

RF EXPOSURE EVALUATION

FCC ID: 2A38Z-21K433RF

Product Name	:	Wireless remote control
Model Name	:	21K 433 RF
Additional model	:	BH14064248160L1, 4815670
Operating frequency	:	433.92MHz
Numbers of Channel	:	1 channel
Antenna Type	:	PCB Antenna
Antenna Gain	:	1dBi
Type of Modulation	:	GFSK
Power supply	:	Li-ion Battery : DC 3V
Hardware Version	:	N/A
Software Version	:	N/A

Standard Requirement

According to § 15.247(i) and § 1.1307b(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See KDB 447498 D01 General RF Exposure Guidance v06, section 4. 3. 1.

The 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances $\leq 50\text{mm}$ are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW})/(\text{min. test separation distance, mm})][\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g SAR extremity SAR, where}$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison.

The test exclusions are applicable only when the minimum test separation distance is $\leq 50\text{mm}$ and for transmission frequencies between 100MHz and 6GHz. When the minimum test separation distance is $<5\text{mm}$, a distance of 5mm is applied to determine SAR test exclusion.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

$$E (\text{V/m}) = \frac{\sqrt{30 \times P \times G}}{d} \quad \text{Power Density: } Pd (\text{W/m}^2) = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2} \theta \varphi$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

RF Output power

Freq. (MHz)	Field strength(max)(dB μ V/m)	EIRP (max) (dBm)
433.92	80.52	-14.68

Note: EIRP=E-104.8+20logD,
Where
E is the electric field strength in dB μ V/m.
EIRP is the equivalent isotropically radiated power in dBm.
d is the specified measurement distance in m.
where D=3, EIRP=E-95.2.

RF EXPOSURE:

Channel (MHz)	Maximum output power (dBm)	Tune up tolerance (dBm)	Max Tune Up Power (mW)	Distance (mm)	Calculation results	Limit	Operating Mode
433.92	-14.68	-14.00±1	0.050119	5	0.006603	3	SRD

According to KDB 447498, no stand-alone required for BT antenna, and no simultaneous SAR measurement is required.

Signature

A handwritten signature in black ink that reads "Simon Pu".

Simon Pu
EMC Manager
Date: 2023-09-04