

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std. 1528-2013

For **Payment Terminal**

FCC ID: 2A39U-SOLO002 Model: SOLO

Report Number: 4790095248-SAR-1 Issue Date: March 29, 2022

Prepared for SumUp Inc
2000 Central Ave Ste 100 Boulder Colorado 80301 United States

Prepared by

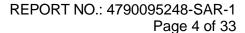
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch
Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech
Development Zone Dongguan, People's Republic of China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 33

Revision History

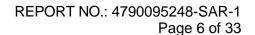
Rev.	Issue Date	Revisions	Revised By
V0	3/29/2022	Initial Issue	


Note:

- 1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.
- 2. The measurement result for the sample received is <Pass> according to < IEEE Std. 1528>when <Accuracy Method> decision rule is applied.

Table of Contents

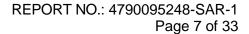
1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	7
4.	SAR Measurement System & Test Equipment	8
4.1	1. SAR Measurement System	8
4.2	2. SAR Scan Procedures	9
4.3	3. Test Equipment	11
5.	Measurement Uncertainty	12
6.	Device Under Test (DUT) Information	13
6. 1	1. DUT Description	13
6.2	2. Wireless Technology	13
6.3	3. Antenna Gain	13
7.	Test Configuration	14
7. 1	1. GSM Test Configuration	14
7.2	2. UMTS Test Configuration	15
8.	RF Exposure Conditions	22
9.	Dielectric Property Measurements & System Check	23
9.1	Dielectric Property Measurements	23
9.2	2. System Check	25
10.	Measured and Reported (Scaled) SAR Results	26
10	0.1. SAR Test Results of GSM850	28
10	0.2. SAR Test Results of GSM1900	28
10	0.3. SAR Test Results of WCDMA Band 2	29
10	0.4. SAR Test Results of WCDMA Band 5	29
10	0.5. SAR Test Results of 2.4GHz Wi-Fi	30
11.	Simultaneous Transmission SAR Analysis	31
11	1.1. Simultaneous Transmission combination	31


11.2.		-
11.3.	Simultaneous Transmission calculation	32
ppendi	ixes	33
47900	95248-SAR-1_APP A Conducted Power	33
47900	95248-SAR-1_App B Photo	33
47900	95248-SAR-1_App C System Check Plots	33
47900	95248-SAR-1_App D Highest Test Plots	33
47900	95248-SAR-1_App E Cal. Certificates	33

Page 5 of 33

1. Attestation of Test Results

1. Attestation of rest ite					
Applicant Name	SumUp Inc				
Address	2000 Central Ave Ste 100 Boulder Colorado 80301 United States				
Manufacturer	SumUp Inc				
Address	2000 Central Ave Ste 100 Boulder Colorado 80301 United States				
EUT Name	Payment terminal				
Model	SOLO				
Sample Status	Normal				
Sample Received Date	January 06, 2022				
Date of Tested	March 25,2022~March 29,2022				
Applicable Standards	FCC 47 CFR § 2.1093 IEEE Std. 1528-2013 KDB publication				
SAR Limits (W/Kg)					
Exposure Category	Peak spatial-average (1g of tissue)	Extremities (hands, wrists, ankles, etc.) (10g of tissue)			
General population / Uncontrolled exposure	1.6	4			
The Highest Reported SAR (W/kg)					
RF Exposure Conditions	Equipment Class				
Tr Exposure continuous	PCB	DTS			
Body-worn (1-g)	1.427	0.253			
Simultaneous Transmission (1-g)	1.459				
Test Results		Pass			
Prepared By:	Reviewed By:	Approved By:			
Burt Hu	Shemplus	Apphenduo			
Burt Hu Engineering Project Handler	Shawn Wen Laboratory Leader	Stephen Guo Laboratory Manager			

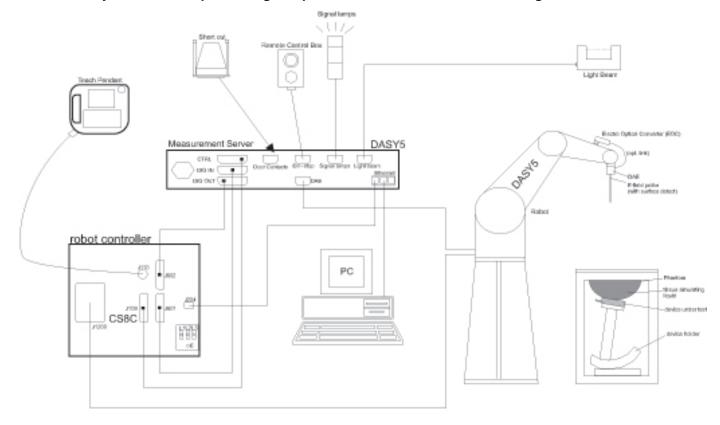


2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with IEEE Std.1528-2013, the following FCC Published RF exposure KDB procedures:

- o 248227 D01 802.11 Wi-Fi SAR
- o 447498 D01 General RF Exposure Guidance
- o 690783 D01 SAR Listings on Grants
- o 865664 D01 SAR measurement 100 MHz to 6 GHz
- o 865664 D02 RF Exposure Reporting
- o 941225 D07 UMPC Mini Tablet
- o 941225 D01 3G SAR Procedures

3. Facilities and Accreditation


Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been assessed and proved to be in compliance with A2LA. FCC (FCC Recognized No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011
Description	All measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control
 of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
 etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 9 of 33

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in Db) is specified in the standards for compliance testing. For example, a 2 Db range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 Db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

			≤ 3 GHz > 3 GHz		
Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm*	
			$2-3 \text{ GHz:} \leq 5 \text{ mm}^*$	4 – 6 GHz: ≤ 4 mm*	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	ition,	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
		Δz _{Zoom} (n>1): between subsequent points	≤1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume x, y, z		≥ 30 mm	$3-4 \text{ GHz:} \ge 28 \text{ mm}$ $4-5 \text{ GHz:} \ge 25 \text{ mm}$ $5-6 \text{ GHz:} \ge 22 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in Db from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be greater than the step size in Z-direction.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 11 of 33

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
ENA Network Analyzer	Keysight	E5080A	MY55100583	2022.10.29
Dielectric Probe kit	SPEAG	SM DAK 040 SA	1155	NCR
DC power supply	Keysight	E36103A	MY55350020	2022.10.29
Signal Generator	Rohde & Schwarz	SME06	837633\001	2022.10.29
BI-Directional Coupler	WERLATONE	C8060-102	3423	2022.10.29
Peak and Average Power Sensor	Keysight	E9323A	MY55440013	2022.10.29
Dual Channel PK Power Meter	Keysight	N1912A	MY55416024	2022.10.29
Amplifier	CORAD TECHNOLOGY LTD	AMF-4D-00400600- 50-30P	1983561	NCR
Dosimetric E-Field Probe	SPEAG	EX3DV4	7589	2022.4.26
Data Acquisition Electronic	SPEAG	DAE4	1673	2022.5.5
Dipole Kit 835 MHz	SPEAG	D835V2	4d206	2024.12.16
Dipole Kit 1800 MHz	SPEAG	D1800V2	2d212	2024.12.20
Dipole Kit 2450 MHz	SPEAG	D2450V2	977	2024.12.16
Software	SPEAG	DASY52	N/A	NCR
Twin Phantom	SPEAG	SAM V5.0	1805	NCR
ELI Phantom	SPEAG	ELI V5.0	1235	NCR
Thermometer	/	GX-138	150709653	2022.10.29
Thermometer	VICTOR	ITHX-SD-5	18470005	2022.10.29
Base station	R&S	CMW500	155522	2022.10.29

Note:

- 1) Per KDB865664D01 v01r04 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Page 12 of 33

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std. 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Page 13 of 33

6. Device Under Test (DUT) Information

6.1. DUT Description

The DUT is the parent unit of Payment terminal		
Dimension	Overall (Length x Width x Height): 82 mm x 82 mm x 12 mm	

6.2. Wireless Technology

Wireless technologies	Frequency bands	Operating mode			
GSM	850	GPRS (GMSK)			
GSIVI	1900	EGPRS (8PSK)			
	Band II Band V	UMTS Rel. 99 (Data)			
W-CDMA (UMTS)		HSDPA (Rel. 5)			
		HSUPA (Rel. 6)			
	Wi-Fi 2.4GHz	802.11b			
Wi-Fi		802.11g			
		802.11n (HT20)			

6.3. Antenna Gain

Main Antenna						
Band	Antenna Type	MAX Antenna Gain(dBi)				
GSM850	MID	-0.3				
PCS1900	MID	-1.2				
WCDMA Band 2	MID	-1.2				
WCDMA Band 5	MID	-0.3				
	Wi-Fi Antenna					
Band	Antenna Type	MAX Antenna Gain(dBi)				
2.4GHz	MID	0.4				

Page 14 of 33

7. Test Configuration

7.1. **GSM Test Configuration**

SAR tests for GSM850 and GSM1900, a communication link is set up with a base station by air link. Using CMW500 the power lever is set to "5" and "0" in SAR of GSM850 and GSM1900. The tests in the band of GSM850 and GSM1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

Page 15 of 33

7.2. UMTS Test Configuration

1. Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the procedures description in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1s" for WCDMA/HSDPA or applying the required inner loop power control procedure to maintain maximum output power while HSUPA is active. Result for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) Should be tabulated in the SAR report. All configuration that are not supported by the DUT or cannot be measured due to technical or equipment limitation should be clearly identified.

2. WCDMA

Body SAR Measurements

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1"s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode

3. HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

As per KDB941225 D01, the 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures for the highest reported SAR body exposure configuration in 12.2 kbps RMC.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β c and β d gain factors for DPCCH and DPDCH

were set according to the values in the below table, β hs for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β c / β d ratio causes a power reduction at sub-tests 2 - 4.

Sub-test₽	βe ⁴³	βde³	β _d (SF)₽	$\beta_c/\beta_{d^{o}}$	β _{hs} (1)+2	CM(dB)(2)₽	MPR (dB)₽
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	04∍
2+3	12/15(3)	15/15(3)₽	64₽	12/15(3)	24/15₽	1.0₽	0↔
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
40	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c \checkmark$

Note 2: CM=1 for $\beta_c/\beta_{d=}$ 12/15, $\beta_{hs}/\beta_c=$ 24/15. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK. Settings of required H-Set 1 QPSK acc. to 3GPP 34.121

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI"s
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

HSDPA UE category

HS-DSCH Category	Maximum HS-DSCH Minimum Inter- Codes Received TTI Interval		Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

4. HSUPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

As per KDB941225 D01v03, the 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures for the highest reported body exposure SAR configuration in 12.2 kbps RMC.

Due to inner loop power control requirements in HSDPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSDPA should be configured according to the values indicated below as well as other applicable procedures described in the "WCDMA Handset" and "Release 5 HSDPA Data Device" sections of 3G device.

Subtests for WCDMA Release 6 HSUPA

Sub -test₽	βου	βd₽	β _d (SF) _e	βe/βd≠	βhs(1	β _{ec} ₽	$eta_{ t edarphi}$	βe c+' (SF)+'	βed↔ (code)↔	CM(2)+1 (dB)+1	MP R↓ (dB)↓	AG(4)+/ Inde X-/	E- TFC I _e
1₽	11/15(3)+3	15/15 ⁽³⁾	64₽	11/15(3)+3	22/15₽	209/22 5₽	1039/225₽	4₽	1₽	1.0₽	0.0₽	20₽	75₽
24	6/15₽	15/15₽	64₽	6/15₽	12/15₽	12/15₽	94/75₽	4₽	1₽	3.0₽	2.0₽	12₽	67₽
3₽	15/15₽	9/15₽	64₽	15/94	30/154	30/15	β _{ed1} :47/1 5 ₄ β _{ed2:47/1} 5 ₄	4₽	2₽	2.0₽	1.0₽	15₽	92.
4₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15₽	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64₽	15/15(4)	30/15₽	24/15₽	134/15₽	4₽	1₽	1.0₽	0.0₽	210	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_{c}$

Note 2: CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Page 18 of 33

HSUPA UE category

UE E-DCH Category	Maximum E- DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E- DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592
	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	10	2SF2&2SF4	11484	5.76
(No DPDCH)	4	4	2		20000	2.00
7	4	8	2	2SF2&2SF4	22996	?
(No DPDCH)	4	4	10		20000	?

Note:

¹⁾ When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM. (TS25.306-7.3.0).

5. DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a Second serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0 Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK

Parameter	Value
Nominal average inf. bit rate	60 kbit/s
Inter-TTI Distance	1 TTI"s
Number of HARQ Processes	6 Processes
Information Bit Payload	120 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	960 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	3200 SMLs
Coding Rate	0.15
Number of Physical Channel Codes	1

Note:

- The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.
- 2) Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.

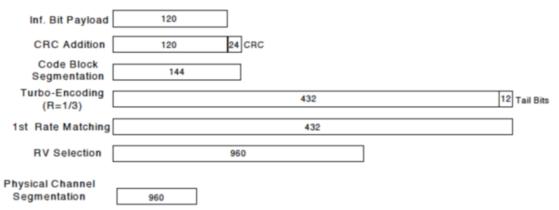


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test₽	β _c ₽	$eta_{\mathbf{d}^\wp}$	β _d ·(SF)₀	$\beta_c \cdot / \beta_{d^{e}}$	β _{hs} .(1) ₀	CM(dB)(2)	MPR ·(dB)₀
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3)	15/15(3)	64₽	12/15(3)	24/15₽	1.0₽	0₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c = 30/15$

Note 2:CM=1 for $\beta_c/\beta_d=12/15$, $\beta_{hs}/\beta_c=24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3:F or subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Up commands are set continuously to set the UE to Max power.

Note:

- 1) The Dual Carriers transmission only applies to HSDPA physical channels.
- 2) The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3) The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation.
- 4) The Dual Carriers operate in the same frequency band.
- 5) The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.

The device doesn't support carrier aggregation for it just can operate in Release 8.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS)

	Normal	cyclic prefix i	in downlink	Extended cyclic prefix in downlink			
	DwPTS	Up	PTS	DwPTS	Up	PTS	
Special subframe configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink	
0	$6592 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$	2192 · T _s	$2560 \cdot T_{ m s}$	
1	$19760 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$			
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$	$23040 \cdot T_{\rm s}$			
3	$24144 \cdot T_{\rm s}$			$25600 \cdot T_{\rm s}$			
4	$26336 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$			
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	
6	$19760 \cdot T_{\rm s}$			$23040 \cdot T_{\rm s}$	4364 · 1 _s	3120 · 1 _s	
7	$21952 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	$12800 \cdot T_{\rm s}$			
8	$24144 \cdot T_{\rm s}$			-	-	-	
9	$13168 \cdot T_{\rm s}$			-	-	-	

8. RF Exposure Conditions

Refer to the diagram inside the device which attached below for the specific details of the antenna-to-edges distances. As per KDB 941225 D07, UMPC mini-tablet devices must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at ≤ 25 mm from that surface or edge, at 5 mm separation from a flat phantom, for the data modes, wireless technologies and frequency bands supported by the device to determine SAR compliance. When 1-g SAR is tested at 5 mm, 10-g SAR is not required. we decided testing all the surfaces at 5mm separation from a flat phantom even some surface is exempt according KDB 941225.

Page 23 of 33

9. Dielectric Property Measurements & System Check

9.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	-	lead	Body			
rarget Frequency (MIDZ)	e _r	σ (S/m)	ε _r	σ (S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800 – 2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5000	36.2	4.45	49.3	5.07		
5100	36.1	4.55	49.1	5.18		
5200	36.0	4.66	49.0	5.30		
5300	35.9	4.76	48.9	5.42		
5400	35.8	4.86	48.7	5.53		
5500	35.6	4.96	48.6	5.65		
5600	35.5	5.07	48.5	5.77		
5700	35.4	5.17	48.3	5.88		
5800	35.3	5.27	48.2	6.00		

IEEE Std 1528-2013
Refer to Table 3 within the IEEE Std 1528-2013

Page 24 of 33

Dielectric Property Measurements Results:

Dielectric Prop				rameters							
Liquid	Freq.	Measured		Target		Delta(%)		Limit (%)	Temp. (°C)	Test Date	
		€r	σ	€r	σ	€r	σ	, ,	, ,		
	805	41.85	0.91	41.66	0.90	0.46	1.11	±5		2022.3.28	
	835	41.72	0.88	41.50	0.90	0.53	-2.22	±5	22.1		
	836	41.68	0.89	41.50	0.92	0.43	-3.26	±5	22.1		
	875	41.62	0.92	41.50	0.94	0.29	-2.13	±5			
HBBI 600	1800	40.35	1.42	40.00	1.40	0.88	1.43	±5		2022.3.29	
HBBL600~ 10000V6	1850	40.18	1.45	40.00	1.40	0.45	3.57	±5	21.5		
1000000	1852	40.19	1.44	40.00	1.40	0.47	2.86	±5	21.5	2022.3.29	
	1880	40.21	1.43	40.00	1.40	0.53	2.14	±5			
	2412	40.78	1.78	39.27	1.77	3.85	0.56	±5			
	2450	40.65	1.82	39.20	1.80	3.70	1.11	±5	21.9	2022.3.25	
	2462	40.71	1.85	39.22	1.79	3.80	3.35	±5			

Page 25 of 33

9.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm (above 1GHZ) and 15mm (below 1GHz) from dipole center to the simulating liquid surface.
- For area scan, standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤2GHz), 12 mm in x- and y-dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz).
- For zoom scan, Δ x_{zoom}, Δ y_{zoom} \leq 2GHz \leq 8mm, 2-4GHz \leq 5 mm and 4-6 GHz- \leq 4mm; Δ z_{zoom} \leq 3GHz \leq 5 mm, 3-4 GHz- \leq 4mm and 4-6GHz- \leq 2mm.
- Distance between probe sensors and phantom surface was set to 3 mm except for 5 GHz band. For 5GHz band, Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was set to 100 mW or 250 mW depend on the certificate of the dipoles.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

		Measure	ed Results					
T.S. Liquid		Zoom Scan (W/Kg)	Normalize to 1W (W/Kg)	Target (Ref. value)	Delta (%)	Limit (%)	Temp. (°C)	Test Date
11 1.005	1-g	2.330	9.32	9.64	-3.32	±10	20.0	2022.3.28
Head 835	10-g	1.520	6.08	6.26	-2.88	±10	20.9	
Head 1800	1-g	9.610	38.44	38.70	-0.67	±10	20.4	2022.3.29
nead 1600	10-g	4.970	19.88	19.90	-0.10	±10	20.4	2022.3.29
Head 2450	1-g	14.000	56.00	53.20	5.26	±10	21.3	2022.3.25
rieau 2430	150 10-g 6.460		25.84	24.20	6.78	±10	21.3	2022.3.25

Page 26 of 33

10. Measured and Reported (Scaled) SAR Results General Notes:

- 1) As per KDB447498 D01, all SAR measurement results are scaled to the maximum tune-up tolerance limit to demonstrate SAR compliance.
- 2) As per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8W/kg for 1-g or 2.0W/kg for 10-g respectively, when the transmission band is ≤ 100MHz.
 - \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.
- 3) As per KDB865664 D01 for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 4) As per KDB865664 D02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing (Refer to appendix B for detailed SAR plots).
- 5) Additional SAR tests in simultaneous transmission fixed power reduction scenario are also tested in some frequency bands and required test positions for the SAR worst case, which are only used to ensure simultaneous transmission SAR test exclusion. The standalone SAR compliance still uses the SAR results tested at the maximum output power level.
- 6) As per KDB 648474 D04, Phones with built-in NFC functions do not require separate SAR testing and can generally be tested according to the SAR measurement procedures normally required for the phone. Influences of the hardware introduced by the built-in NFC functions are inherently considered through testing of the other transmitters that require SAR.

Page 27 of 33

GSM Notes:

1) As per KDB941225 D01, SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

UMTS Notes:

1) As per KDB941225 D01, when the maximum output power and tune-up tolerance specified for production units in a Second mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of Second to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the Second mode.

Wi-Fi Notes:

As per KDB248227 D01:

- 1) When reported SAR for the <u>initial test position</u> is ≤ 0.4W/kg, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8W/kg or all test position are measured. For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.
- 2) The highest SAR measured for the <u>initial test position</u> or initial test configuration should be used to determine SAR test exclusion according to the sum of 1-g SAR and SAR peak to location ratio provisions in KDB 447498. In addition, a test lab may also choose to perform standalone SAR measurements for test positions and 802.11 configurations that are not required by the <u>initial test position</u> or initial test configuration procedures and apply the results to determine simultaneous transmission SAR test exclusion, according to sum of 1-g and SAR peak to location ratio requirements to reduce the number of simultaneous transmission SAR measurements.

Page 28 of 33

10.1. SAR Test Results of GSM850.

Scenario and Distance (Body Worn	Test Mode	Channel/ Frequency	Power (dBm)	Measured SAR Value	Power Drift	Scaled (W/Kg)
5mm)			Tune-up	Meas.	1-g (W/Kg)		
Back Surface	GPRS 4TX slots	190	29.5	29.43	0.994	-0.06	1.010
Front Surface	GPRS 4TX slots	190	29.5	29.43	0.594	-0.02	0.604
Left Edge	GPRS 4TX slots	190	29.5	29.43	0.613	0.01	0.623
Right Edge	GPRS 4TX slots	190	29.5	29.43	0.110	0.06	0.112
Top Edge	GPRS 4TX slots	190	29.5	29.43	0.089	-0.15	0.090
Bottom Edge	GPRS 4TX slots	190	29.5	29.43	0.673	0.10	0.684
Back Surface	GPRS 4TX slots	128	29.5	29.38	0.935	-0.02	0.961
Back Surface	GPRS 4TX slots	251	29.5	29.34	0.960	-0.11	0.996
	Repeat	ed for GSM8	50				
Back Surface	GPRS 4TX slots	190	29.5	29.43	0.977	-0.01	0.993

10.2. SAR Test Results of GSM1900.

Scenario and Distance (Body Worn	Test Mode	Channel/ Frequency	Power (dBm)		Measured SAR Value	Power Drift	Scaled (W/Kg)
5mm)			Tune-up	Meas.	1-g (W/Kg)		
Back Surface	GPRS 4TX slots	661	24.0	23.79	0.867	-0.15	0.910
Front Surface	GPRS 4TX slots	661	24.0	23.79	0.223	-0.02	0.234
Left Edge	GPRS 4TX slots	661	24.0	23.79	0.930	0.09	0.976
Right Edge	GPRS 4TX slots	661	24.0	23.79	0.127	0.18	0.133
Top Edge	GPRS 4TX slots	661	24.0	23.79	0.114	0.08	0.120
Bottom Edge	GPRS 4TX slots	661	24.0	23.79	0.363	0.20	0.381
Left Edge	GPRS 4TX slots	512	24.0	23.31	0.956	0.06	1.121
Left Edge	GPRS 4TX slots	810	24.0	23.61	0.877	0.04	0.959
	Repeated for GSM1900						
Left Edge	GPRS 4TX slots	512	24.0	23.31	0.961	0.04	1.126

10.3. SAR Test Results of WCDMA Band 2.

Scenario and Distance	Distance Test Mode		Power (d	Power (dBm)		Power	Scaled	
(Body Worn 5mm)	rest mode	Frequency	Tune-up	Meas.	1-g (W/Kg)	Drift	(W/Kg)	
Back Surface	12.2kbps RMC	9400	19.5	19.38	1.150	-0.03	1.182	
Front Surface	12.2kbps RMC	9400	19.5	19.38	0.328	-0.17	0.337	
Left Edge	12.2kbps RMC	9400	19.5	19.38	1.380	0.07	1.419	
Right Edge	12.2kbps RMC	9400	19.5	19.38	0.179	0.04	0.184	
Top Edge	12.2kbps RMC	9400	19.5	19.38	0.169	0.05	0.174	
Bottom Edge	12.2kbps RMC	9400	19.5	19.38	0.499	0.01	0.513	
Left Edge	12.2kbps RMC	9262	19.5	19.26	1.350	0.04	1.427	
Left Edge	12.2kbps RMC	9538	19.5	19.42	1.390	0.02	1.416	
	Repeated for WCDMA B2							
Left Edge	12.2kbps RMC	9262	19.5	19.26	1.340	0.04	1.416	

10.4. SAR Test Results of WCDMA Band 5

Scenario and Distance	Test Mode	Channel/	Power (d	dBm)	Measured SAR Value	Power	Scaled
(Body Worn 5mm)	rest mode	Frequency	Tune-up	Meas.	1-g (W/Kg)	Drift	(W/Kg)
Back Surface	12.2kbps RMC	4182	23.0	22.83	1.020	-0.04	1.061
Front Surface	12.2kbps RMC	4182	23.0	22.83	0.681	-0.06	0.708
Left Edge	12.2kbps RMC	4182	23.0	22.83	0.634	0.11	0.659
Right Edge	12.2kbps RMC	4182	23.0	22.83	0.116	0.06	0.121
Top Edge	12.2kbps RMC	4182	23.0	22.83	0.097	0.12	0.100
Bottom Edge	12.2kbps RMC	4182	23.0	22.83	0.687	0.04	0.714
Back Surface	12.2kbps RMC	4132	23.0	22.78	0.868	-0.04	0.913
Back Surface	12.2kbps RMC	4233	23.0	22.54	0.934	-0.02	1.038
		Repeated f	or WCDMA B5				
Back Surface	12.2kbps RMC	4182	23.0	22.83	0.990	-0.02	1.030

Page 30 of 33

10.5. SAR Test Results of 2.4GHz Wi-Fi.

Scenario and Test		Channel/	Power (dBm)	SAR Value	Dawer	Duty	Caplad
Distance (Body Worn 5mm)	ance Mode		Tune-up	Meas.	1-g (W/Kg)	Power Drift	Factor (%)	Scaled (W/Kg)
Back Surface	802.11b	2412	17.00	16.75	0.238	0.06	99.53	0.253
Front Surface	802.11b	2412	17.00	16.75	0.123	0.01	99.53	0.131
Left Edge	802.11b	2412	17.00	16.75	0.030	0.07	99.53	0.032
Right Edge	802.11b	2412	17.00	16.75	0.208	0.13	99.53	0.221
Top Edge	802.11b	2412	17.00	16.75	0.059	0.01	99.53	0.062
Bottom Edge	802.11b	2412	17.00	16.75	0.152	-0.05	99.53	0.162

OFDM mode SAR evaluation exclusion analysis

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11b	17	50.12	0.253	\	\
802.11g	13	19.95	\	0.101	Excluded
802.11n20	12	15.85	\	0.080	Excluded

Note:

¹⁾ The highest reported SAR for DSSS adjusted by the ratio of OFDM 802.11g/n to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, so SAR evaluation for 802.11g/n20 is not required.

Page 31 of 33

11. Simultaneous Transmission SAR Analysis

According to FCC OET KDB447498 D01, when the sum of 1g SAR for all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration.

11.1. Simultaneous Transmission combination.

NO. Combination		Scenario
NO.	Combination	Body-worn
1	GSM+2.4GHz Wi-Fi	$\sqrt{}$
2	UMTS+2.4GHz Wi-Fi	$\sqrt{}$
3	GSM+ UMTS	×

Note:

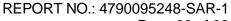
11.2. Highest Reported SAR

GSM Highest Reported SAR (1-g) (W/kg)					
Test Position	GSM850	GSM1900	GSM _{MAX}		
Back Surface	1.010	0.910	1.010		
Front Surface	0.604	0.234	0.604		
Left Edge	0.623	1.121	1.121		
Right Edge	0.112	0.133	0.133		
Top Edge	0.090	0.120	0.120		
Bottom Edge	0.684	0.381	0.684		

WCDMA Highest Reported SAR (1-g) (W/kg)					
Test Position	WCDMA Band II	WCDMA Band V	WCDMA _{MAX}		
Back Surface	1.182	1.061	1.182		
Front Surface	0.337	0.708	0.708		
Left Edge	1.427	0.659	1.427		
Right Edge	0.184	0.121	0.184		
Top Edge	0.174	0.100	0.174		
Bottom Edge	0.513	0.714	0.714		

2.4GHz Wi-Fi Highest Reported SAR (1-g) (W/kg)				
Test Position	2.4GHz Wi-Fi			
Back Surface	0.253			
Front Surface	0.131			
Left Edge	0.032			
Right Edge	0.221			
Top Edge	0.062			
Bottom Edge	0.162			

^{1) &}quot; $\sqrt{}$ " indicates exist, "x" indicates inexistence.


11.3. Simultaneous Transmission calculation.

Simultaneous Transmission Combination 1					
Test Position GSM _{max} 2.4GHz Wi-Fi ΣSAR 1-g (W/kg) Limit (W					
Back Surface	1.010	0.253	1.263		
Front Surface	0.604	0.131	0.735		
Left Edge	1.121	0.032	1.153	1.6	
Right Edge	0.133	0.221	0.354	1.0	
Top Edge	0.120	0.062	0.182		
Bottom Edge	0.684	0.162	0.846		

Simultaneous Transmission Combination 2					
Test Position	WCDMA _{MAX}	2.4GHz Wi-Fi	∑SAR 1-g (W/kg)	Limit (W/kg)	
Back Surface	1.182	0.253	1.435		
Front Surface	0.708	0.131	0.839		
Left Edge	1.427	0.032	1.459	1.6	
Right Edge	0.184	0.221	0.405	1.0	
Top Edge	0.174	0.062	0.236		
Bottom Edge	0.714	0.162	0.876		

Note:

1) Because the maximum SUM 1-g SAR ≤ 1.6 W/Kg, so the SPLSR analysis is not required.

Page 33 of 33

Appendixes

Refer to separated files for the following appendixes.

4790095248-SAR-1_APP A Conducted Power

4790095248-SAR-1_App B Photo

4790095248-SAR-1_App C System Check Plots

4790095248-SAR-1_App D Highest Test Plots

4790095248-SAR-1_App E Cal. Certificates

