still be generated.

37 SAADC — Successive approximation analog-
to-digital converter

Page 362

Figure 101: ADC

If the RESULT.PTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault
or RAM corruption. See Memory on page 23 for more information about the different memory regions.

The EasyDMA will have finished accessing the RAM when the END or STOPPED event has been
generated.

The RESULT.AMOUNT register can be read following an END event or a STOPPED event to see how many
results have been transferred to the Result buffer in RAM since the START task was triggered.

In Scan mode, the size of the Result buffer must be large enough to have room for a minimum one
result from each of the enabled channels. To secure this, RESULT.MAXCNT must be specified to
RESULT.MAXCNT >= "number of channels enabled". See Scan mode on page 360 for more information
about Scan mode.

37.7 Resistor ladder
The ADC has an internal resistor string for positive and negative input.

See Figure 102: Resistor ladder for positive input (negative input is equivalent, using RESN instead of
RESP) on page 363. The resistors are controlled in the CH[n].CONFIG.RESP and CH[n].CONFIG.RESN
registers.

37 SAADC — Successive approximation analog-
to-digital converter

Page 363

Figure 102: Resistor ladder for positive input (negative input is equivalent, using RESN instead of
RESP)

37.8 Reference
The ADC can use two different references, controlled in the REFSEL field of the CH[n].CONFIG register.

These are:

• Internal reference
• VDD as reference

The internal reference results in an input range of ±0.6 V on the ADC core. VDD as reference results in an
input range of ±VDD/4 on the ADC core. The gain block can be used to change the effective input range of
the ADC.

For example, choosing VDD as reference, single ended input (grounded negative input), and a gain of 1/4
the input range will be:

With internal reference, single ended input (grounded negative input), and a gain of 1/6 the input range will
be:

The AIN0-AIN7 inputs cannot exceed VDD, or be lower than VSS.

37.9 Acquisition time
To sample the input voltage, the ADC connects a capacitor to the input.

For illustration, see Figure 103: Simplified ADC sample network on page 364. The acquisition time
indicates how long the capacitor is connected, see TACQ field in CH[n].CONFIG register. The required
acquisition time depends on the source (Rsource) resistance. For high source resistance the acquisition time
should be increased, see Table 89: Acquisition time on page 364.

37 SAADC — Successive approximation analog-
to-digital converter

Page 364

Figure 103: Simplified ADC sample network

Table 89: Acquisition time

37.10 Limits event monitoring
A channel can be event monitored by configuring limit register CH[n].LIMIT.

If the conversion result is higher than the defined high limit, or lower than the defined low limit, the
appropriate event will get fired.

Figure 104: Example of limits monitoring on channel 'n'

Note that when setting the limits, CH[n].LIMIT.HIGH shall always be higher than or equal to
CH[n].LIMIT.LOW . In other words, an event can be fired only when the input signal has been sampled

37 SAADC — Successive approximation analog-
to-digital converter

Page 365

outside of the defined limits. It is not possible to fire an event when the input signal is inside a defined range
by swapping high and low limits.

The comparison to limits always takes place, there is no need to enable it. If comparison is not required on a
channel, the software shall simply ignore the related events. In that situation, the value of the limits registers
is irrelevant, so it does not matter if CH[n].LIMIT.LOW is lower than CH[n].LIMIT.HIGH or not.

37.11 Registers
Table 90: Instances

Table 91: Register Overview

37 SAADC — Successive approximation analog-
to-digital converter

Page 366

37.11.1 INTEN
Address offset: 0x300

Enable or disable interrupt

37 SAADC — Successive approximation analog-
to-digital converter

Page 367

37 SAADC — Successive approximation analog-
to-digital converter

Page 368

37.11.2 INTENSET
Address offset: 0x304

Enable interrupt

37 SAADC — Successive approximation analog-
to-digital converter

Page 369

37 SAADC — Successive approximation analog-
to-digital converter

Page 370

37.11.3 INTENCLR
Address offset: 0x308

Disable interrupt

37 SAADC — Successive approximation analog-
to-digital converter

Page 371

37 SAADC — Successive approximation analog-
to-digital converter

Page 372

37 SAADC — Successive approximation analog-
to-digital converter

Page 373

37.11.4 STATUS
Address offset: 0x400

Status

37.11.5 ENABLE
Address offset: 0x500

Enable or disable ADC

37.11.6 CH[0].PSELP
Address offset: 0x510

Input positive pin selection for CH[0]

37 SAADC — Successive approximation analog-
to-digital converter

Page 374

37.11.7 CH[0].PSELN
Address offset: 0x514

Input negative pin selection for CH[0]

37.11.8 CH[0].CONFIG
Address offset: 0x518

Input configuration for CH[0]

37 SAADC — Successive approximation analog-
to-digital converter

Page 375

37.11.9 CH[0].LIMIT
Address offset: 0x51C

High/low limits for event monitoring a channel

37.11.10 CH[1].PSELP
Address offset: 0x520

Input positive pin selection for CH[1]

37.11.11 CH[1].PSELN
Address offset: 0x524

Input negative pin selection for CH[1]

37 SAADC — Successive approximation analog-
to-digital converter

Page 376

37.11.12 CH[1].CONFIG
Address offset: 0x528

Input configuration for CH[1]

37 SAADC — Successive approximation analog-
to-digital converter

Page 377

37.11.13 CH[1].LIMIT
Address offset: 0x52C

High/low limits for event monitoring a channel

37.11.14 CH[2].PSELP
Address offset: 0x530

Input positive pin selection for CH[2]

37.11.15 CH[2].PSELN
Address offset: 0x534

Input negative pin selection for CH[2]

37 SAADC — Successive approximation analog-
to-digital converter

Page 378

37.11.16 CH[2].CONFIG
Address offset: 0x538

Input configuration for CH[2]

37.11.17 CH[2].LIMIT
Address offset: 0x53C

High/low limits for event monitoring a channel

37 SAADC — Successive approximation analog-
to-digital converter

Page 379

37.11.18 CH[3].PSELP
Address offset: 0x540

Input positive pin selection for CH[3]

37.11.19 CH[3].PSELN
Address offset: 0x544

Input negative pin selection for CH[3]

37.11.20 CH[3].CONFIG
Address offset: 0x548

Input configuration for CH[3]

37 SAADC — Successive approximation analog-
to-digital converter

Page 380

37.11.21 CH[3].LIMIT
Address offset: 0x54C

High/low limits for event monitoring a channel

37.11.22 CH[4].PSELP
Address offset: 0x550

Input positive pin selection for CH[4]

37 SAADC — Successive approximation analog-
to-digital converter

Page 381

37.11.23 CH[4].PSELN
Address offset: 0x554

Input negative pin selection for CH[4]

37.11.24 CH[4].CONFIG
Address offset: 0x558

Input configuration for CH[4]

37 SAADC — Successive approximation analog-
to-digital converter

Page 382

37.11.25 CH[4].LIMIT
Address offset: 0x55C

High/low limits for event monitoring a channel

37.11.26 CH[5].PSELP
Address offset: 0x560

Input positive pin selection for CH[5]

37 SAADC — Successive approximation analog-
to-digital converter

Page 383

37.11.27 CH[5].PSELN
Address offset: 0x564

Input negative pin selection for CH[5]

37.11.28 CH[5].CONFIG
Address offset: 0x568

Input configuration for CH[5]

37 SAADC — Successive approximation analog-
to-digital converter

Page 384

37.11.29 CH[5].LIMIT
Address offset: 0x56C

High/low limits for event monitoring a channel

37.11.30 CH[6].PSELP
Address offset: 0x570

Input positive pin selection for CH[6]

37.11.31 CH[6].PSELN
Address offset: 0x574

Input negative pin selection for CH[6]

37 SAADC — Successive approximation analog-
to-digital converter

Page 385

37.11.32 CH[6].CONFIG
Address offset: 0x578

Input configuration for CH[6]

37 SAADC — Successive approximation analog-
to-digital converter

Page 386

37.11.33 CH[6].LIMIT
Address offset: 0x57C

High/low limits for event monitoring a channel

37.11.34 CH[7].PSELP
Address offset: 0x580

Input positive pin selection for CH[7]

37.11.35 CH[7].PSELN
Address offset: 0x584

Input negative pin selection for CH[7]

37 SAADC — Successive approximation analog-
to-digital converter

Page 387

37.11.36 CH[7].CONFIG
Address offset: 0x588

Input configuration for CH[7]

37.11.37 CH[7].LIMIT
Address offset: 0x58C

37 SAADC — Successive approximation analog-
to-digital converter

Page 388

High/low limits for event monitoring a channel

37.11.38 RESOLUTION
Address offset: 0x5F0

Resolution configuration

37.11.39 OVERSAMPLE
Address offset: 0x5F4

Oversampling configuration. OVERSAMPLE should not be combined with SCAN. The RESOLUTION is
applied before averaging, thus for high OVERSAMPLE a higher RESOLUTION should be used.

37.11.40 SAMPLERATE
Address offset: 0x5F8

Controls normal or continuous sample rate

37 SAADC — Successive approximation analog-
to-digital converter

Page 389

37.11.41 RESULT.PTR
Address offset: 0x62C

Data pointer

37.11.42 RESULT.MAXCNT
Address offset: 0x630

Maximum number of buffer words to transfer

37.11.43 RESULT.AMOUNT
Address offset: 0x634

Number of buffer words transferred since last START

37.12 Electrical specification

37.12.1 SAADC Electrical Specification

37 SAADC — Successive approximation analog-
to-digital converter

Page 390

Figure 105: Model of SAADC input (one channel)

Note: SAADC average current calculation for a given application is based on the sample period, conversion
and acquisition time (tconv and tACQ) and conversion and idle current (IADC,CONV and IADC,IDLE). For example,
sampling at 4kHz gives a sample period of 250μs. The average current consumption would then be:

Figure 106: ADC INL vs Output Code

37 SAADC — Successive approximation analog-
to-digital converter

Page 391

Figure 107: ADC DNL vs Output Code

Figure 108: FFT of a 2.8 kHz sine at 200 ksps ()

37.13 Performance factors
Clock jitter, affecting sample timing accuracy, and circuit noise can affect ADC performance.

Jitter can be between START tasks or from START task to acquisition. START timer accuracy and startup
times of regulators and references will contribute to variability. Sources of circuit noise may include CPU
activity and the DC/DC regulator. Best ADC performance is achieved using START timing based on the
TIMER module, HFXO clock source, and Constant Latency mode.

38 COMP — Comparator

Page 392

38 COMP — Comparator
The comparator (COMP) compares an input voltage (VIN+) against a second input voltage (VIN-). VIN+ can
be derived from an analog input pin (AIN0-AIN7). VIN- can be derived from multiple sources depending on
the operation mode of the comparator.

Main features of the comparator are:

• Input range from 0 V to VDD
• Single-ended mode

• Fully flexible hysteresis using a 64-level reference ladder
• Differential mode

• Configurable 50 mV hysteresis
• Reference inputs (VREF):

• VDD
• External reference from AIN0 to AIN7 (between 0 V and VDD)
• Internal references 1.2 V, 1.8 V and 2.4 V

• Three speed/power consumption modes: low-power, normal and high-speed
• Single-pin capacitive sensor support
• Event generation on output changes

• UP event on VIN- > VIN+
• DOWN event on VIN- < VIN+
• CROSS event on VIN+ and VIN- crossing
• READY event on core and internal reference (if used) ready

Figure 109: Comparator overview

Once enabled (using the ENABLE register), the comparator is started by triggering the START task and
stopped by triggering the STOP task. After a start-up time of tCOMP,START, the comparator will generate a
READY event to indicate that it is ready for use and that its output is correct. When the COMP module is
started, events will be generated every time VIN+ crosses VIN-.

38 COMP — Comparator

Page 393

38 Operation modes

The comparator can be configured to operate in two main operation modes, differential mode and single-
ended mode. See the MODE register for more information. In both operation modes, the comparator can
operate in different speed and power consumption modes (low-power, normal and high-speed). High-speed
mode will consume more power compared to low-power mode, and low-power mode will result in slower
response time compared to high-speed mode.

Use the PSEL register to select any of the AIN0-AIN7 pins as VIN+ input, irregardless of the operation mode
selected for the comparator. The source of VIN- depends on which operation mode is used:

• Differential mode: Derived directly from AIN0 to AIN7
• Single-ended mode: Derived from VREF. VREF can be derived from VDD, AIN0-AIN7 or internal 1.2 V,

1.8 V and 2.4 V references.

The selected analog pins will be acquired by the comparator once it is enabled.

An optional hysteresis on VIN+ and VIN- can be enabled when the module is used in differential mode
through the HYST register. In single-ended mode, VUP and VDOWN thresholds can be set to implement
a hysteresis using the reference ladder (see Figure 112: Comparator in single-ended mode on page
395). This hysteresis is in the order of magnitude of 50 mV, and shall prevent noise on the signal to create
unwanted events. See Figure 113: Hysteresis example where VIN+ starts below VUP on page 395 for
illustration of the effect of an active hysteresis on a noisy input signal.

An upward crossing will generate an UP event and a downward crossing will generate a DOWN event. The
CROSS event will be generated every time there is a crossing, independent of direction.

The immediate value of the comparator can be sampled to RESULT register by triggering the SAMPLE task.

38.1 Differential mode
In differential mode, the reference input VIN- is derived directly from one of the AINx pins.

Before enabling the comparator via the ENABLE register, the following registers must be configured for the
differential mode:

• PSEL
• MODE
• EXTREFSEL

Figure 110: Comparator in differential mode

38 COMP — Comparator

Page 394

Restriction: Depending on the device, not all the analog inputs may be available for each MUX. See
definitions for PSEL and EXTREFSEL for more information about which analog pins are available on
a particular device.

When HYST register is turned on while in this mode, the output of the comparator (and associated events)
will change from ABOVE to BELOW whenever VIN+ becomes lower than VIN- - (VDIFFHYST / 2). It will also
change from BELOW to ABOVE whenever VIN+ becomes higher than VIN- + (VDIFFHYST / 2). This behavior
is illustrated in Figure 111: Hysteresis enabled in differential mode on page 394.

Figure 111: Hysteresis enabled in differential mode

38.2 Single-ended mode
In single-ended mode, VIN- is derived from the reference ladder.

Before enabling the comparator via the ENABLE register, the following registers must be configured for the
single-ended mode:

• PSEL
• MODE
• REFSEL
• EXTREFSEL
• TH

The reference ladder uses the reference voltage (VREF) to derive two new voltage references, VUP and
VDOWN. VUP and VDOWN are configured using THUP and THDOWN respectively in the TH register.
VREF can be derived from any of the available reference sources, configured using the EXTREFSEL and
REFSEL registers as illustrated in Figure 112: Comparator in single-ended mode on page 395. When
AREF is selected in the REFSEL register, the EXTREFSEL register is used to select one of the AIN0-AIN7
analog input pins as reference input. The selected analog pins will be acquired by the comparator once it is
enabled.

38 COMP — Comparator

Page 395

Figure 112: Comparator in single-ended mode

Restriction: Depending on the device, not all the analog inputs may be available for each MUX. See
definitions for PSEL and EXTREFSEL for more information about which analog pins are available on
a particular device.

When the comparator core detects that VIN+ > VIN-, i.e. ABOVE as per the RESULT register, VIN- will
switch to VDOWN. When VIN+ falls below VIN- again, VIN- will be switched back to VUP. By specifying VUP
larger than VDOWN, a hysteresis can be generated as illustrated in Figure 113: Hysteresis example where
VIN+ starts below VUP on page 395 and Figure 114: Hysteresis example where VIN+ starts above VUP on
page 396.

Writing to HYST has no effect in single-ended mode, and the content of this register is ignored.

Figure 113: Hysteresis example where VIN+ starts below VUP

38 COMP — Comparator

Page 396

Figure 114: Hysteresis example where VIN+ starts above VUP

38.3 Registers
Table 92: Instances

Table 93: Register Overview

38.3.1 SHORTS
Address offset: 0x200

38 COMP — Comparator

Page 397

Shortcut register

38.3.2 INTEN
Address offset: 0x300

Enable or disable interrupt

38.3.3 INTENSET
Address offset: 0x304

38 COMP — Comparator

Page 398

Enable interrupt

38.3.4 INTENCLR
Address offset: 0x308

Disable interrupt

38 COMP — Comparator

Page 399

38.3.5 RESULT
Address offset: 0x400

Compare result

38.3.6 ENABLE
Address offset: 0x500

COMP enable

38.3.7 PSEL
Address offset: 0x504

Pin select

38.3.8 REFSEL
Address offset: 0x508

Reference source select for single-ended mode

38 COMP — Comparator

Page 400

38.3.9 EXTREFSEL
Address offset: 0x50C

External reference select

38.3.10 TH
Address offset: 0x530

Threshold configuration for hysteresis unit

38.3.11 MODE
Address offset: 0x534

Mode configuration

38.3.12 HYST
Address offset: 0x538

Comparator hysteresis enable

38 COMP — Comparator

Page 401

38.3.13 ISOURCE
Address offset: 0x53C

Current source select on analog input

38.4 Electrical specification

38.4.1 COMP Electrical Specification

Total comparator run current must be calculated from the ICOMP, IINT_REF, and ILADDER values for a given
reference voltage.

39 LPCOMP — Low power comparator

Page 402

39 LPCOMP — Low power comparator
LPCOMP compares an input voltage against a reference voltage.

Listed here are the main features of LPCOMP:

• 0 - VDD input range
• Ultra low power
• Eight input options (to)
• Reference voltage options:

• Two external analog reference inputs, or
• 15-level internal reference ladder (VDD/16)

• Optional hysteresis enable on input
• Wakeup source from OFF mode

In System ON, the LPCOMP can generate separate events on rising and falling edges of a signal, or sample
the current state of the pin as being above or below the selected reference. The block can be configured
to use any of the analog inputs on the device. Additionally, the low power comparator can be used as an
analog wakeup source from System OFF or System ON. The comparator threshold can be programmed to a
range of fractions of the supply voltage.

Restriction: LPCOMP cannot be used (STARTed) at the same time as COMP. Only one comparator
can be used at a time.

Figure 115: Low power comparator

The wakeup comparator (LPCOMP) compares an input voltage (VIN+), which comes from an analog input
pin selected via the PSEL register against a reference voltage (VIN-) selected via the REFSEL on page
407 and EXTREFSEL registers.

The PSEL, REFSEL, and EXTREFSEL registers must be configured before the LPCOMP is enabled through
the ENABLE register.

The HYST register allows enabling an optional hysteresis in the comparator core. This hysteresis is in
the order of magnitude of 50 mV, and shall prevent noise on the signal to create unwanted events. See
Figure 116: Effect of hysteresis on a noisy input signal on page 403 for illustration of the effect of an active
hysteresis on a noisy input signal. It is disabled by default, and shall be configured before enabling LPCOMP
as well.

The LPCOMP is started by triggering the START task. After a start-up time of tLPCOMP,STARTUP the LPCOMP
will generate a READY event to indicate that the comparator is ready to use and the output of the LPCOMP
is correct. The LPCOMP will generate events every time VIN+ crosses VIN-. More specifically, every time
VIN+ rises above VIN- (upward crossing) an UP event is generated along with a CROSS event. Every time
VIN+ falls below VIN- (downward crossing), a DOWN event is generated along with a CROSS event. When

39 LPCOMP — Low power comparator

Page 403

hysteresis is enabled, the upward crossing level becomes (VIN- + VHYST/2), and the downward crossing
level becomes (VIN- - VHYST/2).

The LPCOMP is stopped by triggering the STOP task.

Figure 116: Effect of hysteresis on a noisy input signal

LPCOMP will be operational in both System ON and System OFF mode when it is enabled through the
ENABLE register. See POWER — Power supply on page 78 for more information about power modes. Note
that it is not allowed to go to System OFF when a READY event is pending to be generated.

All LPCOMP registers, including ENABLE, are classified as retained registers when the LPCOMP is enabled.
However, when the device wakes up from System OFF, all LPCOMP registers will be reset.

The LPCOMP can wake up the system from System OFF by asserting the ANADETECT signal. The
ANADETECT signal can be derived from any of the event sources that generate the UP, DOWN and
CROSS events. In case of wakeup from System OFF, no events will be generated, only the ANADETECT
signal. See the ANADETECT register (ANADETECT on page 407) for more information on how to
configure the ANADETECT signal.

The immediate value of the LPCOMP can be sampled to RESULT on page 406 by triggering the
SAMPLE task.

See RESETREAS on page 85 for more information on how to detect a wakeup from LPCOMP.

39.1 Shared resources
The LPCOMP shares resources with other peripherals.

The LPCOMP shares analog resources with SAADC and COMP. While it is possible to use SAADC at
the same time as COMP or LPCOMP, COMP and LPCOMP are mutually exclusive: enabling one will
automatically disable the other. In addition, when using SAADC and COMP or LPCOMP simultaneously, it is
not possible to select the same analog input pin for both modules.

The LPCOMP peripheral shall not be disabled (by writing to the ENABLE register) before the peripheral has
been stopped. Failing to do so may result in unpredictable behaviour.

39.2 Pin configuration
You can use the LPCOMP.PSEL register to select one of the analog input pins, through , as the
analog input pin for the LPCOMP.

See GPIO — General purpose input/output on page 111 for more information about the pins. Similarly, you
can use EXTREFSEL on page 407 to select one of the analog reference input pins, and , as
input for AREF in case AREF is selected in EXTREFSEL on page 407. The selected analog pins will be
acquired by the LPCOMP when it is enabled through ENABLE on page 406.

39 LPCOMP — Low power comparator

Page 404

39.3 Registers
Table 94: Instances

Table 95: Register Overview

39.3.1 SHORTS
Address offset: 0x200

Shortcut register

39 LPCOMP — Low power comparator

Page 405

39.3.2 INTENSET
Address offset: 0x304

Enable interrupt

39.3.3 INTENCLR
Address offset: 0x308

Disable interrupt

39 LPCOMP — Low power comparator

Page 406

39.3.4 RESULT
Address offset: 0x400

Compare result

39.3.5 ENABLE
Address offset: 0x500

Enable LPCOMP

39.3.6 PSEL
Address offset: 0x504

Input pin select

39 LPCOMP — Low power comparator

Page 407

39.3.7 REFSEL
Address offset: 0x508

Reference select

39.3.8 EXTREFSEL
Address offset: 0x50C

External reference select

39.3.9 ANADETECT
Address offset: 0x520

Analog detect configuration

39.3.10 HYST
Address offset: 0x538

Comparator hysteresis enable

39 LPCOMP — Low power comparator

Page 408

39.4 Electrical specification

39.4.1 LPCOMP Electrical Specification

40 WDT — Watchdog timer

Page 409

40 WDT — Watchdog timer
A countdown watchdog timer using the low-frequency clock source (LFCLK) offers configurable and robust
protection against application lock-up.

The watchdog timer is started by triggering the START task.

The watchdog can be paused during long CPU sleep periods for low power applications and when the
debugger has halted the CPU. The watchdog is implemented as a down-counter that generates a TIMEOUT
event when it wraps over after counting down to 0. When the watchdog timer is started through the START
task, the watchdog counter is loaded with the value specified in the CRV register. This counter is also
reloaded with the value specified in the CRV register when a reload request is granted.

The watchdog’s timeout period is given by:

When started, the watchdog will automatically force the 32.768 kHz RC oscillator on as long as no other
32.768 kHz clock source is running and generating the 32.768 kHz system clock, see chapter CLOCK —
Clock control on page 101.

40.1 Reload criteria
The watchdog has eight separate reload request registers, which shall be used to request the watchdog to
reload its counter with the value specified in the CRV register. To reload the watchdog counter, the special
value 0x6E524635 needs to be written to all enabled reload registers.

One or more RR registers can be individually enabled through the RREN register.

40.2 Temporarily pausing the watchdog
By default, the watchdog will be active counting down the down-counter while the CPU is sleeping and when
it is halted by the debugger. It is however possible to configure the watchdog to automatically pause while
the CPU is sleeping as well as when it is halted by the debugger.

40.3 Watchdog reset
A TIMEOUT event will automatically lead to a watchdog reset.

See Reset on page 82 for more information about reset sources. If the watchdog is configured to generate
an interrupt on the TIMEOUT event, the watchdog reset will be postponed with two 32.768 kHz clock
cycles after the TIMEOUT event has been generated. Once the TIMEOUT event has been generated, the
impending watchdog reset will always be effectuated.

The watchdog must be configured before it is started. After it is started, the watchdog’s configuration
registers, which comprise registers CRV, RREN, and CONFIG, will be blocked for further configuration.

The watchdog can be reset from several reset sources, see Reset behavior on page 83.

When the device starts running again, after a reset, or waking up from OFF mode, the watchdog
configuration registers will be available for configuration again.

40 WDT — Watchdog timer

Page 410

40.4 Registers
Table 96: Instances

Table 97: Register Overview

40.4.1 INTENSET
Address offset: 0x304

Enable interrupt

40.4.2 INTENCLR
Address offset: 0x308

Disable interrupt

40 WDT — Watchdog timer

Page 411

40.4.3 RUNSTATUS
Address offset: 0x400

Run status

40.4.4 REQSTATUS
Address offset: 0x404

Request status

40.4.5 CRV
Address offset: 0x504

Counter reload value

40 WDT — Watchdog timer

Page 412

40.4.6 RREN
Address offset: 0x508

Enable register for reload request registers

40.4.7 CONFIG
Address offset: 0x50C

Configuration register

40.4.8 RR[0]
Address offset: 0x600

Reload request 0

40 WDT — Watchdog timer

Page 413

40.4.9 RR[1]
Address offset: 0x604

Reload request 1

40.4.10 RR[2]
Address offset: 0x608

Reload request 2

40.4.11 RR[3]
Address offset: 0x60C

Reload request 3

40.4.12 RR[4]
Address offset: 0x610

Reload request 4

40.4.13 RR[5]
Address offset: 0x614

Reload request 5

40 WDT — Watchdog timer

Page 414

40.4.14 RR[6]
Address offset: 0x618

Reload request 6

40.4.15 RR[7]
Address offset: 0x61C

Reload request 7

40.5 Electrical specification

40.5.1 Watchdog Timer Electrical Specification

41 SWI — Software interrupts

Page 415

41 SWI — Software interrupts
A set of interrupts have been reserved for use as software interrupts.

41.1 Registers
Table 98: Instances

42 NFCT — Near field communication tag

Page 416

42 NFCT — Near field communication tag
The NFCT peripheral (referred to as the 'NFC peripheral' from now on) supports communication signal
interface type A and 106 kbps bit rate from the NFC Forum.

With appropriate software, the NFC peripheral can be used to emulate the listening device NFC-A as
specified by the NFC Forum.

Listed here are the main features for the NFC peripheral:

• NFC-A listen mode operation

• 13.56 MHz input frequency
• Bit rate 106 kbps

• Wake-on-field low power field detection (SENSE) mode
• Frame assemble and disassemble for the NFC-A frames specified by the NFC Forum
• Programmable frame timing controller
• Integrated automatic collision resolution, CRC and parity functions

42.1 Overview
The NFC peripheral is an implementation of an NFC Forum compliant listening device NFC-A.

Figure 117: NFC block diagram

The NFC peripheral contains a 13.56 MHz AM receiver and a 13.56 MHz load modulator compatible with the
NFC-A technology defined in the NFC Forum with 106 kbps data rate.

The received frames will be automatically disassembled and the data part of the frame transferred to RAM.
When transmitting, the frame data will be transferred directly from RAM and transmitted with configurable
frame type and delay timing. The system will be notified by an event whenever a complete frame is received
or sent.

It also supports the collision detection and resolution ("anticollision") as defined by the NFC Forum.

42 NFCT — Near field communication tag

Page 417

Wake-on-field is supported in SENSE mode while the device is either in System OFF or System ON mode.
When the antenna enters an NFC field, an event will be triggered notifying the system to activate the
NFC functionality for incoming frames. In System ON, if the energy detected at the antenna increases
beyond a threshold value, the module will generate a FIELDDETECTED event. The module will generate a
FIELDLOST event when the quality or strength of the field no longer support NFC communication. Please
refer to NFCT Electrical Specification on page 435 for the Low Power Field Detect threshold values.

In system OFF, the NFC Low Power Field Detect function can wake the system up through a reset. The NFC
bit in register RESETREAS on page 85 will be set as cause of the wake-up.

If the system is put into system OFF mode while a field is already present, the NFC Low Power Field Detect
function will wake the system up right away and generate a reset.

Note that as a consequence of reset, NFC is disabled, so the reset handler will have to activate NFC again
and set it up properly.

The HFXO must be running before the NFC peripheral goes into ACTIVATED state. Note that the NFC
peripheral calibration is automatically done on ACTIVATE task. The HFXO can be turned off when the NFC
peripheral goes into SENSE mode. The shortcut FIELDDETECTED_ACTIVATE can be used when the
HFXO is already running while in SENSE mode.

Outgoing data will be collected from RAM with the EasyDMA function and assembled according to the
TXD.FRAMECONFIG register. Incoming data will be disassembled according to the RXD.FRAMECONFIG
register and the data section in the frame will be written to RAM via the EasyDMA function.

The NFC peripheral includes a frame timing controller that can be used to accurately control the inter-frame
delay between the incoming frame and a corresponding outgoing frame. It also includes optional CRC
functionality.

The NFC peripheral has a set of different states. The module can change state by triggering a task, or when
specific operations are finalized. Events and tasks allow software to keep track of and change the current
state.

See Figure 117: NFC block diagram on page 416 and Figure 118: NFC state diagram on page 418 for
more information.

Notes:

• FIELDLOST event will not be reflected in the state machine (for instance by going back to the DISABLE
state), it is up to software to decide on the actions to take when a field lost occurs.

• FIELDLOST event is not generated in SENSE mode.
• FIELDDETECTED event is generated only on the transition from FIELDLOST event to energy

detected by the NFC peripheral. So, sending SENSE task while field is still present does not generate
FIELDDETECTED event.

• If the FIELDDETECTED event is cleared before sending the ACTIVATE task, then the FIELDDETECTED
event shows up again after sending the ACTIVATE task. The shortcut FIELDDETECTED_ACTIVATE can
be used to avoid this condition.

42 NFCT — Near field communication tag

Page 418

Figure 118: NFC state diagram

42.2 Pin configuration
NFC uses two pins to connect the antenna.

These pins are shared with GPIOs, and the PROTECT field in the NFCPINS register in UICR defines the
usage of these pins and their protection level against excessive voltages. The content of the NFCPINS
register is reloaded at every reset.

When NFCPINS.PROTECT=NFC, a protection circuit will be enabled on the dedicated pins, preventing the
chip from being damaged in the presence of a strong NFC field. The GPIO function will be disabled on those
pins as well.

When NFCPINS.PROTECT=Disabled, the device will not be protected against strong NFC field damages
caught by a connected NFC antenna, and the NFCT peripheral will not operate as expected, as it will never
leave the DISABLE state.

The pins dedicated to the NFC antenna function will have some limitation when the pins are configured
for normal GPIO operation. The pin capacitance will be higher on those (refer to CPAD_NFC in the GPIO
Electrical Specification on page 154 below), and some increased leakage current between the two pins is
to be expected if they are used in GPIO mode, and are driven to different logical values. To save power the
two pins should always be set to the same logical value whenever entering one of the device power saving
modes. Please refer to INFC_LEAK in GPIO Electrical Specification on page 154 for details.

42.3 EasyDMA
The NFC peripheral implements EasyDMA for reading and writing of data packets from and to the Data RAM
without CPU involvement.

The NFC EasyDMA utilizes one pointer called PACKETPTR for receiving and transmitting packets.

The EasyDMA can either read or write between the NFC peripheral and the RAM, but not at the same time.
The event RXFRAMESTART indicates that the EasyDMA has started writing to the RAM for a receive frame
and the event RXFRAMEND indicates that the EasyDMA has completed writing to the RAM. Similarly, the
event TXFRAMESTART indicates that the EasyDMA has started reading from the RAM for a transmit frame
and the event TXFRAMEND indicates that the EasyDMA has completed reading from the RAM. If a transmit
and a receive operation is issued at the same time, the transmit operation would be prioritized.

Starting a transmit operation while the EasyDMA has already started writing a receive frame to the RAM
will result in unpredictable behavior. Starting an EasyDMA operation whilst there is an ongoing EasyDMA
operation may result in unpredictable behavior. It is recommended to wait for the TXFRAMEEND or

42 NFCT — Near field communication tag

Page 419

RXFRAMEND event for the respective ongoing transmit or receive before starting a new receive or transmit
operation.

The MAXLEN register determines the maximum number of bytes that can be read from or written to the
RAM. This feature can be used to secure that the NFC peripheral does not overwrite, or read beyond, the
RAM assigned to a packet. Note that if the RXD.AMOUNT or TXD.AMOUNT register indicates longer data
packets than set in MAXLEN, the frames sent to or received from the physical layer will be incomplete.
In RX, the OVERRUN bit in the FRAMESTATUS.RX register will be set and an RXERROR event will be
triggered in that situation.

Note that RXD.AMOUNT and TXD.AMOUNT define a frame length in bytes and bits excluding SoF, EoF and
parity, but including CRC for RXD.AMOUNT only, make sure to take potential additional bits into account
when setting MAXLEN.

Only sending task ENABLERXDATA ensures that a new value in PACKETPTR pointing to the RX buffer in
Data RAM is taken into account.

If PACKETPTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or
RAM corruption. See Chapter Memory on page 23 for more information about the different memory regions.

The NFC peripherals normally do alternative receive and transmit frames. So, to prepare for the next frame,
the PACKETPTR, MAXLEN, TXD.FRAMECONFIG and TXD.AMOUNT can be updated while the receive
is in progress, and, similarly, the PACKETPTR, MAXLEN and RXD.FRAMECONFIG can be updated while
the transmit is in progress. They can be updated and prepared for the next NFC frame immediately after
the STARTED event of the current frame has been received. Updating the TXD.FRAMECONFIG and
TXD.AMOUNT during the current transmit frame or updating RXD.FRAMECONFIG during current receive
frame may cause unpredictable behaviour.

In accordance with NFC Forum, NFC Digital Protocol Technical Specification, the least a significant bit from
the least significant byte is sent on air first. The bytes are stored in increasing order, starting at the lowest
address in the EasyDMA buffer in RAM.

42.4 Collision resolution
The NFC peripheral implements an automatic collision resolution function as defined by the NFC Forum.

The SENSRES and SELRES registers need to be programmed upfront in order for the collision resolution to
behave correctly. Depending on the NFCIDSIZE field in SENSRES, the following registers also need to be
programmed upfront:

• NFCID1_LAST if NFCID1SIZE=NFCID1Single (ID = 4 bytes);
• NFCID1_2ND_LAST and NFCID1_LAST if NFCID1SIZE=NFCID1Double (ID = 7 bytes);
• NFCID1_3RD_LAST, NFCID1_2ND_LAST and NFCID1_LAST if NFCID1SIZE=NFCID1Triple (ID = 10

bytes);

Table 99: NFCID1 byte allocation (top sent first on air) on page 419 explains the position of the ID bytes in
NFCID1_3RD_LAST, NFCID1_2ND_LAST and NFCID1_LAST, depending on the ID size, and as compared
to the definition used in the NFC Forum, NFC Digital Protocol Technical Specification.

Table 99: NFCID1 byte allocation (top sent first on air)

Automatic collision resolution is enabled by default.

42 NFCT — Near field communication tag

Page 420

The hardware implementation can handle the states from IDLE to ACTIVE_A automatically as defined
in the NFC Forum, NFC Activity Technical Specification, and the other states are to be handled by
software. The software keeps track of the state through events. The collision resolution will trigger an
AUTOCOLRESSTARTED event when it has started. Reaching the ACTIVE_A state is indicated by the
SELECTED event.

If collision resolution fails, a COLLISION event is triggered. Note that errors occurring during automatic
collision resolution may also cause ERROR and/or RXERROR events to be generated. Also, other events
may get generated. It is recommended that the software ignores any event except COLLISION, SELECTED
and FIELDLOST during automatic collision resolution. Software shall also make sure that any unwanted
SHORT or PPI shortcut are disabled during automatic collision resolution.

A pre-defined set of registers, NFC.TAGHEADER0..3, containing a valid NFCID1 value, is available in FICR,
and can be used by software to populate the NFCID1_3RD_LAST, NFCID1_2ND_LAST and NFCID1_LAST
registers. Refer to the release notes of the NFC stack for more details on the format.

The automatic collision resolution will be restarted, if the packets are received with CRC or parity errors while
in ACTIVE_A state.

The SLP_REQ is automatically handled by the NFC peripheral. However, this results in an ERROR event
(with FRAMEDELAYTIMEOUT cause in ERRORSTATUS) since the SLP_REQ has no response. This error
must be ignored until the SELECTED event is triggered and this error should be cleared by the software
when the SELECTED event is triggered.

42.5 Frame timing controller
The NFC peripheral includes a frame timing controller that continuously keeps track of the number of the
13.56 MHz RF-carrier clock periods since the end of the EoF of the last received frame.

The NFC peripheral can be programmed to send a responding frame within a time window or at an exact
count of RF carrier periods. In case of FRAMEDELAYMODE = Window a STARTTX task triggered before
the frame timing controller counter is equal to FRAMEDELAYMIN will force the transmission to halt until the
counter is equal to FRAMEDELAYMIN. If the counter is within FRAMEDELAYMIN and FRAMEDELAYMAX
when the STARTTX task is triggered, the peripheral will start the transmission straight away. In case of
FRAMEDELAYMODE = ExactVal, a STARTTX task, triggered before the frame delay counter is equal to
FRAMEDELAYMAX, will halt the actual transmission start until the counter is equal to FRAMEDELAYMAX.

In case of FRAMEDELAYMODE = WindowGrid, the behaviour is similar to the FRAMEDELAYMODE =
Window, but the actual transmission between FRAMEDELAYMIN and FRAMEDELAYMAX starts on a bit
grid as defined for NFC-A Listen frames (slot duration of 128 RF carrier periods).

The FRAMEDELAYMIN and FRAMEDELAYMAX values shall only be updated before the STARTTX
task is triggered. Failing to do so may cause unpredictable behaviour. An ERROR event (with
FRAMEDELAYTIMEOUT cause in ERRORSTATUS) will be asserted if the frame timing controller counter
reaches FRAMEDELAYMAX without any STARTTX task triggered. This may happen even when the
response is not required as per NFC Forum, NFC Digital Protocol Technical Specification. Any commands
handled by the automatic collision resolution that don't involve a response being generated may also result in
an ERROR event (with FRAMEDELAYTIMEOUT cause in ERRORSTATUS).

The frame timing controller operation is illustrated in Figure 119: Frame timing controller
(FRAMEDELAYMODE=Window) on page 421. The frame timing controller automatically adjusts the frame
timing counter based on the last received data bit according to NFC-A technology in the NFC Forum, NFC
Digital Protocol Technical Specification.

42 NFCT — Near field communication tag

Page 421

Figure 119: Frame timing controller (FRAMEDELAYMODE=Window)

42.6 Frame assembler
The NFC peripheral implements a frame assembler in hardware.

When the NFC peripheral is in the ACTIVE_A state, the software can decide to enter RX or TX mode. For
RX, see Frame disassembler on page 422. For TX, the software must indicate the address of the source
buffer in Data RAM and its size through programming the PACKETPTR and MAXCNT registers respectively,
then issuing a TXSTART task.

MAXCNT must be set so that it matches the size of the frame to be sent.

The STARTED event indicates that the PACKETPTR and MAXCNT registers have been captured by the
frame assembler's EasyDMA.

When asserting the STARTTX task, the frame assembler module will start reading
TXD.AMOUNT.TXDATABYTES bytes (plus one additional byte if TXD.AMOUNT.TXDATABITS > 0) from the
RAM position set by the PACKETPTR.

The NFC peripheral transmits the data as read from RAM, adding framing and the CRC calculated on the fly.
The NFC peripheral will take (8*TXD.AMOUNT.TXDATABYTES + TXD.AMOUNT.TXDATABITS) bits and
assemble a frame according to settings in TXD.FRAMECONFIG. Both short frames, standard frames and
bit oriented SDD frames as specified in the NFC Forum, NFC Digital Protocol Technical Specification can be
assembled by correct setting of the TXD.FRAMECONFIG register.

The bytes will be transmitted on air in the same order as they are read from RAM with a rising bit order
within each byte (least significant bit first). That is, b0 will be transmitted on air before b1, and so on. The
bits read from RAM will be coded into symbols as defined in the NFC Forum, NFC Digital Protocol Technical
Specification.

Important: Some NFC Forum documents, such as NFC Forum, NFC Digital Protocol Technical
Specification, define bit numbering in a byte from b1 (LSB) to b8 (MSB), while most other technical
documents from the NFC Forum, and also the Nordic Semiconductor documentation, traditionally
numbers them from b0 to b7. The present document uses the b0 to b7 numbering scheme. Be aware
of this when comparing with the NFC Forum, NFC Digital Protocol Technical Specification to others.

The frame assembler can be configured in TXD.FRAMECONFIG to add Start of Frame (SoF) symbol,
calculate and add parity bits, and calculate and add CRC to the data read from RAM when assembling
the frame. The total frame will then be longer than what is defined by TXD.AMOUNT.TXDATABYTES and
TXDATABITS. DISCARDMODE will select if the first bits in the first byte read from RAM or the last bits in the
last byte read from RAM will be discarded if TXD.AMOUNT.TXDATABITS are not equal to zero. Note that if
TXD.FRAMECONFIG.PARITY = Parity and TXD.FRAMECONFIG.DISCARDMODE=DiscardStart, a parity bit
will be included after the non-complete first byte. No parity will be added after a non-complete last byte.

42 NFCT — Near field communication tag

Page 422

The Frame Assemble operation is illustrated in Figure 120: Frame assemble on page 422 for different
settings in TXD.FRAMECONFIG. All shaded bits fields are added by the frame assembler. Some of these
bits are optional and appearances are configured in TXD.FRAMECONFIG. Please note that the frames
illustrated do not necessarily comply with the NFC specification. The figure is only to illustrate the behavior of
the NFC peripheral.

Figure 120: Frame assemble

The accurate timing for transmitting the frame on air is set using the frame timing controller settings.

42.7 Frame disassembler
The NFC peripheral implements a frame disassembler in hardware.

When the NFC peripheral is in the ACTIVE_A state, the software can decide to enter RX or TX mode. For
TX, see Frame assembler on page 421. For RX, the software must indicate the address of the destination
buffer in Data RAM and its size through programming the PACKETPTR and MAXCNT registers respectively,
then issuing a ENABLERXDATA task.

The STARTED event indicates that the PACKETPTR and MAXCNT registers have been captured by the
frame disassembler's EasyDMA.

When an incoming frame starts, the RXFRAMESTART event will get issued and data will be written to the
buffer in Data RAM. The frame disassembler will verify and remove on the fly any parity bits and SoF and
End of Frame (EoF) symbols based on RXD.FRAMECONFIG register configuration. It will, however, verify
and transfer the CRC bytes into RAM, if the CRC is was enabled through RXD.FRAMECONFIG.

When an EoF symbol is detected, the NFC peripheral will assert the RXFRAMEEND event and write the
RXD.AMOUNT register to indicate numbers of received bytes and bits in the data packet. The module does
not interpret the content of the data received from the remote NFC device, except for SoF, EoF, parity and
CRC checking, as described above. The Frame disassemble operation is illustrated in Figure 121: Frame
disassemble illustration on page 422.

Per NFC specification, the time between end of frame to the next start of frame can be as short as 86 μs,
so care must be taken that PACKETPTR and MAXCNT are ready and ENABLERXDATA is issued on time
after the end of previous frame. The use of a PPI shortcut from TXFRAMEEND to ENABLERXDATA is
recommended.

Figure 121: Frame disassemble illustration

42 NFCT — Near field communication tag

Page 423

42.8 Antenna interface
In ACTIVATED state, an amplitude regulator will adjust the voltage swing on the antenna pins to a value that
is within the Vswing limit.

Refer to NFCT Electrical Specification on page 435.

42.9 NFCT antenna recommendations
The NFCT antenna coil must be connected differential between and pins of the device.

Two external capacitors should be used to tune the resonance of the antenna circuit to 13.56 MHz.

Figure 122: NFCT antenna recommendations

The required tuning capacitor value is given by the below equations:

An antenna inductance of Lant = 2 μH will give tuning capacitors in the range of 130 pF on each pin. For good
performance, match the total capacitance on and .

42.10 Battery protection
If the antenna is exposed to a strong NFC field, current may flow in the opposite direction on the supply due
to parasitic diodes and ESD structures.

If the battery used does not tolerate return current, a series diode must be placed between the battery and
the device in order to protect the battery.

42 NFCT — Near field communication tag

Page 424

42.11 References
NFC Forum, NFC Analog Specification version 1.0, www.nfc-forum.org

NFC Forum, NFC Digital Protocol Technical Specification version 1.1, www.nfc-forum.org

NFC Forum, NFC Activity Technical Specification version 1.1, www.nfc-forum.org

42.12 Registers
Table 100: Instances

Table 101: Register Overview

42 NFCT — Near field communication tag

Page 425

42.12.1 SHORTS
Address offset: 0x200

Shortcut register

42.12.2 INTEN
Address offset: 0x300

Enable or disable interrupt

42 NFCT — Near field communication tag

Page 426

42.12.3 INTENSET
Address offset: 0x304

Enable interrupt

42 NFCT — Near field communication tag

Page 427

42 NFCT — Near field communication tag

Page 428

42.12.4 INTENCLR
Address offset: 0x308

Disable interrupt

42 NFCT — Near field communication tag

Page 429

42 NFCT — Near field communication tag

Page 430

42.12.5 ERRORSTATUS
Address offset: 0x404

NFC Error Status register

Write a bit to '1' to clear it. Writing '0' has no effect.

42.12.6 FRAMESTATUS.RX
Address offset: 0x40C

Result of last incoming frames

Write a bit to '1' to clear it. Writing '0' has no effect.

42.12.7 CURRENTLOADCTRL
Address offset: 0x430

Current value driven to the NFC Load Control

42.12.8 FIELDPRESENT
Address offset: 0x43C

42 NFCT — Near field communication tag

Page 431

Indicates the presence or not of a valid field

42.12.9 FRAMEDELAYMIN
Address offset: 0x504

Minimum frame delay

42.12.10 FRAMEDELAYMAX
Address offset: 0x508

Maximum frame delay

42.12.11 FRAMEDELAYMODE
Address offset: 0x50C

Configuration register for the Frame Delay Timer

42.12.12 PACKETPTR
Address offset: 0x510

Packet pointer for TXD and RXD data storage in Data RAM

42 NFCT — Near field communication tag

Page 432

42.12.13 MAXLEN
Address offset: 0x514

Size of allocated for TXD and RXD data storage buffer in Data RAM

42.12.14 TXD.FRAMECONFIG
Address offset: 0x518

Configuration of outgoing frames

42.12.15 TXD.AMOUNT
Address offset: 0x51C

Size of outgoing frame

42 NFCT — Near field communication tag

Page 433

42.12.16 RXD.FRAMECONFIG
Address offset: 0x520

Configuration of incoming frames

42.12.17 RXD.AMOUNT
Address offset: 0x524

Size of last incoming frame

42.12.18 NFCID1_LAST
Address offset: 0x590

Last NFCID1 part (4, 7 or 10 bytes ID)

42.12.19 NFCID1_2ND_LAST
Address offset: 0x594

Second last NFCID1 part (7 or 10 bytes ID)

42 NFCT — Near field communication tag

Page 434

42.12.20 NFCID1_3RD_LAST
Address offset: 0x598

Third last NFCID1 part (10 bytes ID)

42.12.21 SENSRES
Address offset: 0x5A0

NFC-A SENS_RES auto-response settings

42.12.22 SELRES
Address offset: 0x5A4

NFC-A SEL_RES auto-response settings

42 NFCT — Near field communication tag

Page 435

42.13 Electrical specification

42.13.1 NFCT Electrical Specification

42.13.2 NFCT Timing Parameters

Figure 123: NFCT timing parameters (Shortcuts for FIELDDETECTED and FIELDLOST are disabled)

43 PDM — Pulse density modulation interface

Page 436

43 PDM — Pulse density modulation interface
The pulse density modulation (PDM) module enables input of pulse density modulated signals from external
audio frontends, for example, digital microphones. The PDM module generates the PDM clock and supports
single-channel or dual-channel (Left and Right) data input. Data is transferred directly to RAM buffers using
EasyDMA.

Listed here are the main features for PDM:

• Up to two PDM microphones configured as a Left/Right pair using the same data input
• 16 kHz output sample rate, 16-bit samples
• EasyDMA support for sample buffering
• HW decimation filters

The PDM module illustrated in Figure 124: PDM module on page 436 is interfacing up to two digital
microphones with the PDM interface. It implements EasyDMA, which relieves real-time requirements
associated with controlling the PDM slave from a low priority CPU execution context. It also includes all
the necessary digital filter elements to produce PCM samples. The PDM module allows continuous audio
streaming.

Figure 124: PDM module

43.1 Master clock generator
The FREQ field in the master clock's PDMCLKCTRL register allows adjusting the PDM clock's frequency.

The master clock generator does not add any jitter to the HFCLK source chosen. It is recommended (but not
mandatory) to use the Xtal as HFCLK source.

43.2 Module operation
By default, bits from the left PDM microphone are sampled on PDM_CLK falling edge, bits for the right are
sampled on the rising edge of PDM_CLK, resulting in two bitstreams. Each bitstream is fed into a digital filter
which converts the PDM stream into 16-bit PCM samples, and filters and down-samples them to reach the
appropriate sample rate.

The EDGE field in the MODE register allows swapping Left and Right, so that Left will be sampled on rising
edge, and Right on falling.

The PDM module uses EasyDMA to store the samples coming out from the filters into one buffer in RAM.

Depending on the mode chosen in the OPERATION field in the MODE register, memory either contains
alternating left and right 16-bit samples (Stereo), or only left 16-bit samples (Mono).

To ensure continuous PDM sampling, it is up to the application to update the EasyDMA destination address
pointer as the previous buffer is filled.

43 PDM — Pulse density modulation interface

Page 437

The continuous transfer can be started or stopped by sending the START and STOP tasks. STOP becomes
effective after the current frame has finished transferring, which will generate the STOPPED event. The
STOPPED event indicates that all activity in the module are finished, and that the data is available in RAM
(EasyDMA has finished transferring as well). Attempting to restart before receiving the STOPPED event may
result in unpredictable behaviour.

43.3 Decimation filter
In order to convert the incoming data stream into PCM audio samples, a decimation filter is included in the
PDM interface module.

The input of the filter is the two-channel PDM serial stream (with left channel on clock high, right channel on
clock low), its output is 2 × 16-bit PCM samples at a sample rate 64 times lower than the PDM clock rate.

The filter stage of each channel is followed by a digital volume control, to attenuate or amplify the output
samples in a range of -20 dB to +20 dB around the default (reset) setting, defined by GPDM,default. The gain is
controlled by the GAINL and GAINR registers.

As an example, if the goal is to achieve 2500 RMS output samples (16 bit) with a 1 kHz 90 dBA signal into a
-26 dBFS sensitivity PDM microphone, the user will have to sum the PDM module's default gain (GPDM,default
) and the gain introduced by the microphone and acoustic path of his implementation (an attenuation would
translate into a negative gain), and adjust GAINL and GAINR by this amount. Assuming that only the PDM
module influences the gain, GAINL and GAINR must be set to -GPDM,default dB to achieve the requirement.

With GPDM,default=3.2 dB, and as GAINL and GAINR are expressed in 0.5 dB steps, the closest value to
program would be 3.0 dB, which can be calculated as:

Remember to check that the resulting values programmed into GAINL and GAINR fall within MinGain and
MaxGain.

43.4 EasyDMA
Samples will be written directly to RAM, and EasyDMA must be configured accordingly.

The address pointer for the EasyDMA channel is set in SAMPLE.PTR register. If the destination address set
in SAMPLE.PTR is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or
RAM corruption. See Memory on page 23 for more information about the different memory regions.

DMA supports Stereo (Left+Right 16-bit samples) and Mono (Left only) data transfer, depending on setting in
the OPERATION field in the MODE register. The samples are stored little endian.

Table 102: DMA sample storage

The destination buffer in RAM consists of one block, the size of which is set in SAMPLE.MAXCNT register.
Format is number of 16-bit samples. The physical RAM allocated is always:

(but the mapping of the samples depends on MODE.OPERATION.

If OPERATION=Stereo, RAM will contain a succession of Left and Right samples.

If OPERATION=Mono, RAM will contain a succession of mono samples.

43 PDM — Pulse density modulation interface

Page 438

For a given value of SAMPLE.MAXCNT, the buffer in RAM can contain half the stereo sampling time as
compared to the mono sampling time.

The PDM acquisition can be started by the START task, after the SAMPLE.PTR and SAMPLE.MAXCNT
registers have been written. When starting the module, it will take some time for the filters to start outputting
valid data. Transients from the PDM microphone itself may also occur. The first few samples (typically
around 50) might hence contain invalid values or transients. It is therefore advised to discard the first few
samples after a PDM start.

As soon as the STARTED event is received, the firmware can write the next SAMPLE.PTR value (this
register is double-buffered), to ensure continuous operation.

When the buffer in RAM is filled with samples, an END event is triggered. The firmware can start processing
the data in the buffer. Meanwhile, the PDM module starts acquiring data into the new buffer pointed to by
SAMPLE.PTR, and sends a new STARTED event, so that the firmware can update SAMPLE.PTR to the
next buffer address.

43.5 Hardware example
Connect the microphone clock to CLK, and data to DIN.

Figure 125: Example of a single PDM microphone, wired as left

Figure 126: Example of a single PDM microphone, wired as right

Note that in a single-microphone (mono) configuration, depending on the microphone’s implementation,
either the left or the right channel (sampled at falling or rising CLK edge respectively) will contain reliable
data. If two microphones are used, one of them has to be set as left, the other as right (L/R pin tied high or
to GND on the respective microphone). It is strongly recommended to use two microphones of exactly the
same brand and type so that their timings in left and right operation match.

Figure 127: Example of two PDM microphones

43.6 Pin configuration
The CLK and DIN signals associated to the PDM module are mapped to physical pins according to the
configuration specified in the PSEL.CLK and PSEL.DIN registers respectively. If the CONNECT field in
any PSEL register is set to Disconnected, the associated PDM module signal will not be connected to the
required physical pins, and will not operate properly.

43 PDM — Pulse density modulation interface

Page 439

The PSEL.CLK and PSEL.DIN registers and their configurations are only used as long as the PDM module
is enabled, and retained only as long as the device is in System ON mode. See POWER — Power supply on
page 78 for more information about power modes. When the peripheral is disabled, the pins will behave as
regular GPIOs, and use the configuration in their respective OUT bit field and PIN_CNF[n] register.

To ensure correct behaviour in the PDM module, the pins used by the PDM module must be configured in
the GPIO peripheral as described in Table 103: GPIO configuration before enabling peripheral on page
439 before enabling the PDM module. This is to ensure that the pins used by the PDM module are driven
correctly if the PDM module itself is temporarily disabled or the device temporarily enters System OFF. This
configuration must be retained in the GPIO for the selected I/Os as long as the PDM module is supposed to
be connected to an external PDM circuit.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behaviour.

Table 103: GPIO configuration before enabling peripheral

43.7 Registers
Table 104: Instances

Table 105: Register Overview

43.7.1 INTEN
Address offset: 0x300

Enable or disable interrupt

43 PDM — Pulse density modulation interface

Page 440

43.7.2 INTENSET
Address offset: 0x304

Enable interrupt

43.7.3 INTENCLR
Address offset: 0x308

Disable interrupt

43 PDM — Pulse density modulation interface

Page 441

43.7.4 ENABLE
Address offset: 0x500

PDM module enable register

43.7.5 PDMCLKCTRL
Address offset: 0x504

PDM clock generator control

43.7.6 MODE
Address offset: 0x508

Defines the routing of the connected PDM microphones' signals

43 PDM — Pulse density modulation interface

Page 442

43.7.7 GAINL
Address offset: 0x518

Left output gain adjustment

43.7.8 GAINR
Address offset: 0x51C

Right output gain adjustment

43.7.9 PSEL.CLK
Address offset: 0x540

Pin number configuration for PDM CLK signal

43.7.10 PSEL.DIN
Address offset: 0x544

43 PDM — Pulse density modulation interface

Page 443

Pin number configuration for PDM DIN signal

43.7.11 SAMPLE.PTR
Address offset: 0x560

RAM address pointer to write samples to with EasyDMA

43.7.12 SAMPLE.MAXCNT
Address offset: 0x564

Number of samples to allocate memory for in EasyDMA mode

43.8 Electrical specification

43.8.1 PDM Electrical Specification

43 PDM — Pulse density modulation interface

Page 444

Figure 128: PDM timing diagram

44 I2S — Inter-IC sound interface

Page 445

44 I2S — Inter-IC sound interface
The I2S (Inter-IC Sound) module, supports the original two-channel I2S format, and left or right-aligned
formats. It implements EasyDMA for sample transfer directly to and from RAM without CPU intervention.

The I2S peripheral has the following main features:

• Master and Slave mode
• Simultaneous bi-directional (TX and RX) audio streaming
• Original I2S and left- or right-aligned format
• 8, 16 and 24-bit sample width
• Low-jitter Master Clock generator
• Various sample rates

Figure 129: I2S master

44.1 Mode
The I2S protocol specification defines two modes of operation, Master and Slave.

The I2S mode decides which of the two sides (Master or Slave) shall provide the clock signals LRCK and
SCK, and these signals are always supplied by the Master to the Slave.

44.2 Transmitting and receiving
The I2S module supports both transmission (TX) and reception (RX) of serial data. In both cases the serial
data is shifted synchronously to the clock signals SCK and LRCK.

44 I2S — Inter-IC sound interface

Page 446

TX data is written to the SDOUT pin on the falling edge of SCK, and RX data is read from the SDIN pin on
the rising edge of SCK. The most significant bit (MSB) is always transmitted first.

TX and RX are available in both Master and Slave modes and can be enabled/disabled independently in the
CONFIG.TXEN on page 455 and CONFIG.RXEN on page 455.

Transmission and/or reception is started by triggering the START task. When started and transmission
is enabled (in CONFIG.TXEN on page 455), the TXPTRUPD event will be generated for every
RXTXD.MAXCNT on page 458 number of transmitted data words (containing one or more samples).
Similarly, when started and reception is enabled (in CONFIG.RXEN on page 455), the RXPTRUPD event
will be generated for every RXTXD.MAXCNT on page 458 received data words.

Figure 130: Transmitting and receiving. CONFIG.FORMAT = Aligned, CONFIG.SWIDTH = 8Bit,
CONFIG.CHANNELS = Stereo, RXTXD.MAXCNT = 1.

44.3 Left right clock (LRCK)
The Left Right Clock (LRCK), often referred to as "word clock", "sample clock" or "word select" in I2S
context, is the clock defining the frames in the serial bit streams sent and received on SDOUT and SDIN,
respectively.

In I2S mode, each frame contains one left and right sample pair, with the left sample being transferred during
the low half period of LRCK followed by the right sample being transferred during the high period of LRCK.

In Aligned mode, each frame contains one left and right sample pair, with the left sample being transferred
during the high half period of LRCK followed by the right sample being transferred during the low period of
LRCK.

Consequently, the LRCK frequency is equivalent to the audio sample rate.

When operating in Master mode, the LRCK is generated from the MCK, and the frequency of LRCK is then
given as:

LRCK always toggles around the falling edge of the serial clock SCK.

44.4 Serial clock (SCK)
The serial clock (SCK), often referred to as the serial bit clock, pulses once for each data bit being
transferred on the serial data lines SDIN and SDOUT.

44 I2S — Inter-IC sound interface

Page 447

When operating in Master mode the SCK is generated from the MCK, and the frequency of SCK is then
given as:

The falling edge of the SCK falls on the toggling edge of LRCK.

When operating in Slave mode SCK is provided by the external I2S master.

44.5 Master clock (MCK)
The master clock (MCK) is the clock from which LRCK and SCK are derived when operating in Master mode.

The MCK is generated by an internal MCK generator. This generator always needs to be enabled when in
Master mode, but the generator can also be enabled when in Slave mode. Enabling the generator when in
slave mode can be useful in the case where the external Master is not able to generate its own master clock.

The MCK generator is enabled/disabled in the register CONFIG.MCKEN on page 456, and the generator
is started or stopped by the START or STOP tasks.

In Master mode the LRCK and the SCK frequencies are closely related, as both are derived from MCK and
set indirectly through CONFIG.RATIO on page 456 and CONFIG.SWIDTH on page 457.

When configuring these registers, the user is responsible for fulfilling the following requirements:

1. SCK frequency can never exceed the MCK frequency, which can be formulated as:

2. The MCK/LRCK ratio shall be a multiple of 2 * CONFIG.SWIDTH, which can be formulated as:

The MCK signal can be routed to an output pin (specified in PSEL.MCK) to supply external I2S devices that
require the MCK to be supplied from the outside.

When operating in Slave mode, the I2S module does not use the MCK and the MCK generator does not
need to be enabled.

Figure 131: Relation between RATIO, MCK and LRCK.

Table 106: Configuration examples

44.6 Width, alignment and format
The CONFIG.SWIDTH register primarily defines the sample width of the data written to memory. In master
mode, it then also sets the amount of bits per frame. In Slave mode it controls padding/trimming if required.
Left, right, transmitted, and received samples always have the same width. The CONFIG.FORMAT register
specifies the position of the data frames with respect to the LRCK edges in both Master and Slave modes.

44 I2S — Inter-IC sound interface

Page 448

When using I2S format, the first bit in a half-frame (containing one left or right sample) gets sampled on the
second rising edge of the SCK after a LRCK edge. When using Aligned mode, the first bit in a half-frame
gets sampled on the first rising edge of SCK following a LRCK edge.

For data being received on SDIN the sample value can be either right or left-aligned inside a half-frame, as
specified in CONFIG.ALIGN on page 457. CONFIG.ALIGN on page 457 affects only the decoding of
the incoming samples (SDIN), while the outgoing samples (SDOUT) are always left-aligned (or justified).

When using left-alignment, each half-frame starts with the MSB of the sample value (both for data being sent
on SDOUT and received on SDIN).

When using right-alignment, each half-frame of data being received on SDIN ends with the LSB of the
sample value, while each half-frame of data being sent on SDOUT starts with the MSB of the sample value
(same as for left-alignment).

In Master mode, the size of a half-frame (in number of SCK periods) equals the sample width (in number of
bits), and in this case the alignment setting does not care as each half-frame in any case will start with the
MSB and end with the LSB of the sample value.

In slave mode, however, the sample width does not need to equal the frame size. This means you might
have extra or fewer SCK pulses per half-frame than what the sample width specified in CONFIG.SWIDTH
requires.

In the case where we use left-alignment and the number of SCK pulses per half-frame is higher than the
sample width, the following will apply:

• For data received on SDIN, all bits after the LSB of the sample value will be discarded.
• For data sent on SDOUT, all bits after the LSB of the sample value will be 0.

In the case where we use left-alignment and the number of SCK pulses per frame is lower than the sample
width, the following will apply:

• Data sent and received on SDOUT and SDIN will be truncated with the LSBs being removed first.

In the case where we use right-alignment and the number of SCK pulses per frame is higher than the
sample width, the following will apply:

• For data received on SDIN, all bits before the MSB of the sample value will be discarded.
• For data sent on SDOUT, all bits after the LSB of the sample value will be 0 (same behavior as for left-

alignment).

In the case where we use right-alignment and the number of SCK pulses per frame is lower than the
sample width, the following will apply:

• Data received on SDIN will be sign-extended to "sample width" number of bits before being written to
memory.

• Data sent on SDOUT will be truncated with the LSBs being removed first (same behavior as for left-
alignment).

Figure 132: I2S format. CONFIG.SWIDTH equalling half-frame size.

Figure 133: Aligned format. CONFIG.SWIDTH equalling half-frame size.

44 I2S — Inter-IC sound interface

Page 449

44.7 EasyDMA
The I2S module implements EasyDMA for accessing internal Data RAM without CPU intervention.

The source and destination pointers for the TX and RX data are configured in TXD.PTR on page 458 and
RXD.PTR on page 458. The memory pointed to by these pointers will only be read or written when TX or
RX are enabled in CONFIG.TXEN on page 455 and CONFIG.RXEN on page 455.

The addresses written to the pointer registers TXD.PTR on page 458 and RXD.PTR on page 458 are
double-buffered in hardware, and these double buffers are updated for every RXTXD.MAXCNT on page
458 words (containing one or more samples) read/written from/to memory. The events TXPTRUPD and
RXPTRUPD are generated whenever the TXD.PTR and RXD.PTR are transferred to these double buffers.

If TXD.PTR on page 458 is not pointing to the Data RAM region when transmission is enabled, or
RXD.PTR on page 458 is not pointing to the Data RAM region when reception is enabled, an EasyDMA
transfer may result in a HardFault and/or memory corruption. See Memory on page 23 for more information
about the different memory regions.

Due to the nature of I2S, where the number of transmitted samples always equals the number of received
samples (at least when both TX and RX are enabled), one common register RXTXD.MAXCNT on page
458 is used for specifying the sizes of these two memory buffers. The size of the buffers is specified in
a number of 32-bit words. Such a 32-bit memory word can either contain four 8-bit samples, two 16-bit
samples or one right-aligned 24-bit sample sign extended to 32 bit.

In stereo mode (CONFIG.CHANNELS=Stereo), the samples are stored as "left and right sample
pairs" in memory. Figure Figure 134: Memory mapping for 8 bit stereo. CONFIG.SWIDTH = 8Bit,
CONFIG.CHANNELS = Stereo. on page 449, Figure 136: Memory mapping for 16 bit stereo.
CONFIG.SWIDTH = 16Bit, CONFIG.CHANNELS = Stereo. on page 450 and Figure 138: Memory
mapping for 24 bit stereo. CONFIG.SWIDTH = 24Bit, CONFIG.CHANNELS = Stereo. on page 450 show
how the samples are mapped to memory in this mode. The mapping is valid for both RX and TX.

In mono mode (CONFIG.CHANNELS=Left or Right), RX sample from only one channel in the frame is
stored in memory, the other channel sample is ignored. Illustrations Figure 135: Memory mapping for 8
bit mono. CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Left. on page 450, Figure 137: Memory
mapping for 16 bit mono, left channel only. CONFIG.SWIDTH = 16Bit, CONFIG.CHANNELS = Left. on
page 450 and Figure 139: Memory mapping for 24 bit mono, left channel only. CONFIG.SWIDTH = 24Bit,
CONFIG.CHANNELS = Left. on page 451 show how RX samples are mapped to memory in this mode.

For TX, the same outgoing sample read from memory is transmitted on both left and right in a frame,
resulting in a mono output stream.

Figure 134: Memory mapping for 8 bit stereo. CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Stereo.

44 I2S — Inter-IC sound interface

Page 450

Figure 135: Memory mapping for 8 bit mono. CONFIG.SWIDTH = 8Bit, CONFIG.CHANNELS = Left.

Figure 136: Memory mapping for 16 bit stereo. CONFIG.SWIDTH = 16Bit, CONFIG.CHANNELS =
Stereo.

Figure 137: Memory mapping for 16 bit mono, left channel only. CONFIG.SWIDTH = 16Bit,
CONFIG.CHANNELS = Left.

Figure 138: Memory mapping for 24 bit stereo. CONFIG.SWIDTH = 24Bit, CONFIG.CHANNELS =
Stereo.

44 I2S — Inter-IC sound interface

Page 451

Figure 139: Memory mapping for 24 bit mono, left channel only. CONFIG.SWIDTH = 24Bit,
CONFIG.CHANNELS = Left.

44.8 Module operation
Described here is a typical operating procedure for the I2S module.

1. Configure the I2S module using the CONFIG registers

2. Map IO pins using the PINSEL registers

44 I2S — Inter-IC sound interface

Page 452

3. Configure TX and RX data pointers using the TXD, RXD and RXTXD registers

4. Enable the I2S module using the ENABLE register

5. Start audio streaming using the START task

6. Handle received and transmitted data when receiving the TXPTRUPD and RXPTRUPD events

44.9 Pin configuration
The MCK, SCK, LRCK, SDIN and SDOUT signals associated with the I2S module are mapped to physical
pins according to the pin numbers specified in the PSEL.x registers.

These pins are acquired whenever the I2S module is enabled through the register ENABLE on page 455.

When a pin is acquired by the I2S module, the direction of the pin (input or output) will be configured
automatically, and any pin direction setting done in the GPIO module will be overridden. The directions for
the various I2S pins are shown below in Table 107: GPIO configuration before enabling peripheral (master
mode) on page 452 and Table 108: GPIO configuration before enabling peripheral (slave mode) on page
453.

To secure correct signal levels on the pins when the system is in OFF mode, and when the I2S module is
disabled, these pins must be configured in the GPIO peripheral directly.

Table 107: GPIO configuration before enabling peripheral (master mode)

44 I2S — Inter-IC sound interface

Page 453

Table 108: GPIO configuration before enabling peripheral (slave mode)

44.10 Registers
Table 109: Instances

Table 110: Register Overview

44.10.1 INTEN
Address offset: 0x300

Enable or disable interrupt

44 I2S — Inter-IC sound interface

Page 454

44.10.2 INTENSET
Address offset: 0x304

Enable interrupt

44.10.3 INTENCLR
Address offset: 0x308

Disable interrupt

44 I2S — Inter-IC sound interface

Page 455

44.10.4 ENABLE
Address offset: 0x500

Enable I2S module.

44.10.5 CONFIG.MODE
Address offset: 0x504

I2S mode.

44.10.6 CONFIG.RXEN
Address offset: 0x508

Reception (RX) enable.

44.10.7 CONFIG.TXEN
Address offset: 0x50C

44 I2S — Inter-IC sound interface

Page 456

Transmission (TX) enable.

44.10.8 CONFIG.MCKEN
Address offset: 0x510

Master clock generator enable.

44.10.9 CONFIG.MCKFREQ
Address offset: 0x514

Master clock generator frequency.

44.10.10 CONFIG.RATIO
Address offset: 0x518

MCK / LRCK ratio.

44 I2S — Inter-IC sound interface

Page 457

44.10.11 CONFIG.SWIDTH
Address offset: 0x51C

Sample width.

44.10.12 CONFIG.ALIGN
Address offset: 0x520

Alignment of sample within a frame.

44.10.13 CONFIG.FORMAT
Address offset: 0x524

Frame format.

44.10.14 CONFIG.CHANNELS
Address offset: 0x528

Enable channels.

44 I2S — Inter-IC sound interface

Page 458

44.10.15 RXD.PTR
Address offset: 0x538

Receive buffer RAM start address.

44.10.16 TXD.PTR
Address offset: 0x540

Transmit buffer RAM start address.

44.10.17 RXTXD.MAXCNT
Address offset: 0x550

Size of RXD and TXD buffers.

44.10.18 PSEL.MCK
Address offset: 0x560

Pin select for MCK signal.

44 I2S — Inter-IC sound interface

Page 459

44.10.19 PSEL.SCK
Address offset: 0x564

Pin select for SCK signal.

44.10.20 PSEL.LRCK
Address offset: 0x568

Pin select for LRCK signal.

44.10.21 PSEL.SDIN
Address offset: 0x56C

Pin select for SDIN signal.

44.10.22 PSEL.SDOUT
Address offset: 0x570

Pin select for SDOUT signal.

44 I2S — Inter-IC sound interface

Page 460

44.11 Electrical specification

44.11.1 I2S timing specification

Figure 140: I2S timing diagram

45 MWU — Memory watch unit

Page 461

45 MWU — Memory watch unit
The Memory watch unit (MWU) can be used to generate events when a memory region is accessed
by the CPU. The MWU can be configured to trigger events for access to Data RAM and Peripheral
memory segments. The MWU allows an application developer to generate memory access events during
development for debugging or during production execution for failure detection and recovery.

Listed here are the main features for MWU:

• Six memory regions, four user-configurable and two fixed regions in peripheral address space
• Flexible configuration of regions with START and END addresses
• Generate events on CPU read and/or write to a defined region of Data RAM or peripheral memory

address space
• Programmable maskable or non-maskable (NMI) interrupt on events
• Peripheral interfaces can be watched for read and write access using subregions of the two fixed memory

regions

Table 111: Memory regions

Each MWU region is defined by a start address and an end address, configured by the START and END
registers respectively. These addresses are byte aligned and inclusive. The END register value has to be
greater or equal to the START register value. Each region is associated with a pair of events that indicate
that either a write access or a read access from the CPU has been detected inside the region.

For regions containing subregions (see below), a set of status registers PERREGION[0..1].SUBSTATWA
and PERREGION[0..1].SUBSTATRA indicate which subregion(s) caused the EVENT_PREGION[0..1].WA
and EVENT_PREGION[0..1].RA respectively.

The MWU is only able to detect memory accesses in the Data RAM and Peripheral memory segments from
the CPU, see Memory on page 23 for more information about the different memory segments. EasyDMA
accesses are not monitored by the MWU. The MWU requires two HCLK cycles to detect and generate the
event.

The peripheral regions, PREGION[0...1], are divided into 32 equally sized subregions, SR[0...31]. All
subregions are excluded in the main region by default, and any can be included by specifying them in the
SUBS register. When a subregion is excluded from the main region, the memory watch mechanism will not
trigger any events when that subregion is accessed.

Subregions in PREGION[0..1] cannot be individually configured for read or write access watch. Watch
configuration is only possible for a region as a whole. The PRGNiRA and PRGNiWA (i=0..1) fields in the
REGIONEN register control watching read and write access.

REGION[0..3] can be individually enabled for read and/or write access watching through their respective
RGNiRA and RGNiWA (i=0..3) fields in the REGIONEN register.

REGIONENSET and REGIONENCLR allow respectively enabling and disabling one or multiple REGIONs or
PREGIONs watching in a single write access.

45.1 Registers
Table 112: Instances

45 MWU — Memory watch unit

Page 462

Table 113: Register Overview

45.1.1 INTEN
Address offset: 0x300

Enable or disable interrupt

45 MWU — Memory watch unit

Page 463

45.1.2 INTENSET
Address offset: 0x304

Enable interrupt

45 MWU — Memory watch unit

Page 464

45 MWU — Memory watch unit

Page 465

45.1.3 INTENCLR
Address offset: 0x308

Disable interrupt

45 MWU — Memory watch unit

Page 466

45.1.4 NMIEN
Address offset: 0x320

Enable or disable non-maskable interrupt

45 MWU — Memory watch unit

Page 467

45.1.5 NMIENSET
Address offset: 0x324

Enable non-maskable interrupt

45 MWU — Memory watch unit

Page 468

45 MWU — Memory watch unit

Page 469

45.1.6 NMIENCLR
Address offset: 0x328

Disable non-maskable interrupt

45 MWU — Memory watch unit

Page 470

45 MWU — Memory watch unit

Page 471

45.1.7 PERREGION[0].SUBSTATWA
Address offset: 0x400

Source of event/interrupt in region 0, write access detected while corresponding subregion was enabled for
watching

45 MWU — Memory watch unit

Page 472

45.1.8 PERREGION[0].SUBSTATRA
Address offset: 0x404

Source of event/interrupt in region 0, read access detected while corresponding subregion was enabled for
watching

45 MWU — Memory watch unit

Page 473

45 MWU — Memory watch unit

Page 474

45.1.9 PERREGION[1].SUBSTATWA
Address offset: 0x408

Source of event/interrupt in region 1, write access detected while corresponding subregion was enabled for
watching

45 MWU — Memory watch unit

Page 475

45 MWU — Memory watch unit

Page 476

45.1.10 PERREGION[1].SUBSTATRA
Address offset: 0x40C

Source of event/interrupt in region 1, read access detected while corresponding subregion was enabled for
watching

45 MWU — Memory watch unit

Page 477

45 MWU — Memory watch unit

Page 478

45.1.11 REGIONEN
Address offset: 0x510

Enable/disable regions watch

45 MWU — Memory watch unit

Page 479

45.1.12 REGIONENSET
Address offset: 0x514

Enable regions watch

45 MWU — Memory watch unit

Page 480

45.1.13 REGIONENCLR
Address offset: 0x518

Disable regions watch

45 MWU — Memory watch unit

Page 481

45.1.14 REGION[0].START
Address offset: 0x600

Start address for region 0

45.1.15 REGION[0].END
Address offset: 0x604

End address of region 0

45 MWU — Memory watch unit

Page 482

45.1.16 REGION[1].START
Address offset: 0x610

Start address for region 1

45.1.17 REGION[1].END
Address offset: 0x614

End address of region 1

45.1.18 REGION[2].START
Address offset: 0x620

Start address for region 2

45.1.19 REGION[2].END
Address offset: 0x624

End address of region 2

45.1.20 REGION[3].START
Address offset: 0x630

Start address for region 3

45.1.21 REGION[3].END
Address offset: 0x634

End address of region 3

45 MWU — Memory watch unit

Page 483

45.1.22 PREGION[0].START
Address offset: 0x6C0

Reserved for future use

45.1.23 PREGION[0].END
Address offset: 0x6C4

Reserved for future use

45.1.24 PREGION[0].SUBS
Address offset: 0x6C8

Subregions of region 0

45 MWU — Memory watch unit

Page 484

45 MWU — Memory watch unit

Page 485

45.1.25 PREGION[1].START
Address offset: 0x6D0

Reserved for future use

45.1.26 PREGION[1].END
Address offset: 0x6D4

Reserved for future use

45.1.27 PREGION[1].SUBS
Address offset: 0x6D8

Subregions of region 1

45 MWU — Memory watch unit

Page 486

45 MWU — Memory watch unit

Page 487

46 EGU — Event generator unit

Page 488

46 EGU — Event generator unit
The Event generator unit (EGU) provides support for inter-layer signaling. This means support for atomic
triggering of both CPU execution and hardware tasks from both firmware (by CPU) and hardware (by PPI).
This feature can, for instance, be used for triggering CPU execution at a lower priority execution from a
higher priority execution, or to handle a peripheral's ISR execution at a lower priority for some of its events.
However, triggering any priority from any priority is possible.

Listed here are the main EGU features:

• Enables SW triggering of interrupts
• 6 EGU instances – separate interrupt vectors
• Up to 16 separate event flags per interrupt for multiplexing

The EGU implements a set of tasks which can individually be triggered to generate the corresponding event,
i.e., the corresponding event for TASKS_TRIGGER[n] is EVENTS_TRIGGERED[n].

Table 114: EGU configuration

46.1 Registers
Table 115: Instances

Table 116: Register Overview

46 EGU — Event generator unit

Page 489

46.1.1 INTEN
Address offset: 0x300

Enable or disable interrupt

46 EGU — Event generator unit

Page 490

46.1.2 INTENSET
Address offset: 0x304

Enable interrupt

46 EGU — Event generator unit

Page 491

46 EGU — Event generator unit

Page 492

46.1.3 INTENCLR
Address offset: 0x308

Disable interrupt

46 EGU — Event generator unit

Page 493

46 EGU — Event generator unit

Page 494

46.2 Electrical specification

46.2.1 EGU Electrical Specification

47 PWM — Pulse width modulation

Page 495

47 PWM — Pulse width modulation
The PWM module enables the generation of pulse width modulated signals on GPIO. The module
implements an up or up-and-down counter with four PWM channels that drive assigned GPIOs.

Three PWM modules can provide up to 12 PWM channels with individual frequency control in groups of up to
four channels. Furthermore, a built-in decoder and EasyDMA capabilities make it possible to manipulate the
PWM duty cycles without CPU intervention. Arbitrary duty-cycle sequences are read from Data RAM and can
be chained to implement ping-pong buffering or repeated into complex loops.

Listed here are the main features of one PWM module:

• Fixed PWM base frequency with programmable clock divider
• Up to four PWM channels with individual polarity and duty-cycle values
• Edge or center-aligned pulses across PWM channels
• Multiple duty-cycle arrays (sequences) defined in Data RAM
• Autonomous and glitch-free update of duty cycle values directly from memory through EasyDMA
• Change of polarity, duty-cycle, and base frequency possibly on every PWM period
• Data RAM sequences can be repeated or connected into loops

Figure 141: PWM Module

47.1 Wave counter
The wave counter is responsible for generating the pulses at a duty-cycle that depends on the compare
values, and at a frequency that depends on COUNTERTOP.

There is one common 15-bit counter with four compare channels. Thus, all four channels will share the same
period (PWM frequency), but can have individual duty-cycle and polarity. The polarity is set by the value
read from RAM (see Figure 144: Decoder memory access modes on page 498), while the MODE register
controls if the counter counts up, or up and down. The timer top value is controlled by the COUNTERTOP
register. This register value in conjunction with the selected PRESCALER of the PWM_CLK will result in a
given PWM period. A COUNTERTOP value smaller than the compare setting will result in a state where no
PWM edges are generated. Respectively, OUT[n] is held high, given that the polarity is set to FallingEdge.
All the compare registers are internal and can only be configured through the decoder presented later.

COUNTERTOP can be safely written at any time. It will get sampled following a START task. If
DECODER.LOAD is anything else than WaveForm, it will also get sampled following a STARTSEQ[n] task,

47 PWM — Pulse width modulation

Page 496

and when loading a new value from RAM during a sequence playback. If DECODER.LOAD=WaveForm, the
register value is ignored, and taken from RAM instead (see Decoder with EasyDMA on page 498 below).

Figure 142: PWM up counter example - FallingEdge polarity on page 496 shows the counter operating in
up (MODE=PWM_MODE_Up) mode with three PWM channels with the same frequency but different duty
cycle. The counter is automatically reset to zero when COUNTERTOP is reached and OUT[n] will invert.
OUT[n] is held low if the compare value is 0 and held high respectively if set to COUNTERTOP given that the
polarity is set to FallingEdge. Running in up counter mode will result in pulse widths that are edge-aligned.
See the code example below:

Figure 142: PWM up counter example - FallingEdge polarity

In up counting mode, the following formula can be used to compute PWM period and step size:

PWM period:

Step width/Resolution:

47 PWM — Pulse width modulation

Page 497

Figure 143: PWM up-and-down counter example on page 497 shows the counter operating in up and
down mode with (MODE=PWM_MODE_UpAndDown) two PWM channels with the same frequency but
different duty cycle and output polarity. The counter starts decrementing to zero when COUNTERTOP is
reached and will invert the OUT[n] when compare value is hit for the second time. This results in a set of
pulses that are center- aligned.

Figure 143: PWM up-and-down counter example

In up-and-down counting modes, the following formula can be used to compute PWM period and step size:

Step width/Resolution:

47 PWM — Pulse width modulation

Page 498

47.2 Decoder with EasyDMA
The decoder uses EasyDMA to take PWM parameters stored in Data RAM by ways of EasyDMA and
updates the internal compare registers of the wave counter based on the mode of operation.

The mentioned PWM parameters are organized into a sequence containing at least one half word (16 bit).
Its most significant bit[15] denotes the polarity of the OUT[n] while bit[14:0] is the 15-bit compare value. See
below for further details of these RAM defined registers.

The DECODER register controls how the RAM content is interpreted and loaded to the internal compare
registers. The LOAD field can be used to control if the RAM values are loaded to all compare channels - or
alternatively to update a group or all channels with individual values. Figure 144: Decoder memory access
modes on page 498 illustrates how the parameters stored in RAM are organized and routed to the various
compare channels in the different modes.

A special mode of operation is available when DECODER.LOAD is set to WaveForm. In this mode, up to
three PWM channels can be enabled - OUT[0] to OUT[2]. In RAM, four values are loaded at a time: the
first, second and third location are used to load the values, and the fourth RAM location is used to load the
COUNTERTOP register. This way one can have up to three PWM channels with a frequency base that
changes on a per PWM period basis. This mode of operation is useful for arbitrary wave form generation in
applications such as LED lighting.

The register SEQ[n].REFRESH=N (one per sequence n=0 or 1) will instruct a new RAM stored pulse width
value on every (N+1)th PWM period. Setting the register to zero will result in a new duty cycle update every
PWM period as long as the minimum PWM period is observed.

Note that registers SEQ[n].REFRESH and SEQ[n].ENDDELAY are ignored when
DECODER.MODE=NextStep . The next value is loaded upon receiving every NEXTSTEP task.

Figure 144: Decoder memory access modes

47 PWM — Pulse width modulation

Page 499

SEQ[n].PTR is the pointer used to fetch COMPARE values from RAM. If the SEQ[n].PTR is not pointing to
the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on
page 23 for more information about the different memory regions.

After the SEQ[n].PTR is set to the desired RAM location, the SEQ[n].CNT register must be set to the number
of 16-bit half words in the sequence. It is important to observe that the Grouped and Single modes require
one half word per group or one half word per channel respectively, and thus increases RAM size occupation.
If PWM generation was not running yet at that point, sending the SEQSTART[n] task will load the first
value from RAM, then start the PWM generation. A SEQSTARTED[n] event is generated as soon as the
EasyDMA has read the first PWM parameter from RAM and the wave counter has started executing it. When
LOOP.CNT=0, sequence n=0 or 1 is played back once. After the last value in the sequence has been loaded
and started executing, a SEQEND[n] event is generated. The PWM generation will then continue with the
last loaded value. See Figure 145: Simple sequence example on page 500 for an example of such simple
playback.

To completely stop the PWM generation and force the associated pins to a defined state, a STOP task
can be fired at any time. A STOPPED event is generated when the PWM generation has stopped at the
end of currently running PWM period, and the pins go into their idle state as defined in GPIO->OUT. PWM
generation can then only be restarted through a SEQSTART[n] task. SEQSTART[n] will resume PWM
generation after having loaded the first value from the RAM buffer defined in the SEQ[n].PTR register.

The table below provides indication of when specific registers get sampled by the hardware. Care should be
taken when updating these registers to avoid values to be applied earlier than expected.

Table 117: When to safely update PWM registers

Important: SEQ[n].REFRESH and SEQ[n].ENDDELAY are ignored at the end of a complex
sequence, indicated by a LOOPSDONE event. The reason for this is that the last value loaded from
RAM is maintained until further action from software (restarting a new sequence, or stopping PWM
generation).

47 PWM — Pulse width modulation

Page 500

Figure 145: Simple sequence example on page 500 depicts the source code used for configuration and
timing details in a sequence where only sequence 0 is used and only run once with a new PWM duty cycle
for each period.

Figure 145: Simple sequence example

A more complex example is shown in Figure 146: Example using two sequences on page 501, where
LOOP.CNT>0 . In this case, an automated playback takes place, consisting of SEQ[0], delay 0, SEQ[1],
delay 1, then again SEQ[0], etc. The user can choose to start a complex playback with SEQ[0] or SEQ[1]
through sending the SEQSTART[0] or SEQSTART[1] task.

The complex playback always ends with delay 1.

The two sequences 0 and 1 are defined with address of values tables in Data RAM (pointed by SEQ[n].PTR)
and respective buffer size (SEQ[n].CNT). The rate at which a new value is loaded is defined individually
for each sequence by SEQ[n].REFRESH . The chaining of sequence 1 following sequence 0 is implicit, the
LOOP.CNT register allows the chaining of sequence 1 to sequence 0 for a determined number of times. In
other words, it allows to repeat a complex sequence a number of times in a fully automated way.

In the example below, sequence 0 is defined with SEQ[0].REFRESH set to one - that means that a
new PWM duty cycle is pushed every second PWM period. This complex sequence is started with the
SEQSTART[0] task, so SEQ[0] is played first. Since SEQ[0].ENDDELAY=1 there will be one PWM period
delay between last period on sequence 0 and the first period on sequence 1. Since SEQ[1].ENDDELAY=0
there is no delay 1, so SEQ[0] would be started immediately after the end of SEQ[1]. However, as
LOOP.CNT is one, the playback stops after having played only once SEQ[1], and both SEQEND[1] and
LOOPSDONE are generated (their order is not guaranteed in this case).

47 PWM — Pulse width modulation

Page 501

Figure 146: Example using two sequences

The decoder can also be configured to asynchronously load a new PWM duty cycle. If the DECODER.MODE
register is set to NextStep - then the NEXTSTEP task will cause an update of the internal compare registers
on the next PWM period.

The figures below provide an overview of each part of an arbitrary sequence, in various modes
(LOOP.CNT=0 and LOOP.CNT>0). In particular are represented:

• Initial and final duty cycle on the PWM output(s)
• Chaining of SEQ[0] and SEQ[1] if LOOP.CNT>0
• Influence of registers on the sequence
• Events fired during a sequence
• DMA activity (loading of next value and applying it to the output(s))

Note that the single-shot example applies also to SEQ[1], only SEQ[0] is represented for simplicity.

47 PWM — Pulse width modulation

Page 502

Figure 147: Single shot (LOOP.CNT=0)

Figure 148: Complex sequence (LOOP.CNT>0) starting with SEQ[0]

47 PWM — Pulse width modulation

Page 503

Figure 149: Complex sequence (LOOP.CNT>0) starting with SEQ[1]

Note that if a sequence is in use in a simple or complex sequence, it must have a length of SEQ[n].CNT > 0 .

47.3 Limitations
The previous compare value will be repeated if the PWM period is selected to be shorter than the time it
takes for the EasyDMA to fetch from RAM and update the internal compare registers.

This is to ensure a glitch-free operation even if very short PWM periods are chosen.

47.4 Pin configuration
The OUT[n] (n=0..3) signals associated to each channel of the PWM module are mapped to
physical pins according to the configuration specified in the respective PSEL.OUT[n] registers. If a
PSEL.OUT[n].CONNECT is set to Disconnected, the associated PWM module signal will not be connected
to any physical pins.

The PSEL.OUT[n] registers and their configurations are only used as long as the PWM module is enabled
and PWM generation is active (wave counter started), and retained only as long as the device is in System
ON mode, see POWER chapter for more information about power modes.

To ensure correct behaviour in the PWM module, the pins used by the PWM module must be configured in
the GPIO peripheral as described in Table 118: Recommended GPIO configuration before starting PWM
generation on page 504 before enabling the PWM module. The pins' idle state is defined by the OUT
registers in the GPIO module. This is to ensure that the pins used by the PWM module are driven correctly,
if PWM generation is stopped through a STOP task, the PWM module itself is temporarily disabled, or the
device temporarily enters System OFF. This configuration must be retained in the GPIO for the selected IOs
as long as the PWM module is supposed to be connected to an external PWM circuit.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behaviour.

47 PWM — Pulse width modulation

Page 504

Table 118: Recommended GPIO configuration before starting PWM generation

47.5 Registers
Table 119: Instances

Table 120: Register Overview

47 PWM — Pulse width modulation

Page 505

47.5.1 SHORTS
Address offset: 0x200

Shortcut register

47.5.2 INTEN
Address offset: 0x300

Enable or disable interrupt

47 PWM — Pulse width modulation

Page 506

47.5.3 INTENSET
Address offset: 0x304

Enable interrupt

47 PWM — Pulse width modulation

Page 507

47.5.4 INTENCLR
Address offset: 0x308

Disable interrupt

47.5.5 ENABLE
Address offset: 0x500

47 PWM — Pulse width modulation

Page 508

PWM module enable register

47.5.6 MODE
Address offset: 0x504

Selects operating mode of the wave counter

47.5.7 COUNTERTOP
Address offset: 0x508

Value up to which the pulse generator counter counts

47.5.8 PRESCALER
Address offset: 0x50C

Configuration for PWM_CLK

47.5.9 DECODER
Address offset: 0x510

Configuration of the decoder

47 PWM — Pulse width modulation

Page 509

47.5.10 LOOP
Address offset: 0x514

Amount of playback of a loop

47.5.11 SEQ[0].PTR
Address offset: 0x520

Beginning address in Data RAM of this sequence

47.5.12 SEQ[0].CNT
Address offset: 0x524

Amount of values (duty cycles) in this sequence

47.5.13 SEQ[0].REFRESH
Address offset: 0x528

Amount of additional PWM periods between samples loaded into compare register

47 PWM — Pulse width modulation

Page 510

47.5.14 SEQ[0].ENDDELAY
Address offset: 0x52C

Time added after the sequence

47.5.15 SEQ[1].PTR
Address offset: 0x540

Beginning address in Data RAM of this sequence

47.5.16 SEQ[1].CNT
Address offset: 0x544

Amount of values (duty cycles) in this sequence

47.5.17 SEQ[1].REFRESH
Address offset: 0x548

Amount of additional PWM periods between samples loaded into compare register

47.5.18 SEQ[1].ENDDELAY
Address offset: 0x54C

47 PWM — Pulse width modulation

Page 511

Time added after the sequence

47.5.19 PSEL.OUT[0]
Address offset: 0x560

Output pin select for PWM channel 0

47.5.20 PSEL.OUT[1]
Address offset: 0x564

Output pin select for PWM channel 1

47.5.21 PSEL.OUT[2]
Address offset: 0x568

Output pin select for PWM channel 2

47.5.22 PSEL.OUT[3]
Address offset: 0x56C

Output pin select for PWM channel 3

47 PWM — Pulse width modulation

Page 512

47.6 Electrical specification

47.6.1 PWM Electrical Specification

48 SPI — Serial peripheral interface master

Page 513

48 SPI — Serial peripheral interface master
The SPI master provides a simple CPU interface which includes a TXD register for sending data and an RXD
register for receiving data. This section is added for legacy support for now.

Figure 150: SPI master

RXD-1 and TXD+1 illustrate the double buffered version of RXD and TXD respectively.

48.1 Functional description
The TXD and RXD registers are double-buffered to enable some degree of uninterrupted data flow in and
out of the SPI master.

The SPI master does not implement support for chip select directly. Therefore, the CPU must use available
GPIOs to select the correct slave and control this independently of the SPI master. The SPI master supports
SPI modes 0 through 3.

Table 121: SPI modes

48.1.1 SPI master mode pin configuration
The different signals SCK, MOSI, and MISO associated with the SPI master are mapped to physical pins.

This mapping is according to the configuration specified in the PSELSCK, PSELMOSI, and PSELMISO
registers respectively. If a value of 0xFFFFFFFF is specified in any of these registers, the associated SPI
master signal is not connected to any physical pin. The PSELSCK, PSELMOSI, and PSELMISO registers
and their configurations are only used as long as the SPI master is enabled, and retained only as long as
the device is in ON mode. PSELSCK, PSELMOSI, and PSELMISO must only be configured when the SPI
master is disabled.

To secure correct behavior in the SPI, the pins used by the SPI must be configured in the GPIO peripheral
as described in Table 122: GPIO configuration on page 514 prior to enabling the SPI. The SCK must

48 SPI — Serial peripheral interface master

Page 514

always be connected to a pin, and that pin's input buffer must always be connected for the SPI to work. This
configuration must be retained in the GPIO for the selected IOs as long as the SPI is enabled.

Only one peripheral can be assigned to drive a particular GPIO pin at a time, failing to do so may result in
unpredictable behavior.

Table 122: GPIO configuration

48.1.2 Shared resources
The SPI shares registers and other resources with other peripherals that have the same ID as the SPI.
Therefore, the user must disable all peripherals that have the same ID as the SPI before the SPI can be
configured and used.

Disabling a peripheral that has the same ID as the SPI will not reset any of the registers that are shared with
the SPI. It is therefore important to configure all relevant SPI registers explicitly to secure that it operates
correctly.

See the Instantiation table in Instantiation on page 24 for details on peripherals and their IDs.

48.1.3 SPI master transaction sequence
An SPI master transaction is started by writing the first byte, which is to be transmitted by the SPI master, to
the TXD register.

Since the transmitter is double buffered, the second byte can be written to the TXD register immediately after
the first one. The SPI master will then send these bytes in the order they are written to the TXD register.

The SPI master is a synchronous interface, and for every byte that is sent, a different byte will be received at
the same time; this is illustrated in Figure 151: SPI master transaction on page 515. Bytes that are received
will be moved to the RXD register where the CPU can extract them by reading the register. The RXD register
is double buffered in the same way as the TXD register, and a second byte can therefore be received at the
same time as the first byte is being extracted from RXD by the CPU. The SPI master will generate a READY
event every time a new byte is moved to the RXD register. The double buffered byte will be moved from
RXD-1 to RXD as soon as the first byte is extracted from RXD. The SPI master will stop when there are no
more bytes to send in TXD and TXD+1.

48 SPI — Serial peripheral interface master

Page 515

Figure 151: SPI master transaction

The READY event of the third byte transaction is delayed until B is extracted from RXD in occurrence
number 3 on the horizontal lifeline. The reason for this is that the third event is generated first when C is
moved from RXD-1 to RXD after B is read.

The SPI master will move the incoming byte to the RXD register after a short delay following the SCK clock
period of the last bit in the byte. This also means that the READY event will be delayed accordingly, see
Figure 152: SPI master transaction on page 515. Therefore, it is important that you always clear the
READY event, even if the RXD register and the data that is being received is not used.

Figure 152: SPI master transaction

48 SPI — Serial peripheral interface master

Page 516

48.2 Registers
Table 123: Instances

Table 124: Register Overview

48.2.1 INTENSET
Address offset: 0x304

Enable interrupt

48.2.2 INTENCLR
Address offset: 0x308

Disable interrupt

48 SPI — Serial peripheral interface master

Page 517

48.2.3 ENABLE
Address offset: 0x500

Enable SPI

48.2.4 PSELSCK (Deprecated)
Address offset: 0x508

Pin select for SCK

48.2.5 PSELMOSI (Deprecated)
Address offset: 0x50C

Pin select for MOSI

48.2.6 PSELMISO (Deprecated)
Address offset: 0x510

Pin select for MISO

48.2.7 PSEL.SCK
Address offset: 0x508

Pin select for SCK

48 SPI — Serial peripheral interface master

Page 518

48.2.8 PSEL.MOSI
Address offset: 0x50C

Pin select for MOSI

48.2.9 PSEL.MISO
Address offset: 0x510

Pin select for MISO

48.2.10 RXD
Address offset: 0x518

RXD register

48.2.11 TXD
Address offset: 0x51C

TXD register

48.2.12 FREQUENCY
Address offset: 0x524

SPI frequency

48 SPI — Serial peripheral interface master

Page 519

48.2.13 CONFIG
Address offset: 0x554

Configuration register

48.3 Electrical specification

48.3.1 SPI master interface

48.3.2 Serial Peripheral Interface (SPI) Master timing specifications

48 SPI — Serial peripheral interface master

Page 520

Figure 153: SPI master timing diagram

49 TWI — I2C compatible two-wire interface

Page 521

49 TWI — I2C compatible two-wire interface
The TWI master is compatible with I2C operating at 100 kHz and 400 kHz.

Figure 154: TWI master's main features

49.1 Functional description
This TWI master is not compatible with CBUS. The TWI transmitter and receiver are single buffered.

See, Figure 154: TWI master's main features on page 521.

A TWI setup comprising one master and three slaves is illustrated in Figure 155: A typical TWI setup
comprising one master and three slaves on page 521. This TWI master is only able to operate as the only
master on the TWI bus.

Figure 155: A typical TWI setup comprising one master and three slaves

This TWI master supports clock stretching performed by the slaves. The TWI master is started by triggering
the STARTTX or STARTRX tasks, and stopped by triggering the STOP task.

If a NACK is clocked in from the slave, the TWI master will generate an ERROR event.

49.2 Master mode pin configuration
The different signals SCL and SDA associated with the TWI master are mapped to physical pins according to
the configuration specified in the PSELSCL and PSELSDA registers respectively.

If a value of 0xFFFFFFFF is specified in any of these registers, the associated TWI master signal is not
connected to any physical pin. The PSELSCL and PSELSDA registers and their configurations are only used

49 TWI — I2C compatible two-wire interface

Page 522

as long as the TWI master is enabled, and retained only as long as the device is in ON mode. PSELSCL and
PSELSDA must only be configured when the TWI is disabled.

To secure correct signal levels on the pins used by the TWI master when the system is in OFF mode, and
when the TWI master is disabled, these pins must be configured in the GPIO peripheral as described in
Table 125: GPIO configuration on page 522.

Only one peripheral can be assigned to drive a particular GPIO pin at a time, failing to do so may result in
unpredictable behavior.

Table 125: GPIO configuration

49.3 Shared resources
The TWI shares registers and other resources with other peripherals that have the same ID as the TWI.

Therefore, you must disable all peripherals that have the same ID as the TWI before the TWI can be
configured and used. Disabling a peripheral that has the same ID as the TWI will not reset any of the
registers that are shared with the TWI. It is therefore important to configure all relevant TWI registers
explicitly to secure that it operates correctly.

The Instantiation table in Instantiation on page 24 shows which peripherals have the same ID as the TWI.

49.4 Master write sequence
A TWI master write sequence is started by triggering the STARTTX task. After the STARTTX task has
been triggered, the TWI master will generate a start condition on the TWI bus, followed by clocking out the
address and the READ/WRITE bit set to 0 (WRITE=0, READ=1).

The address must match the address of the slave device that the master wants to write to. The READ/
WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK=1) generated by the slave.

After receiving the ACK bit, the TWI master will clock out the data bytes that are written to the TXD register.
Each byte clocked out from the master will be followed by an ACK/NACK bit clocked in from the slave.
A TXDSENT event will be generated each time the TWI master has clocked out a TXD byte, and the
associated ACK/NACK bit has been clocked in from the slave.

The TWI master transmitter is single buffered, and a second byte can only be written to the TXD register
after the previous byte has been clocked out and the ACK/NACK bit clocked in, that is, after the TXDSENT
event has been generated.

If the CPU is prevented from writing to TXD when the TWI master is ready to clock out a byte, the TWI
master will stretch the clock until the CPU has written a byte to the TXD register.

A typical TWI master write sequence is illustrated in Figure 156: The TWI master writing data to a slave on
page 523. Occurrence 3 in the figure illustrates delayed processing of the TXDSENT event associated with
TXD byte 1. In this scenario the TWI master will stretch the clock to prevent writing erroneous data to the
slave.

49 TWI — I2C compatible two-wire interface

Page 523

Figure 156: The TWI master writing data to a slave

The TWI master write sequence is stopped when the STOP task is triggered whereupon the TWI master will
generate a stop condition on the TWI bus.

49.5 Master read sequence
A TWI master read sequence is started by triggering the STARTRX task. After the STARTRX task has been
triggered the TWI master will generate a start condition on the TWI bus, followed by clocking out the address
and the READ/WRITE bit set to 1 (WRITE = 0, READ = 1).

The address must match the address of the slave device that the master wants to read from. The READ/
WRITE bit is followed by an ACK/NACK bit (ACK=0 or NACK = 1) generated by the slave.

After having sent the ACK bit the TWI slave will send data to the master using the clock generated by the
master.

The TWI master will generate a RXDRDY event every time a new byte is received in the RXD register.

After receiving a byte, the TWI master will delay sending the ACK/NACK bit by stretching the clock until the
CPU has extracted the received byte, that is, by reading the RXD register.

The TWI master read sequence is stopped by triggering the STOP task. This task must be triggered before
the last byte is extracted from RXD to ensure that the TWI master sends a NACK back to the slave before
generating the stop condition.

A typical TWI master read sequence is illustrated in Figure 157: The TWI master reading data from a slave
on page 524. Occurrence 3 in this figure illustrates delayed processing of the RXDRDY event associated
with RXD byte B. In this scenario the TWI master will stretch the clock to prevent the slave from overwriting
the contents of the RXD register.

49 TWI — I2C compatible two-wire interface

Page 524

Figure 157: The TWI master reading data from a slave

49.6 Master repeated start sequence
A typical repeated start sequence is one in which the TWI master writes one byte to the slave followed by
reading M bytes from the slave. Any combination and number of transmit and receive sequences can be
combined in this fashion. Only one shortcut to STOP can be enabled at any given time.

The figure below illustrates a repeated start sequence where the TWI master writes one byte, followed by
reading M bytes from the slave without performing a stop in-between.

Figure 158: A repeated start sequence, where the TWI master writes one byte, followed by reading M
bytes from the slave without performing a stop in-between

49 TWI — I2C compatible two-wire interface

Page 525

To generate a repeated start after a read sequence, a second start task must be triggered instead of
the STOP task, that is, STARTRX or STARTTX. This start task must be triggered before the last byte is
extracted from RXD to ensure that the TWI master sends a NACK back to the slave before generating the
repeated start condition.

49.7 Low power
When putting the system in low power and the peripheral is not needed, lowest possible power consumption
is achieved by stopping, and then disabling the peripheral.

The STOP task may not be always needed (the peripheral might already be stopped), but if it is sent,
software shall wait until the STOPPED event was received as a response before disabling the peripheral
through the ENABLE register.

49.8 Registers
Table 126: Instances

Table 127: Register Overview

49.8.1 SHORTS
Address offset: 0x200

Shortcut register

49 TWI — I2C compatible two-wire interface

Page 526

49.8.2 INTENSET
Address offset: 0x304

Enable interrupt

49.8.3 INTENCLR
Address offset: 0x308

Disable interrupt

49 TWI — I2C compatible two-wire interface

Page 527

49.8.4 ERRORSRC
Address offset: 0x4C4

Error source

49 TWI — I2C compatible two-wire interface

Page 528

49.8.5 ENABLE
Address offset: 0x500

Enable TWI

49.8.6 PSELSCL
Address offset: 0x508

Pin select for SCL

49.8.7 PSELSDA
Address offset: 0x50C

Pin select for SDA

49.8.8 RXD
Address offset: 0x518

RXD register

49.8.9 TXD
Address offset: 0x51C

TXD register

49 TWI — I2C compatible two-wire interface

Page 529

49.8.10 FREQUENCY
Address offset: 0x524

TWI frequency

49.8.11 ADDRESS
Address offset: 0x588

Address used in the TWI transfer

49.9 Electrical specification

49.9.1 TWI interface electrical specifications

49.9.2 Two Wire Interface (TWI) timing specifications

49 TWI — I2C compatible two-wire interface

Page 530

Figure 159: TWI timing diagram, 1 byte transaction

50 UART — Universal asynchronous receiver/
transmitter

Page 531

50 UART — Universal asynchronous receiver/
transmitter

Figure 160: UART configuration

50.1 Functional description
Listed here are the main features of UART.

The UART implements support for the following features:

• Full-duplex operation
• Automatic flow control
• Parity checking and generation for the 9th data bit

As illustrated in Figure 160: UART configuration on page 531, the UART uses the TXD and RXD registers
directly to transmit and receive data. The UART uses one stop bit.

50.2 Pin configuration
The different signals RXD, CTS (Clear To Send, active low), RTS (Request To Send, active low), and
TXD associated with the UART are mapped to physical pins according to the configuration specified in the
PSELRXD, PSELCTS, PSELRTS, and PSELTXD registers respectively.

If a value of 0xFFFFFFFF is specified in any of these registers, the associated UART signal will not be
connected to any physical pin. The PSELRXD, PSELCTS, PSELRTS, and PSELTXD registers and their
configurations are only used as long as the UART is enabled, and retained only for the duration the device
is in ON mode. PSELRXD, PSELCTS, PSELRTS and PSELTXD must only be configured when the UART is
disabled.

To secure correct signal levels on the pins by the UART when the system is in OFF mode, the pins must be
configured in the GPIO peripheral as described in Pin configuration on page 531.

Only one peripheral can be assigned to drive a particular GPIO pin at a time. Failing to do so may result in
unpredictable behavior.

Table 128: GPIO configuration

50 UART — Universal asynchronous receiver/
transmitter

Page 532

50.3 Shared resources
The UART shares registers and other resources with other peripherals that have the same ID as the UART.

Therefore, you must disable all peripherals that have the same ID as the UART before the UART can be
configured and used. Disabling a peripheral that has the same ID as the UART will not reset any of the
registers that are shared with the UART. It is therefore important to configure all relevant UART registers
explicitly to ensure that it operates correctly.

See the Instantiation table in Instantiation on page 24 for details on peripherals and their IDs.

50.4 Transmission
A UART transmission sequence is started by triggering the STARTTX task.

Bytes are transmitted by writing to the TXD register. When a byte has been successfully transmitted the
UART will generate a TXDRDY event after which a new byte can be written to the TXD register. A UART
transmission sequence is stopped immediately by triggering the STOPTX task.

If flow control is enabled a transmission will be automatically suspended when CTS is deactivated and
resumed when CTS is activated again, as illustrated in Figure 161: UART transmission on page 532.
A byte that is in transmission when CTS is deactivated will be fully transmitted before the transmission is
suspended. For more information, see Suspending the UART on page 533.

Figure 161: UART transmission

50.5 Reception
A UART reception sequence is started by triggering the STARTRX task.

The UART receiver chain implements a FIFO capable of storing six incoming RXD bytes before data is
overwritten. Bytes are extracted from this FIFO by reading the RXD register. When a byte is extracted from
the FIFO a new byte pending in the FIFO will be moved to the RXD register. The UART will generate an
RXDRDY event every time a new byte is moved to the RXD register.

When flow control is enabled, the UART will deactivate the RTS signal when there is only space for four
more bytes in the receiver FIFO. The counterpart transmitter is therefore able to send up to four bytes after
the RTS signal is deactivated before data is being overwritten. To prevent overwriting data in the FIFO, the
counterpart UART transmitter must therefore make sure to stop transmitting data within four bytes after the
RTS line is deactivated.

50 UART — Universal asynchronous receiver/
transmitter

Page 533

The RTS signal will first be activated again when the FIFO has been emptied, that is, when all bytes in the
FIFO have been read by the CPU, see Figure 162: UART reception on page 533.

The RTS signal will also be deactivated when the receiver is stopped through the STOPRX task as illustrated
in Figure 162: UART reception on page 533. The UART is able to receive four to five additional bytes if
they are sent in succession immediately after the RTS signal has been deactivated. This is possible because
the UART is, even after the STOPRX task is triggered, able to receive bytes for an extended period of time
dependent on the configured baud rate. The UART will generate a receiver timeout event (RXTO) when this
period has elapsed.

To prevent loss of incoming data the RXD register must only be read one time following every RXDRDY
event.

To secure that the CPU can detect all incoming RXDRDY events through the RXDRDY event register, the
RXDRDY event register must be cleared before the RXD register is read. The reason for this is that the
UART is allowed to write a new byte to the RXD register, and therefore can also generate a new event,
immediately after the RXD register is read (emptied) by the CPU.

Figure 162: UART reception

As indicated in occurrence 2 in the figure, the RXDRDY event associated with byte B is generated first after
byte A has been extracted from RXD.

50.6 Suspending the UART
The UART can be suspended by triggering the SUSPEND task.

SUSPEND will affect both the UART receiver and the UART transmitter, i.e. the transmitter will stop
transmitting and the receiver will stop receiving. UART transmission and reception can be resumed, after
being suspended, by triggering STARTTX and STARTRX respectively.

Following a SUSPEND task, an ongoing TXD byte transmission will be completed before the UART is
suspended.

When the SUSPEND task is triggered, the UART receiver will behave in the same way as it does when the
STOPRX task is triggered.

50.7 Error conditions
An ERROR event, in the form of a framing error, will be generated if a valid stop bit is not detected in a
frame. Another ERROR event, in the form of a break condition, will be generated if the RXD line is held
active low for longer than the length of a data frame. Effectively, a framing error is always generated before a
break condition occurs.

50 UART — Universal asynchronous receiver/
transmitter

Page 534

50.8 Using the UART without flow control
If flow control is not enabled, the interface will behave as if the CTS and RTS lines are kept active all the
time.

50.9 Parity configuration
When parity is enabled, the parity will be generated automatically from the even parity of TXD and RXD for
transmission and reception respectively.

50.10 Registers
Table 129: Instances

Table 130: Register Overview

50.10.1 SHORTS
Address offset: 0x200

Shortcut register

50 UART — Universal asynchronous receiver/
transmitter

Page 535

50.10.2 INTENSET
Address offset: 0x304

Enable interrupt

50.10.3 INTENCLR
Address offset: 0x308

Disable interrupt

50 UART — Universal asynchronous receiver/
transmitter

Page 536

50.10.4 ERRORSRC
Address offset: 0x480

Error source

50 UART — Universal asynchronous receiver/
transmitter

Page 537

50.10.5 ENABLE
Address offset: 0x500

Enable UART

50.10.6 PSELRTS
Address offset: 0x508

Pin select for RTS

50.10.7 PSELTXD
Address offset: 0x50C

Pin select for TXD

50.10.8 PSELCTS
Address offset: 0x510

Pin select for CTS

50 UART — Universal asynchronous receiver/
transmitter

Page 538

50.10.9 PSELRXD
Address offset: 0x514

Pin select for RXD

50.10.10 RXD
Address offset: 0x518

RXD register

50.10.11 TXD
Address offset: 0x51C

TXD register

50.10.12 BAUDRATE
Address offset: 0x524

Baud rate

50 UART — Universal asynchronous receiver/
transmitter

Page 539

50.10.13 CONFIG
Address offset: 0x56C

Configuration of parity and hardware flow control

50.11 Electrical specification

50.11.1 UART electrical specification

51 Mechanical specifications

Page 540

51 Mechanical specifications
The mechanical specifications for the packages show the dimensions in millimeters.

51.1 QFN48 6 x 6 mm package

Figure 163: QFN48 6 x 6 mm package

Table 131: QFN48 dimensions in millimeters

51 Mechanical specifications

Page 541

51.2 WLCSP package

Figure 164: WLCSP package

Table 132: WLCSP packet dimensions in millimeters

52 Ordering information

Page 542

52 Ordering information
This chapter contains information on IC marking, ordering codes, and container sizes.

52.1 IC marking
The nRF52832 IC package is marked like described below.

Figure 165: Package marking

52.2 Box labels
Here are the box labels used for the nRF52832.

Figure 166: Inner box label

52 Ordering information

Page 543

Figure 167: Outer box label

52.3 Order code
Here are the nRF52832 order codes and definitions.

Figure 168: Order code

Table 133: Abbreviations

52.4 Code ranges and values
Defined here are the nRF52832 code ranges and values.

52 Ordering information

Page 544

Table 134: Package variant codes

Table 135: Function variant codes

Table 136: Hardware version codes

Table 137: Production configuration codes

Table 138: Production version codes

Table 139: Year codes

Table 140: Week codes

Table 141: Lot codes

Table 142: Container codes

52.5 Product options
Defined here are the nRF52832 product options.

Table 143: nRF52832 order codes

Table 144: Development tools order code

DEC1

P0.00/XL1

P0.01/XL2

P0.02/AIN0

P0.03/AIN1

P0.04/AIN2

P0.05/AIN3

P0.06

P0.07

P0.08

P0.09

P0.10

V
D
D

P0
.1
1

P0
.1
2

P0
.1
3

P0
.1
4

P0
.1
5

P0
.1
6

P0
.1
7

P0
.1
8

P0
.1
9

P0
.2
0

P0
.2
1

25

26

27

28

29

30

31

32

33

34

35

36

37383940414243444546474849
U1

nRF52832-QFAA-R

100nF
C8

2

Y2
32MHZ

12PF

C7

12PF

C11
100PF

C9

N.C.

C12

3.9nH

L3

0.8PF
C13

NC
C14

12PF
C15

ANTGND

100PF
C16

100PF
C5 4.7UF

C4

10uH
L2

15nH
L1

1.0uF
C1

12PF
C3

12PF
C2

J1

NM8130-2600

XL1

XL2

P0.02

P0.03

P0.04

P0.05

P0.06

P0.07

P0.08

P0.09

P0.10

P0
.1
1

P0
.1
2

P0
.1
3

P0
.1
4

P0
.1
5

P0
.1
6

P0
.1
7

P0
.1
8

P0
.1
9

P0
.2
0

P0
.2
1

SWDCLK

SWDIO

P0.22

P0.23

P0.24

DEC2

DEC3

XC1

XC2

P0
.2
5

P0
.2
6

P0
.2
7

P0
.2
8

P0
.2
9

P0
.3
0

P0
.3
1

D
EC

4

P0.00

P0.01

15

19

20

21

22

23

24

25

26

13

14

27 28 31 32 33 34 35 36 37 38 39

43

44

40

42

41

8

1 2 3 4 5 16 18 29 30 45 46 47

6 7

9101112

17

Material Description P/N Footprint Designator Quantity
PCB FR4，1.0MM, Blue,1oz copper,4 layers 250-00829-r1 L19 x 14 x T1.0mm / 1
cap 12pF/50V,NPO/COG,5% SH15N120J500CT 0402 C2,C3,C7,C11,C15 5
cap 100pF/50V,NPO/COG,5% UMK105CG101JVHF 0402 C5,C8,C9,C16 4
cap 0.8pF/50V,NPO/COG,0.5% GJM1555C1HR80DB01J 0402 C13 1
cap 4.7uF/6.3V,X5R,20% GRM155R60J475ME87J 0402 C4 1
cap 1uF/25V(above 6.3V is ok),X5R,10% TMK105BJ105KV-F 0402 C1 1
Inductor 15nH,5% CH1005H15NJ(f)/ MLG1005S15NJT000 0402 L1 1
Inductor 10uH,10% FCI1608TF-100K/SDFL1608S100KTF 0603 L2 1
Inductor 3.9nH,±0.2nH/0.1nH SDCL1005C3N9CTDFM01/MLG1005S3N9BTD25 0402 L3 1
crystal(晶振) 32MHZ 8PF ±10PPM Q22FA1280002500/SX20Y032000B81T 2016 Y2 1
ANTENNA / WD100TG403 / / 1
antenna socket / 20279-001 / ANT1 1
IC BLUETOOTH NRF52832-QFAA-R QFAA U1 1
shield cover 360-00536 / / 1

Fireware Code, download to NRF52832-QFAA-R PGM-00039-00r1_0_WithAppCode.hex / / 1

Kennetht
打字机文本

Kennetht
打字机文本
schenatic

Kennetht
打字机文本

Kennetht
打字机文本

Kennetht
打字机文本

FCC Statement

This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide
reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures:
—Reorient or relocate the receiving antenna.
—Increase the separation between the equipment and receiver.
—Connect the equipment into an outlet on a circuit different from that to which the receiver is
connected.
—Consult the dealer or an experienced radio/TV technician for help.

FCC Radiation Exposure Statement

This device complies with FCC radiation exposure limits set forth for an uncontrolled
environment. This equipment must be installed and operated in accordance with provided
instructions and the antenna(s) used for this transmitter must be installed to provide a
separation distance of at least 20 cm from all persons.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two
conditions:
(1) this device may not cause harmful interference.
(2) this device must accept any interference received, including interference that may cause
undesired operation.

Caution!

Any changes or modifications not expressly approved by the party responsible for compliance
could void the user's authority to operate the equipment.

If the FCC identification number is not visible when the module is installed inside another device,
then the outside of the device into which the module is installed must also display a label
referring to the enclosed module. This exterior label can use wording such as the following:
“Contains Transmitter Module FCC ID: 2A3DLA00810 Or Contains FCC ID: 2A3DLA00810”
When the module is installed inside another device, the user manual of this device must contain
below warning statements:
1.This device complies with Part 15 of the FCC Rules. Operation is subject to the following two
conditions: (1) This device may not cause harmful interference, and (2) This device must accept
any interference received, including interference that may cause undesired operation.
2.Changes or modifications not expressly approved by the party responsible for compliance

could void the user's authority to operate the equipment. The devices must be installed and
used in strict accordance with the manufacturer's instructions as described in the user
documentation that comes with the product. The host product manufacturer is responsible for
compliance to any other FCC rules that apply to the host not covered by the modular transmitter
grant of certification. The final host product still requires Part 15 Subpart B compliance testing
with the modular transmitter installed. The end user manual shall include all required regulatory
information/warning as shown in this manual, include: This product must be installed and
operated with a minimum distance of 20 cm between the radiator and user body.

Canada Statement

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation,
Science and Economic Development Canada’s licence-exempt RSS(s). Operation is
subject to the following two conditions:

(1) This device may not cause interference.
(2) This device must accept any interference, including interference that may cause undesired

operation of the device.

L’émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux

CNR d’Innovation, Sciences et Développement économique Canada applicables aux
appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions
suivantes :

1) L’appareil ne doit pas produire de brouillage;
2) L’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est

susceptible d’en compromettre le fonctionnement.

The device meets the exemption from the routine evaluation limits in section 2.5 of RSS 102
and compliance with RSS-102 RF exposure, users can obtain Canadian information on RF
exposure and compliance.

Le dispositif rencontre l'exemption des limites courantes d'évaluation dans la section 2.5 de
RSS 102 et la conformité à l'exposition de RSS-102 rf, utilisateurs peut obtenir l'information
canadienne sur l'exposition et la conformité de rf.

This transmitter must not be co-located or operating in conjunction with any other antenna or
transmitter. This equipment should be installed and operated with a minimum distance of 20
centimeters between the radiator and your body.

Cet émetteur ne doit pas être Co-placé ou ne fonctionnant en même temps qu'aucune autre
antenne ou émetteur. Cet équipement devrait être installé et actionné avec une distance
minimum de 20 centimètres entre le radiateur et votre corps.

Antenna

Antenna manufacturer: Dongguan WangDuan Electronics Co., LTD
Antenna type: IPEX External antenna
Antenna gain: 3 dBi

The host product shall be properly labelled to identify the modules within the host
product.
The ISED certification label of a module shall be clearly visible at all times when
installed in the host product; otherwise, the host product must be labelled to display the
ISED certification number for the module, preceded by the word "contains" or similar
wording expressing the same meaning, as follows: Contains IC: 27698-A00810

Fabricant d'antenne : Dongguan WangDuan Electronics Co., LTD
Type d'antenne : IPEX External antenna
Gain d'antenne : 3 dBi
Le produit hôte devra être correctement étiqueté, de façon à permettre l'identification des
modules qui s'y trouvent.
L'étiquette d'homologation d'un module d'ISDE devra être apposée sur le produit hôte à
un endroit bien en vue, en tout temps. En l'absence d'étiquette, le produit hôte doit porter
une étiquette sur laquelle figure le numéro d'homologation du module d'ISDE, précédé du
mot « contient », ou d'une formulation similaire allant dans le même sens et qui va
comme suit : Contient IC : 27698-A00810

