Date: 28/02/2022

System Check 835MHz

Communication System: UID 0, CW (0); Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz:

Medium parameters used: f = 835 MHz; σ = 0.88 S/m; ϵ_r = 41.72; ρ = 1000 kg/m³

Phantom section: Flat Section

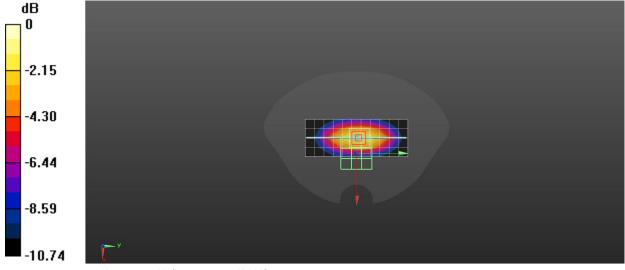
DASY Configuration:

- Probe: EX3DV4 SN7589; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 27/04/2021
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -19.0, 31.0
- Electronics: DAE4 Sn1673; Calibrated: 06/05/2021
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial:2001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (5x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.70 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.06 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.52 W/kg

Smallest distance from peaks to all points 3 dB below = 17.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.5%

Maximum value of SAR (measured) = 3.15 W/kg

0 dB = 3.15 W/kg = 4.98 dBW/kg

Date: 29/03/2022

System Check 1800MHz

Communication System: UID 0, CW (0); Communication System Band: D1800 (1800.0 MHz); Frequency: 1800 MHz:

Medium parameters used: f = 1800 MHz; σ = 1.42 S/m; ϵ_r = 40.35; ρ = 1000 kg/m³

Phantom section: Flat Section

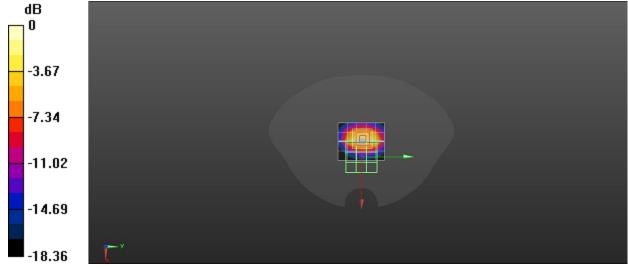
DASY Configuration:

- Probe: EX3DV4 SN7589; ConvF(8.72, 8.72, 8.72) @ 1800 MHz; Calibrated: 27/04/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -9.0, 31.0
- Electronics: DAE4 Sn1673; Calibrated: 06/05/2021
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial: 2001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (5x6x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.1 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 84.59 V/m; Power Drift = 0.18 dB


Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 9.61 W/kg; SAR(10 g) = 4.97 W/kg

Smallest distance from peaks to all points 3 dB below = 10.1 mm

Ratio of SAR at M2 to SAR at M1 = 51.9%

Maximum value of SAR (measured) = 15.2 W/kg

0 dB = 15.2 W/kg = 11.82 dBW/kg

Date: 25/03/2022

System Check 2450MHz

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz:

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ S/m; $\varepsilon_r = 40.65$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

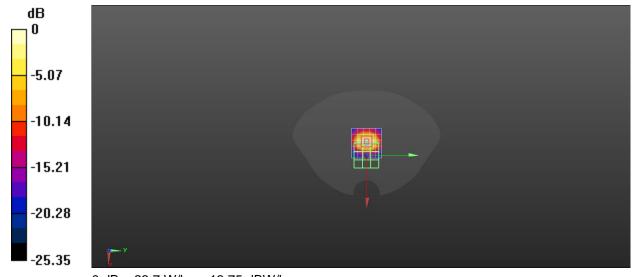
DASY Configuration:

- Probe: EX3DV4 SN7589; ConvF(7.83, 7.83, 7.83) @ 2450 MHz; Calibrated: 27/04/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -9.0, 31.0
- Electronics: DAE4 Sn1673; Calibrated: 06/05/2021
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial: 2001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (6x6x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 21.2 W/kg

Configuration/Body/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.77 V/m; Power Drift = 0.16 dB


Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.46 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 47.2%

Maximum value of SAR (measured) = 23.7 W/kg

0 dB = 23.7 W/kg = 13.75 dBW/kg