

Abbott Laboratories

GLP12203 Spiral Switch

FCC 15.225:2023 13.56 MHz Radio

Report: ABBO0121.3 Rev. 2, Issue Date: May 31, 2023

CERTIFICATE OF TEST

Last Date of Test: May 25, 2023 Abbott Laboratories EUT: GLP12203 Spiral Switch

Radio Equipment Testing

Standards

C 1011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Specification	Method
FCC 15.225:2023	ANSI C63.10:2013
FCC 15.207:2023	ANSI C03.10.2013

Results

Test Description	Result	Specification Section(s)	Method Section(s)	Comments
Powerline Conducted Emissions	Pass	15.207	6.2	
Field Strength of Fundamental	Pass	15.225(a)-(c)	6.4	
Field Strength of Spurious Emissions (Less Than 30 MHz)	Pass	15.225(d), 15.209	6.4	
Field Strength of Spurious Emissions (Greater Than 30 MHz)	Pass	15.225(d), 15.209	6.5	
Frequency Stability	Pass	15.225(e), 2.1055	6.8	
Occupied Bandwidth	Pass	15.215(c)	6.9.2	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Updated Field Strength of Fundamental data.	2023-05-28	20-22
01	Updated Field Strength of Spurious Emissions (Less Than 30 MHz).	2023-05-28	23-25
	Updated Field Strength of Spurious Emissions (Greater Than 30 MHz).	2023-05-28	26-28
	Added configuration ABBO0121-4.	2023-05-28	13
	Updated test dates.	2023-05-28	2, 10, 14
02	Date corrected to 25 May 2023 in all indicated instances.	2023-05-31	2, 10, 14

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

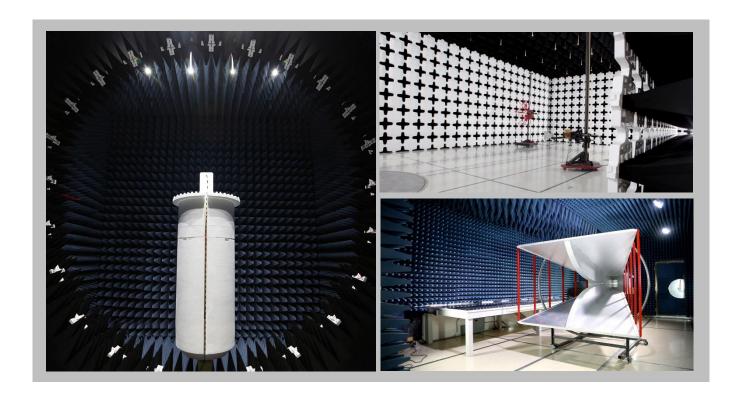
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
		A2LA		
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06
	Innovation, Sci	ence and Economic Develop	ment Canada	
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1
		BSMI		
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	US0017	US0191	US0157

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

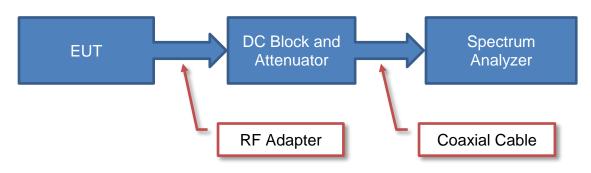
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB

TEST SETUP BLOCK DIAGRAMS

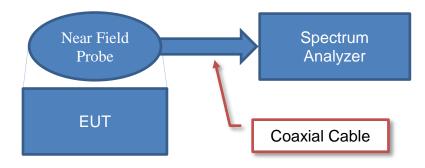


Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

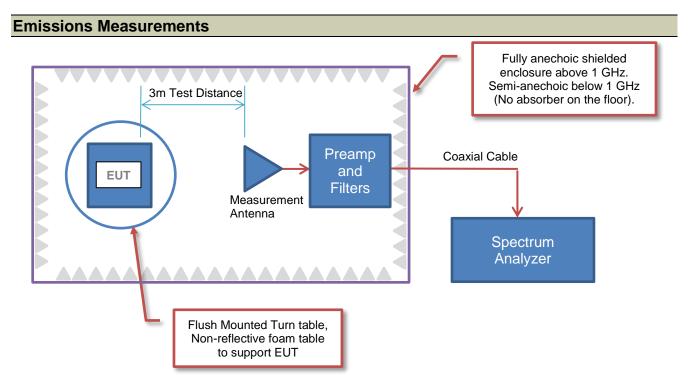


Sample Calculation (logarithmic units)

Measured Value Measured Level Coffset

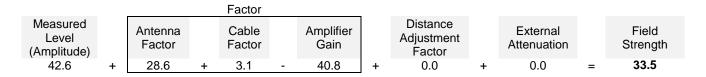
71.2 = 42.6 + 28.6

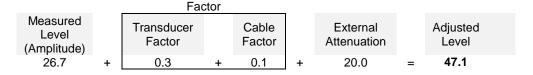
Near Field Test Fixture Measurements


Sample Calculation (logarithmic units)

Measured Value Measured Level Coffset

71.2 = 42.6 + 28.6


TEST SETUP BLOCK DIAGRAMS

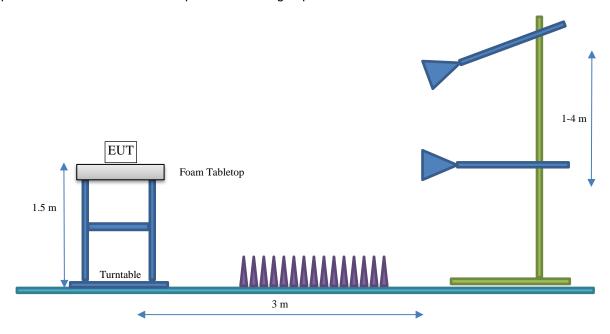


Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Radiated Power (ERP/EIRP):



TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Abbott Laboratories
Address:	1921 Hurd Drive
City, State, Zip:	Irving, TX 75038
Test Requested By:	Don Mendell
EUT:	GLP12203 Spiral Switch
First Date of Test:	May 13, 2022
Last Date of Test:	May 25, 2023
Receipt Date of Samples:	May 13, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The GLP system Track is a modular laboratory automation system used to perform multiple pre-analytic and post-analytic steps to automate sample preparation and distribution processes in clinical laboratories. The Spiral Switch track element allows for a CAR to merge onto the spiral. The controller contains an RFID reader to verify the identity and location of the CAR that is entering the spiral.

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA INFORMATION

Type	Provided by:	Dimensions	
Embedded Inductive Loop	GLP Systems	51mm x 35mm	

POWER SETTING

Radio	Modulation	Protocol	Data Rate	Frequency	Power Setting (mW)
RFID	OOK	ISO 13693	26.48 kbps	13.56 MHz	200

^{*}Power is set internally through product firmware at the default maximum.

^{*}Antenna information/power setting is identical for each 13.56 MHz radio.

CONFIGURATIONS

Configuration ABBO0121- 2

Software/Firmware Running During Test		
Description	Version	
D000117957/A-Roundabout Controller RFID Test Firmware 02-50301 Verification	Α	
D000117956/A-Spiral Controller RFID Test Firmware 02-47709 Verification	Α	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Spiral Switch Controller	Abbott Laboratories	GLP12203 (LN06R52-01)	ENG01-SP

Peripherals in Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Roundabout 3-entry	Abbott Laboratories	GLP12179 (LN06R08-51)	None	
24V Track Power Supply	Abbott Laboratories	GLP12010	0001098	
Track Filter	Abbott Laboratories	GLP12689 (LN06U35-04)	001000	
Segment Controller	Abbott Laboratories	GLP12100	C33A002915	
Track Section 80	Abbott Laboratories	GLP12120 (LN06Q43-01)	None	
Wieland Podis Powerbus Flat Cable 7G4 5m	Abbott Laboratories	LN06U28-01	None	
SwitchController Roundabout 1	Abbott Laboratories	GLP41277	ENG01-RA	
SwitchController Roundabout 2	Abbott Laboratories	GLP41277	ENG02-RA	
SwitchController Roundabout 3	Abbott Laboratories	GLP41277	ENG03-RA	
SwitchController Roundabout 4	Abbott Laboratories	GLP41277	ENG04-RA	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	No	2.7m	No	AC Mains	Track Filter

CONFIGURATIONS

Configuration ABBO0121- 4

Software/Firmware Running During Test					
Description	Version				
D000117957/A-Roundabout Controller RFID Test Firmware 02-50301 Verification	A				

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Roundabout 3-entry	Abbott Laboratories	GLP12179 (LN06R08-51)	None

Peripherals in Test Setup Boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
24V Track Power Supply	Abbott Laboratories	GLP12010	0001098					
Power Bus Board	GLP Systems	None	None					
Power Strip	BACHMANN	H05VV-F3G1	016514 003846					
5V Power Supply	Abbott Laboratories	GLP12011	C07A001652					

Cables								
Cable Type Shield		Length (m)	Ferrite	Connection 1	Connection 2			
AC Cable	No	2.7m	.7m No AC Mains		Track Filter			
DC Cable	No	0.6m	No	Power Bus Board	Roundabout 3-entry			
DC Cable	No	1.5m	1.5m No 5V Power Supply		Power Bus Board			
DC Cable	Yes	0.8m No Power Strip		Power Strip	5V Power Supply			
DC Cable	Yes	0.8m	0.8m No 24V Track Power Supply		Power Strip			
AC Power Cable	Yes	1.5m	No	AC Mains	24V Track Power Supply			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-05-19	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-05-23	Frequency		No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-05-19	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2023-05-25	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2023-05-25	Field Strength of Spurious Emissions (Less Than 30 MHz)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2023-05-25	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was Completed

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

FCC KDB 174176 D01 AC Conducted FAQ v01r01, June 3, 2015 Section Q5:

For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements performed with a suitable dummy load in lieu of the antenna under the following conditions:

- (1) Perform the AC power-line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band:
- (2) Retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band.

All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	2021-08-06	2022-08-06
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR
Receiver	Gauss Instruments	TDEMI 30M	ARL	2022-03-28	2023-03-28
Cable - Conducted Cable Assembly	Northwest EMC	TXA, HFC, TQU	TXAA	2022-01-24	2023-01-24

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.1 dB	-3.1 dB

CONFIGURATIONS INVESTIGATED

ABBO0121-2

MODES INVESTIGATED

Transmitting 13.56 MHz RFID

EUT:	GLP12203 Spiral Switch	Work Order:	ABBO0121
Serial Number:	ENG01-SP	Date:	2022-05-19
Customer:	Abbott Laboratories	Temperature:	20.9°C
Attendees:	Frank Sun	Relative Humidity:	54.1%
Customer Project:	None	Bar. Pressure (PMSL):	1011 mb
Tested By:	Jarrod Brenden	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0121-2

TEST SPECIFICATIONS

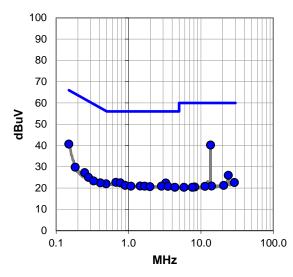
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

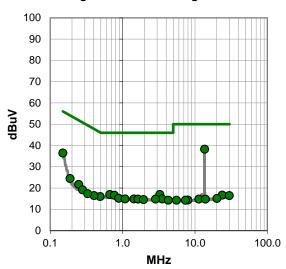
Run #:	11	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Transmitting 13.56 MHz RFID


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #11

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
13.559	19.3	20.9	40.2	60.0	-19.8		
0.150	20.1	20.6	40.7	66.0	-25.3		
0.667	2.5	20.2	22.7	56.0	-33.3		
0.769	2.3	20.2	22.5	56.0	-33.5		
3.266	2.2	20.2	22.4	56.0	-33.6		
23.931	4.1	21.9	26.0	60.0	-34.0		
0.490	1.8	20.2	22.0	56.2	-34.2		
0.184	9.2	20.6	29.8	64.3	-34.5		
0.248	6.7	20.6	27.3	61.8	-34.5		
0.898	1.1	20.2	21.3	56.0	-34.7		
1.448	0.8	20.2	21.0	56.0	-35.0		
1.078	0.9	20.0	20.9	56.0	-35.1		
1.665	0.7	20.2	20.9	56.0	-35.1		
2.842	0.7	20.2	20.9	56.0	-35.1		
0.408	2.2	20.3	22.5	57.7	-35.2		
3.508	0.6	20.2	20.8	56.0	-35.2		
1.970	0.5	20.2	20.7	56.0	-35.3		
4.376	0.2	20.2	20.4	56.0	-35.6		
0.280	4.5	20.5	25.0	60.8	-35.8		
0.330	3.1	20.3	23.4	59.5	-36.1		
28.950	0.0	22.6	22.6	60.0	-37.4		
20.565	-0.1	21.4	21.3	60.0	-38.7		
14.018	0.1	20.9	21.0	60.0	-39.0		
11.380	0.1	20.7	20.8	60.0	-39.2		
8.191	0.1	20.4	20.5	60.0	-39.5		

Average Data - vs - Average Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
13.559	17.4	20.9	38.3	50.0	-11.7			
0.150	15.9	20.6	36.5	56.0	-19.5			
0.666	-3.2	20.2	17.0	46.0	-29.0			
3.266	-3.2	20.2	17.0	46.0	-29.0			
0.769	-3.6	20.2	16.6	46.0	-29.4			
0.188	3.9	20.6	24.5	54.1	-29.6			
0.248	1.1	20.6	21.7	51.8	-30.1			
0.490	-4.2	20.2	16.0	46.2	-30.2			
0.884	-5.0	20.2	15.2	46.0	-30.8			
1.081	-5.1	20.0	14.9	46.0	-31.1			
1.430	-5.3	20.2	14.9	46.0	-31.1			
3.508	-5.3	20.2	14.9	46.0	-31.1			
1.635	-5.4	20.2	14.8	46.0	-31.2			
2.842	-5.4	20.2	14.8	46.0	-31.2			
0.403	-3.8	20.3	16.5	47.8	-31.3			
1.943	-5.6	20.2	14.6	46.0	-31.4			
0.280	-1.3	20.5	19.2	50.8	-31.6			
4.286	-5.9	20.2	14.3	46.0	-31.7			
0.330	-2.9	20.3	17.4	49.5	-32.1			
23.765	-5.2	21.9	16.7	50.0	-33.3			
29.688	-6.0	22.5	16.5	50.0	-33.5			
20.137	-6.3	21.4	15.1	50.0	-34.9			
11.298	-5.9	20.7	14.8	50.0	-35.2			
13.936	-6.1	20.9	14.8	50.0	-35.2			
7.965	-6.0	20.4	14.4	50.0	-35.6			

CONCLUSION

Pass

Tested By

EUT:	GLP12203 Spiral Switch	Work Order:	ABBO0121
Serial Number:	ENG01-SP	Date:	2022-05-19
Customer:	Abbott Laboratories	Temperature:	20.9°C
Attendees:	Frank Sun	Relative Humidity:	54.1%
Customer Project:	None	Bar. Pressure (PMSL):	1011 mb
Tested By:	Jarrod Brenden	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0121-2

TEST SPECIFICATIONS

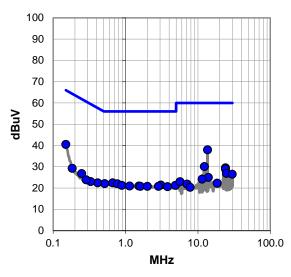
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

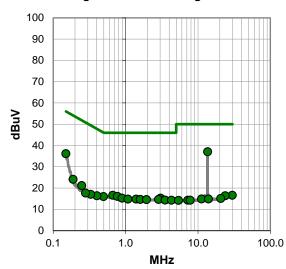
Run #:	12	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Transmitting 13.56 MHz RFID


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #12

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Dala - vs - Quasi Peak Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
13.560	17.1	20.9	38.0	60.0	-22.0				
0.150	19.9	20.6	40.5	66.0	-25.5				
12.277	9.3	20.8	30.1	60.0	-29.9				
23.968	7.6	21.9	29.5	60.0	-30.5				
24.036	7.1	21.9	29.0	60.0	-31.0				
24.801	4.9	22.0	26.9	60.0	-33.1				
29.786	4.0	22.5	26.5	60.0	-33.5				
0.666	2.3	20.2	22.5	56.0	-33.5				
0.515	1.9	20.2	22.1	56.0	-33.9				
0.769	1.8	20.2	22.0	56.0	-34.0				
3.067	1.2 20.2		21.4	56.0	-34.6				
0.887	1.1	20.2	21.3	56.0	-34.7				
4.872	1.2	20.1	21.3	56.0	-34.7				
13.934	4.1	20.9	25.0	60.0	-35.0				
0.184	8.7	20.6	29.3	64.3	-35.0				
0.248	6.2	20.6	26.8	61.8	-35.0				
1.140	1.0	20.0	21.0	56.0	-35.0				
1.529	0.8	20.2	21.0	56.0	-35.0				
0.412	2.2	20.3	22.5	57.6	-35.1				
1.603	0.6	20.2	20.8	56.0	-35.2				
2.008	0.6	20.2	20.8	56.0	-35.2				
2.843	0.6	20.2	20.8	56.0	-35.2				
3.797	0.5	20.2	20.7	56.0	-35.3				
11.430	3.5	20.7	24.2	60.0	-35.8				
0.330	2.8	20.3	23.1	59.5	-36.4				

Average Data - vs - Average Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
13.560	16.2	20.9	37.1	50.0	-12.9			
0.150	15.6	20.6	36.2	56.0	-19.8			
0.666	-3.6	20.2	16.6	46.0	-29.4			
0.769	-4.1	20.2	16.1	46.0	-29.9			
0.188	3.5	20.6	24.1	54.1	-30.0			
0.495	-4.2	20.2	16.0	46.1	-30.1			
0.248	0.6	20.6	21.2	51.8	-30.6			
0.892	-4.9	20.2	15.3	46.0	-30.7			
3.049	-4.9	20.2	15.3	46.0	-30.7			
1.076	-5.2	20.0	14.8	46.0	-31.2			
1.397	-5.4	20.2	14.8	46.0	-31.2			
1.596	-5.5	20.2	14.7	46.0	-31.3			
2.843	-5.5	20.2	14.7	46.0	-31.3			
0.402	-3.9	20.3	16.4	47.8	-31.4			
1.943	-5.6	20.2	14.6	46.0	-31.4			
3.508	-5.8	20.2	14.4	46.0	-31.6			
4.299	-5.9	20.2	14.3	46.0	-31.7			
0.330	-3.2	20.3	17.1	49.5	-32.4			
0.280	-2.8	20.5	17.7	50.8	-33.1			
29.772	-5.9	22.5	16.6	50.0	-33.4			
23.762	-5.5	21.9	16.4	50.0	-33.6			
20.620	-6.3	21.4	15.1	50.0	-34.9			
11.217	-5.8	20.7	14.9	50.0	-35.1			
13.936	-6.0	20.9	14.9	50.0	-35.1			
7.236	-6.0	20.3	14.3	50.0	-35.7			

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF FUNDAMENTAL

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a and adjusting the measurement antenna height (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

The limits in CFR 47, Part 15C 15.209(a) are identical to those is RSS-Gen section 8.9 Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohms. For example, an E-Field measurement in dBuV/m can be converted to dBuA/m via the following formula: dBuV/m - 51.5 dB = dBuA/m. E-Field measurements have the same margin in dB to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limits

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2022-09-08	2023-09-08
Antenna - Loop	ETS Lindgren	6502	AZM	2022-07-19	2024-07-19
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-06-10	2023-06-10

MEASUREMENT UNCERTAINTY

Description								
Expanded k=2	1.8 dB	-1.8 dB						

FREQUENCY RANGE INVESTIGATED

12.06 MHz TO 15.06 MHz

POWER INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0121-4

MODES INVESTIGATED

Transmitting RFID, 13.56 MHz

FIELD STRENGTH OF FUNDAMENTAL

EUT:	GLP12203 Spiral Switch	Work Order:	ABBO0121
Serial Number:	M09B000200	Date:	2023-05-25
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	Frank Sun	Relative Humidity:	52.8%
Customer Project:	None	Bar. Pressure (PMSL):	1010 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	220VAC/60Hz	Configuration:	ABBO0121-4

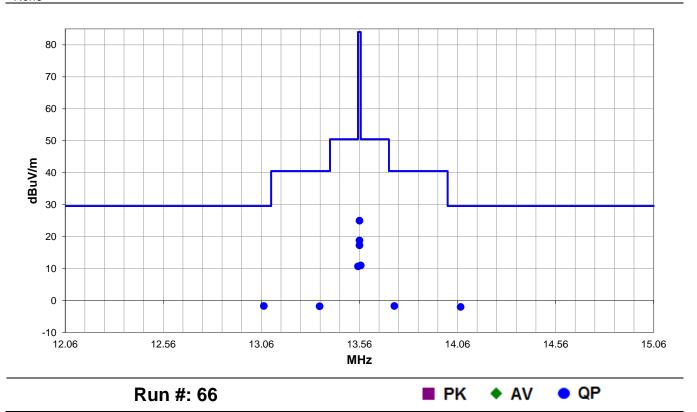
TEST SPECIFICATIONS

Specification:	Method:
FCC 15,225:2023	ANSI C63.10:2013

TEST PARAMETERS

Run #:	66	Test Distance (m):	10	Ant. Height(s) (m):	1(m)

COMMENTS


None

EUT OPERATING MODES

Transmitting RFID, 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

FIELD STRENGTH OF FUNDAMENTAL

RESULTS - Run #66

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
13.073	5.8	11.6	1.0	128.0	10.0	0.0	Perp to EUT	QP	-19.1	-1.7	29.5	-31.2
14.076	5.5	11.6	1.0	51.9	10.0	0.0	Perp to EUT	QP	-19.1	-2.0	29.5	-31.5
13.567	18.5	11.6	1.0	238.9	10.0	0.0	Perp to EUT	QP	-19.1	11.0	50.5	-39.5
13.553	18.2	11.6	1.0	241.0	10.0	0.0	Perp to EUT	QP	-19.1	10.7	50.5	-39.8
13.738	5.8	11.6	1.0	102.0	10.0	0.0	Perp to EUT	QP	-19.1	-1.7	40.5	-42.2
13.357	5.7	11.6	1.0	295.0	10.0	0.0	Perp to EUT	QP	-19.1	-1.8	40.5	-42.3
13.560	32.5	11.6	1.0	226.9	10.0	0.0	Perp to EUT	QP	-19.1	25.0	84.0	-59.0
13.560	26.3	11.6	1.0	296.0	10.0	0.0	Para to EUT	QP	-19.1	18.8	84.0	-65.2
13.560	24.8	11.6	1.0	238.9	10.0	0.0	Para to GND	QP	-19.1	17.3	84.0	-66.7

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF SPURIOUS EMISSIONS (LESS THAN 30 MHz)

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting the measurement antenna polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

The limits in CFR 47, Part 15C 15.209(a) are identical to those is RSS-Gen section 8.9 Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohms. For example, an E-Field measurement in dBuV/m can be converted to dBuA/m via the following formula: dBuV/m - 51.5 dB = dBuA/m. E-Field measurements have the same margin in dB to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limits.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2022-09-08	2023-09-08
Antenna - Loop	ETS Lindgren	6502	AZM	2022-07-19	2024-07-19
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-06-10	2023-06-10

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	1.8 dB	-1.8 dB

FREQUENCY RANGE INVESTIGATED

9 kHz TO 30 MHz

POWER INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0121-4

MODES INVESTIGATED

Transmitting RFID, 13.56 MHz

FIELD STRENGTH OF SPURIOUS EMISSIONS (LESS THAN 30 MHz)

EUT:	GLP12203 Spiral Switch	Work Order:	ABBO0121
Serial Number:	M09B000200	Date:	2023-05-25
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	Frank Sun	Relative Humidity:	52.8%
Customer Project:	None	Bar. Pressure (PMSL):	1010 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	220VAC/60Hz	Configuration:	ABBO0121-4

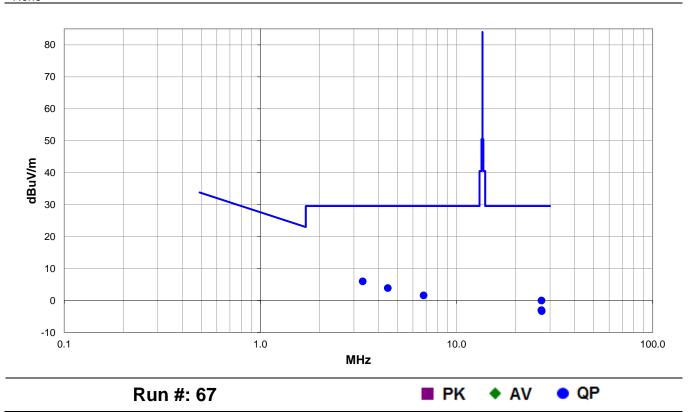
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.225:2023	ANSI C63.10:2013

TEST PARAMETERS

Run #:	67	Test Distance (m):	10	Ant. Height(s) (m):	1(m)

COMMENTS


None

EUT OPERATING MODES

Transmitting RFID, 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

FIELD STRENGTH OF SPURIOUS EMISSIONS (LESS THAN 30 MHz)

RESULTS - Run #67

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
3.324	13.5	11.6	1.0	333.9	10.0	0.0	Perp to EUT	QP	-19.1	6.0	29.5	-23.5
4.464	11.2	11.8	1.0	327.9	10.0	0.0	Perp to EUT	QP	-19.1	3.9	29.5	-25.6
6.796	9.0	11.7	1.0	264.0	10.0	0.0	Perp to EUT	QP	-19.1	1.6	29.5	-27.9
27.142	9.1	10.0	1.0	66.0	10.0	0.0	Perp to EUT	QP	-19.1	0.0	29.5	-29.5
27.082	6.1	10.0	1.0	356.0	10.0	0.0	Para to EUT	QP	-19.1	-3.0	29.5	-32.5
27.179	5.8	10.0	1.0	201.0	10.0	0.0	Para to GND	QP	-19.1	-3.3	29.5	-32.8

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF SPURIOUS EMISSIONS (GREATER THAN 30 MHz)

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

TEST EQUIPMENT

- · · · -						
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due	
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2022-09-08	2023-09-08	
Antenna - Biconilog	Teseq	CBL 6141B	AYD	2022-03-01	2024-03-01	
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-06-10	2023-06-10	
Amplifier - Pre-Amplifier	Pre-Amplifier Fairview Microwave		PAS	2023-04-11	2024-04-11	
Filter - Low Pass	Micro-Tronics	LPM50004	HHV	2022-07-22	2023-07-22	

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	4.7 dB	-4.7 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 1000 MHz

POWER INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0121-4

MODES INVESTIGATED

Transmitting RFID, 13.56 MHz

FIELD STRENGTH OF SPURIOUS EMISSIONS (GREATER THAN 30 MHz)

EUT:	GLP12203 Spiral Switch	Work Order:	ABBO0121
Serial Number:	M09B000200	Date:	2023-05-25
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	Frank Sun	Relative Humidity:	52.8%
Customer Project:	None	Bar. Pressure (PMSL):	1010 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	220VAC/60Hz	Configuration:	ABBO0121-4

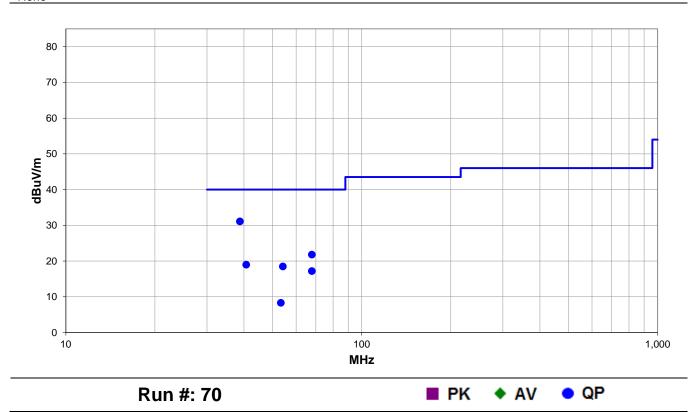
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.225:2023	ANSI C63.10:2013

TEST PARAMETERS

Run #:	70	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS


None

EUT OPERATING MODES

Transmitting RFID, 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

FIELD STRENGTH OF SPURIOUS EMISSIONS (GREATER THAN 30 MHz)

RESULTS - Run #70

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
38.757	45.7	-14.6	1.0	126.0	3.0	0.0	Vert	QP	0.0	31.1	40.0	-8.9
67.810	47.0	-25.2	1.06	313.0	3.0	0.0	Vert	QP	0.0	21.8	40.0	-18.2
40.684	34.4	-15.4	3.06	238.9	3.0	0.0	Horz	QP	0.0	19.0	40.0	-21.0
54.104	39.7	-21.2	1.0	162.0	3.0	0.0	Vert	QP	0.0	18.5	40.0	-21.5
67.803	42.4	-25.2	2.44	254.0	3.0	0.0	Horz	QP	0.0	17.2	40.0	-22.8
53.308	29.2	-20.9	1.0	358.9	3.0	0.0	Horz	QP	0.0	8.3	40.0	-31.7

CONCLUSION

Pass

Tested By

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR
DC Block	Fairview Microwave	SD3379	AMT	2021-09-14	2022-09-14
Attenuator	Fairview Microwave	SA4018-20	TYE	2021-09-15	2022-09-15
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2022-01-19	2023-01-19
Chamber, Temperature/Humidity	Cincinnati Sub Zero	ZPH-8-2-SCT/AC	TBH	2021-05-28	2022-05-28
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02

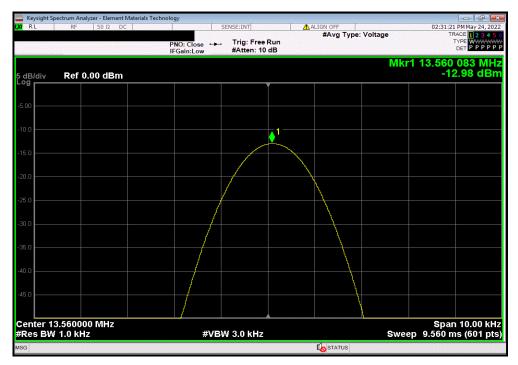
TEST DESCRIPTION

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer.

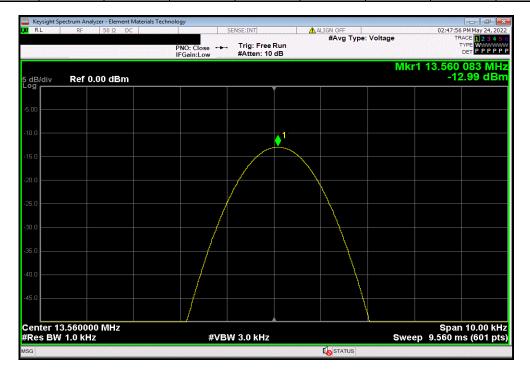
The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

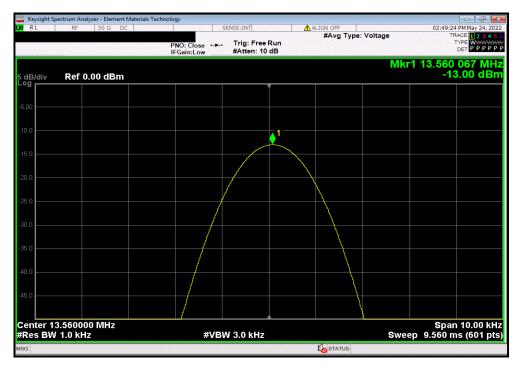
The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of 0° to +50° C and at 10°C intervals.

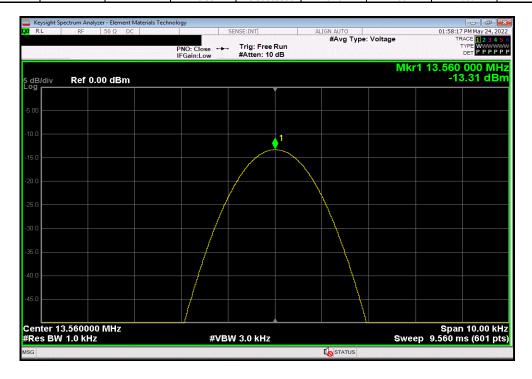

The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

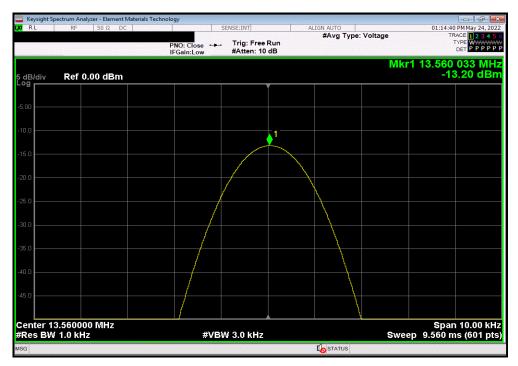
ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

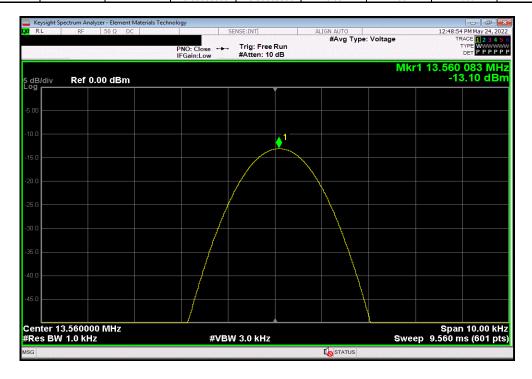


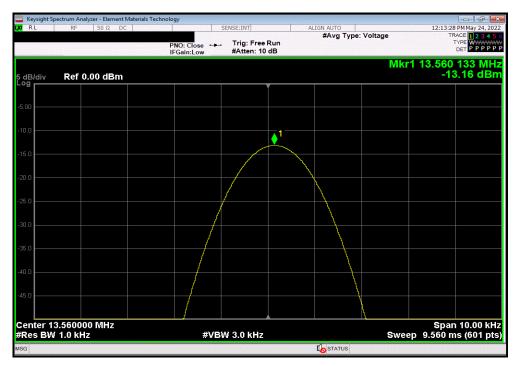
EUT: GLP12203 Spiral Switch
Serial Number: ENG01-SP
Customer: Abbott Laboratories
Attendees: Frank Sun Work Order: ABBO0121
Date: 23-May-22
Temperature: 22.9 °C Humidity: 48.9% RH
Barometric Pres.: 1017 mbar Project: None
Tested by: Mark Baytan, Jarrod Brenden
TEST SPECIFICATIONS Job Site: TX01 FCC 15.225:2022 COMMENTS DEVIATIONS FROM TEST STANDARD 14 B+ Configuration # 2 Signature Measured Value (MHz) Nominal Value (MHz) Results (ppm) (ppm) Normal Voltage Extreme Voltage +15% 13.56 MHz RFID 13.56008333 13.56008333 0.00 100 Pass 13.56008333 13.56008333 0.00 100 Pass 13.56 MHz RFID 13.56006667 13.56008333 1.23 100 Pass re +50°C 13.56 MHz RFID ure +40°C 13.56 13.56008333 6.15 100 Pass 13.56 MHz RFID 13.56003333 13.56008333 3.69 100 Pass 13.56 MHz RFID 13.56008333 13.56008333 0.00 100 Pass 13.56 MHz RFID 13.56013333 13.56008333 3 69 100 Pass re +10°C 13.56 MHz RFID
Extreme Temperature 0°C 13.56018333 13.56008333 7.37 100 Pass 13.56 MHz RFID 13.5602 13.56008333 8.60 100 Pass

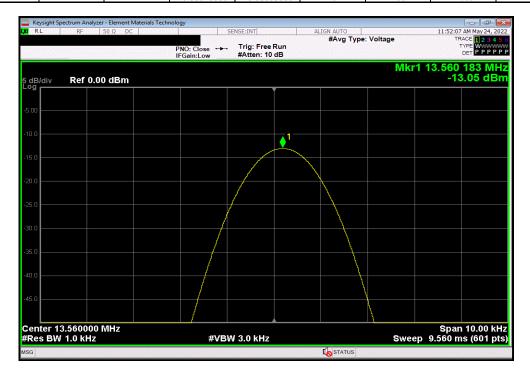


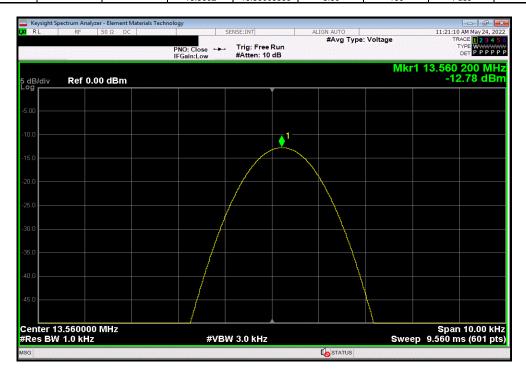

Extreme Voltage +15%, 13.56 MHz RFID							
			Measured	Nominal	Error	Limit	
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
			13.56008333	13.56008333	0	100	Pass




Extreme Temperature +50C, 13.56 MHz RFID								
		Measured	Nominal	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		13.56	13.56008333	6.15	100	Pass		




Extreme Temperature +30C, 13.56 MHz RFID							
		Measured	Nominal	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		13.56008333	13.56008333	0.00	100	Pass	



Extreme Temperature +10C, 13.56 MHz RFID							
		Measured	Nominal	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		13.56018333	13.56008333	7.37	100	Pass	

OCCUPIED BANDWIDTH

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and

TEST EQUIPMENT

1201 24011 1112111					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2022-01-19	2023-01-19
DC Block	Fairview Microwave	SD3379	AMT	2021-09-14	2022-09-14
Attenuator	Fairview Microwave	SA4018-20	TYE	2021-09-15	2022-09-15
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR

TEST DESCRIPTION

As defined in FCC 15.215 Part (c), intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise by specified in the specific rule section under which the equipment operates, is contained within the frequency band designed in the rule section under which the equipment is operated.

The 20 dB bandwidth must be contained within the band 13.110-14.010 MHz.

The emissions bandwidth was measured with the EUT configured for continuous modulated operation.

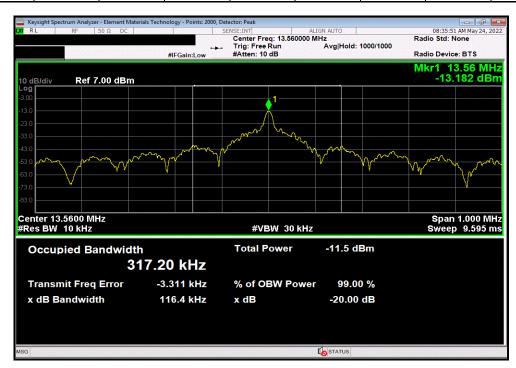
performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The resolution bandwidth (RBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

Report No. ABBO0121.3 Rev. 2

OCCUPIED BANDWIDTH



						TbtTx 2022.05.02.0	XMit 2022.02.07.0
EUT:	GLP12203 Spiral Switch				Work Order:	ABBO0121	
Serial Number:	ENG01-SP				Date:	23-May-22	
Customer:	Abbott Laboratories				Temperature:	23.4 °C	
Attendees:	Frank Sun				Humidity:	47.5% RH	
Project:					Barometric Pres.:		
	Jarrod Brenden		Power:	220VAC/60Hz	Job Site:	TX01	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.225:2022				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FROM	M TEST STANDARD						
None							
Configuration #	2		OMA A				
Comiguration #	2	Signature	1				
						Limit	
					Value	13.110 MHz ≤ BW ≤ 14.010 MHz	Result
Normal Voltage							
	13.56 MHz RFID				116.41 kHz	Within	Pass

OCCUPIED BANDWIDTH

| Normal Voltage, 13.56 MHz RFID | Limit | Value | VHz ≤ BW ≤ 14.0 | Result | The substitute | The substitu

End of Test Report