

SAR Test Report

Report No.: STS258189H02

Issued for

Xuzhou Yongkang Electronic Science Technology Co., Ltd.
LIANDO U Valley, No.6 Leye Road ,Xuzhou ETDZ, Xuzhou,
China

Product Name: Wireless Probe Type Ultrasound Scanner

Brand Name: N/A

Model Name: PEU2A

Series Model(s): PIU1A,PIU1B,PIU1C,PIU1D,
PIU2A,PIU2B,PEU1A,PEU1B,
PEU1C,PEU1D,PEU2B,PAU2A,
PAU2B,PAU2C

FCC ID: 2A2X3WPTUS

Test Standard: ANSI/IEEE Std. C95.1
FCC 47 CFR Part 2 (2.1093)
IEEE Std. 1528-2013

Max. Report
SAR (1g) Body: 0.600 W/kg(1g)

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT CERTIFICATION

Applicant's name: Xuzhou Yongkang Electronic Science Technology Co., Ltd.

Address: LIANDO U Valley, No.6 Leye Road ,Xuzhou ETDZ, Xuzhou, China

Manufacturer's Name: Xuzhou Yongkang Electronic Science Technology Co., Ltd.

Address: 1st&2nd Floor, 6#01, 6#02, No.6 Building 1st Phase Economic Development Manufacturing Zone, LIANDO U Valley, No.6 Leye Road, Xuzhou ETDZ, 221000 Xuzhou, PEOPLE'S REPUBLIC OF CHINA

Product description

Product name: Wireless Probe Type Ultrasound Scanner

Brand name: N/A

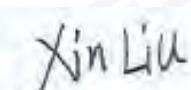
Model name: PEU2A

PIU1A,PIU1B,PIU1C,PIU1D,

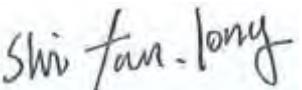
Series Model(s): PIU2A,PIU2B,PEU1A,PEU1B,
PEU1C,PEU1D,PEU2B,PAU2A,
PAU2B,PAU2C

ANSI/IEEE Std. C95.1

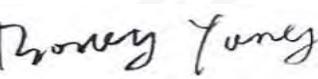
Standards: FCC 47 CFR Part 2 (2.1093)
IEEE Std. 1528-2013


The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test:


Date (s) of performance of tests: 04 Sep. 2025

Date of Issue: 08 Sep. 2025


Test Result: **Pass**

Testing Engineer :

(Xin.Liu)

Technical Manager :

(Shifan. Long)

Authorized Signatory :

(Bovey Yang)

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards and Limits	7
3. SAR Measurement System	8
3.1 Definition of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	14
5.1 Validation System	14
5.2 Validation Result	15
6. SAR Evaluation Procedures	16
7. EUT Test Position	22
8.1 Body-worn Position Conditions	22
8. Uncertainty	23
8.1 Measurement Uncertainty	23
9. Conducted Power Measurement	26
9.1 Test Result	26
10. EUT and Test Setup Photo	27
10.1 EUT Photo	27
10.2 Setup Photos	30
11. SAR Result Summary	32
12.1 Body SAR	32
12. Equipment List	33
Appendix A. System Validation Plots	34
Appendix B. SAR Test Plots	38
Appendix C. Probe Calibration and Dipole Calibration Report	42

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	08 Sep. 2025	STS258189H02	ALL	Initial Issue

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Product Name	Wireless Probe Type Ultrasound Scanner		
Brand Name	N/A		
Model Name	PEU2A		
Series Model	PIU1A,PIU1B,PIU1C,PIU1D, PIU2A,PIU2B,PEU1A,PEU1B, PEU1C,PEU1D,PEU2B,PAU2A, PAU2B,PAU2C		
Model Difference	The appearance color is different, the probe type is different, the motherboard, circuit, frequency, and RF module are all the same.		
Battery	Rated Voltage: 3.7 V Charge Limit Voltage: 4.2 V Capacity: 3000mAh		
Device Category	Portable		
Product stage	Production unit		
RF Exposure Environment	General Population / Uncontrolled		
Hardware Version	V1.5		
Software Version	V1.0.0		
Frequency Range	WLAN 802.11n20: 5150 ~ 5250 MHz WLAN 802.11n20: 5725 ~ 5850 MHz		
Max. Reported SAR(1g): (Limit:1.6W/kg) Test distance: Body:0mm	Band	Mode	Body Worn (W/kg)
	NII	5.2G WLAN	0.558
	NII	5.8G WLAN	0.600
	Limit		1.6W/kg
FCC Equipment Class	Unlicensed National Information Infrastructure TX(NII)		
Operating Mode:	802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM		
Antenna Specification:	WLAN: ceramic chip Antenna		
Hotspot Mode	Not Support		
DTM Mode	Not Support		
Note: 1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power			

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration No.: 625569

IC Registration No.: 12108A

A2LA Certificate No.: 4338.01

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	IEEE Std C95.1, 2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE
GENERAL POPULATION/UNCONTROLLED EXPOSURE
PARTIAL BODY LIMIT
1.6 W/kg

3. SAR Measurement System

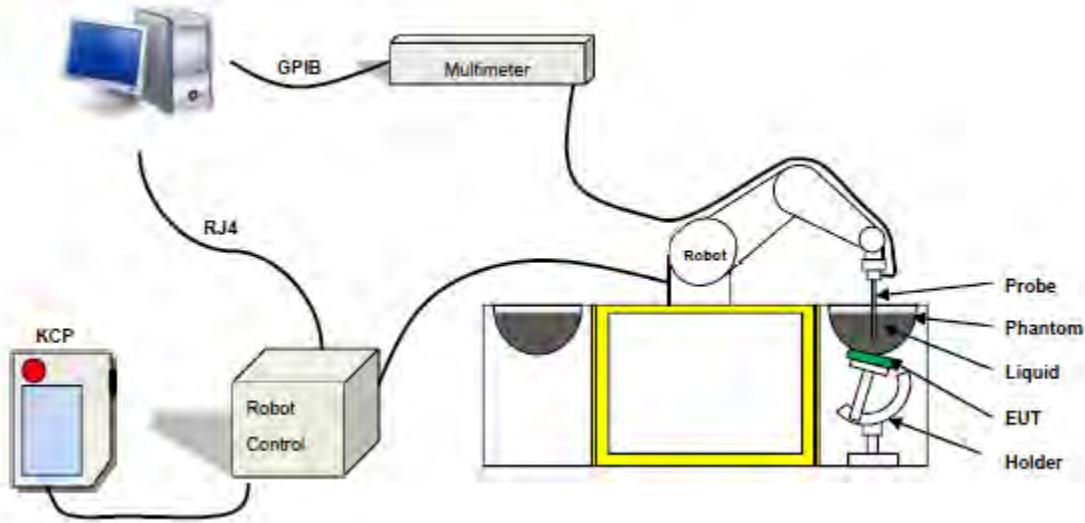
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$\text{SAR} = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 08/21 EPGO352 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

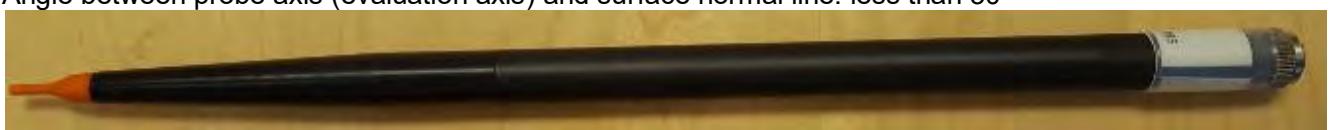


Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

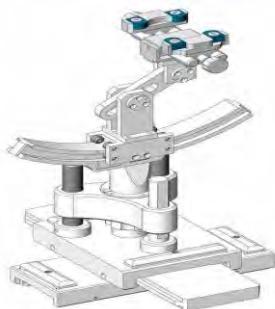

SN 32/14 SAM115

Figure-SN 21/21 ELLI48

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max - 5 %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

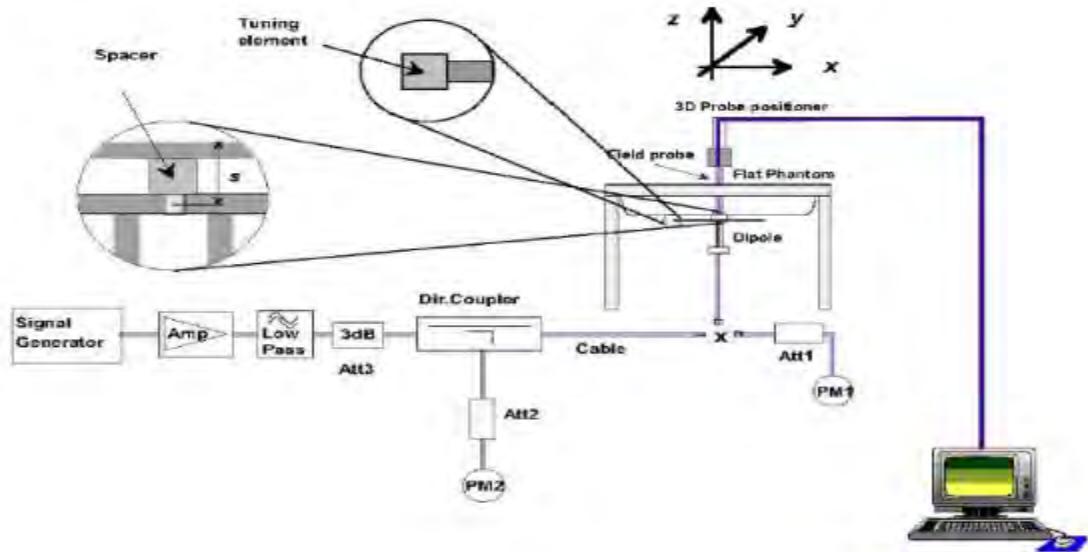
The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	ϵ_r	σ 10g S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 to 2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

Head (Reference IEEE1528)								
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity σ (S/m)	Permittivity ϵ
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0
2450	55.0	0	0	0.1	0	44.9	1.80	39.2
2600	54.9	0	0	0.1	0	45.0	1.96	39.0
Frequency (MHz)	Water (%)	Hexyl Carbitol (%)			Triton X-100 (%)		Conductivity σ (S/m)	Permittivity ϵ
5200	62.52	17.24			17.24		4.66	36.0
5800	62.52	17.24			17.24		5.27	35.3
Body (From instrument manufacturer)								
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity σ (S/m)	Permittivity ϵ
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0.1	0	31.3	1.95	52.7
2600	68.2	0	0	0.1	0	31.7	2.16	52.5
Frequency(MHz)	Water	DGBE (%)			Salt (%)		Conductivity σ (S/m)	Permittivity ϵ
5200	78.60	21.40			/		5.30	49.00
5800	78.50	21.40			0.1		6.00	48.20

LIQUID MEASUREMENT RESULTS


Date	Ambient		Simulating Liquid		Parameters	Target	Measured	Deviation %	Limited %
	Temp. [°C]	Humidity %	Frequency (MHz)	Temp. [°C]					
2025-09-04	21.7	43	5200	21.4	Permittivity	35.97	36.75	2.16	±10
					Conductivity	4.66	4.69	0.74	±10
2025-09-04	21.7	43	5240	21.4	Permittivity	35.93	36.44	1.43	±10
					Conductivity	4.70	4.75	1.14	±10
2025-09-04	21.7	43	5745	21.4	Permittivity	35.36	36.58	3.46	±10
					Conductivity	5.21	5.23	0.34	±10
2025-09-04	21.7	43	5785	21.4	Permittivity	35.32	36.44	3.19	±10
					Conductivity	5.25	5.29	0.68	±10
2025-09-04	21.7	43	5800	21.4	Permittivity	35.30	35.60	0.85	±10
					Conductivity	5.27	5.31	0.76	±10
2025-09-04	21.7	43	5825	21.4	Permittivity	35.28	35.87	1.69	±10
					Conductivity	5.30	5.29	-0.12	±10

5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Justification for Extended SAR Dipole Calibrations

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Date	Frequency (MHz)	Power	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	Drift (%)	1W Target		Difference percentage		Limited %
						SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	
2025-09-04	5200	10 mW	1.536	0.571	0.24	163.88	57.29	-6.27%	-0.40%	10
		Normalize to 1 Watt	153.60	57.06						
2025-09-04	5800	10 mW	1.846	0.607	-0.68	188.95	63.45	-2.31%	-4.30%	10
		Normalize to 1 Watt	184.58	60.72						

Note:

- (1) We use a CW signal of 20dBm(2450MHz) and 10dBm(5000-6000MHz) for system check, and then all SAR values are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

➤ Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is a Wireless Probe Type Ultrasound Scanner, support WLAN mode.

Top side

Right side

Left side

Bottom side
(Front view)

Antenna Separation Distance(cm)						
ANT	Back Side	Front Side	Left Side	Right Side	Top Side	Bottom Side
WLAN	1	1	4.5	0.5	5	13.5

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

7.1 SAR test exclusion consider table

The WLAN SAR evaluation of Maximum power (dBm) summing tolerance.

Exposure Position	Wireless Interface	5.2G WLAN	5.8G WLAN
	Calculated Frequency(GHz)	5.24	5.825
	Maximum Turn-up power (dBm)	13	12.5
	Maximum rated power(mW)	19.95	17.78
Back Side	Separation distance (cm)	1	1
	exclusion threshold(mW)	6.25	5.84
	Testing required?	YES	YES
Front Side	Separation distance (cm)	1	1
	exclusion threshold(mW)	6.25	5.84
	Testing required?	YES	YES
Left Side	Separation distance (cm)	4.5	4.5
	exclusion threshold(mW)	140.13	135.41
	Testing required?	NO	NO
Right Side	Separation distance (cm)	0.5	0.5
	exclusion threshold(mW)	1.49	1.37
	Testing required?	YES	YES
Top Side	Separation distance (cm)	5	5
	exclusion threshold(mW)	174.23	168.77
	Testing required?	NO	NO
Bottom Side	Separation distance (cm)	13.5	13.5
	exclusion threshold(mW)	1357.85	1345.64
	Testing required?	NO	NO

Note:

1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW.
This stand-alone SAR exemption test.

4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$$

Where

$$x = -\log_{10} \left(\frac{60}{ERP_{20 \text{ cm}} \sqrt{f}} \right) \text{ and } f \text{ is in GHz;}$$

and

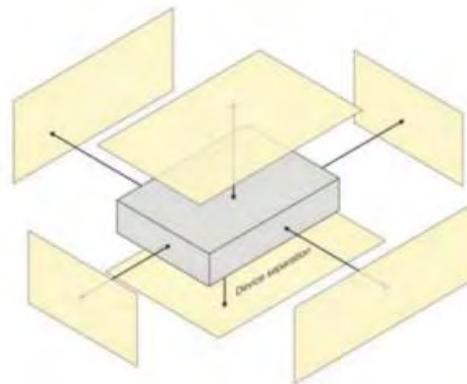
$$ERP_{20 \text{ cm}} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases}$$

d = the separation distance (cm);

5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source frequency (MHz)	Threshold ERP(watts)
0.3-1.34	1,920 R^2 .
1.34-30	3,450 R^2/f^2 .
30-300	3.83 R^2 .
300-1,500	0.0128 R^2f .
1,500-100,000	19.2 R^2 .

6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8. for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.
7. Per KDB 616217 D04, SAR evaluation for the front surface of tablet display screens are generally not necessary.
8. Per KDB 248227, as maximum rated power for U-NII-1>U-NII-2A, U-NII-1 was chosen for SAR evaluation. Based on the measurements obtained, SAR measurements on U-NII-2A are not required as highest reported SAR from U-NII-1 band is $\leq 1.2\text{W/Kg}$.


8. EUT Test Position

This EUT was tested in .Front Side, Back Side, Right Edge.

8.1 Body-worn Position Conditions

Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D04 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

SATIMO Uncertainty- SN 08/21 EPGO352									
Measurement uncertainty for DUT averaged over 1 gram / 10 gram.									
Uncertainty Component	Sec.	Tol	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
		(+- %)							
Measurement System									
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	∞
Axial Isotropy	E.2.2	0.18	R	1.73	0.71	0.71	0.07	0.07	∞
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.71	0.71	0.42	0.42	∞
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	∞
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	∞
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	∞
Modulation response	E.2.5	3.42	R	1.73	1.00	1.00	1.97	1.97	∞
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	∞
Response Time	E.2.7	0.17	R	1.73	1.00	1.00	0.10	0.10	∞
Integration Time	E.2.8	1.43	R	1.73	1.00	1.00	0.83	0.83	∞
RF ambient conditions-Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	∞
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	∞
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	∞
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	∞
Test sample Related									
Test sample positioning	E.4.2	3.10	N	1.00	1.00	1.00	3.10	3.10	∞
Device holder uncertainty	E.4.1	3.80	N	1.00	1.00	1.00	3.80	3.80	∞
Output power variation— SAR drift measurement	E.2.9	4.50	R	1.73	1.00	1.00	2.60	2.60	∞
SAR scaling	E.6.5	1.80	R	1.73	1.00	1.00	1.04	1.04	∞
Phantom and tissue parameters									
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	M
Liquid permittivity measurement	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	M
Liquid conductivity— temperature uncertainty	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	∞
Liquid permittivity— temperature uncertainty	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	∞
Combined Standard Uncertainty			RSS				10.08	9.59	
Expanded Uncertainty (95% Confidence interval)			K=2				19.58	19.18	

SATIMO Uncertainty- SN 08/21 EPGO352									
System Validation uncertainty for DUT averaged over 1 gram / 10 gram.									
Uncertainty Component	Sec.	Tol	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
		(+- %)							
Measurement System									
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	∞
Axial Isotropy	E.2.2	0.18	R	1.73	1.00	1.00	0.10	0.10	∞
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	∞
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	∞
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	∞
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	∞
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	∞
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	∞
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	∞
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	∞
RF ambient conditions-Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	∞
RF ambient conditions-reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	∞
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	∞
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	∞
System validation source									
Deviation of experimental dipole from numerical dipole	E.6.4	4.80	N	1.00	1.00	1.00	4.80	4.80	∞
Input power and SAR drift measurement	8,6.6.4	5.10	R	1.73	1.00	1.00	2.94	2.94	∞
Dipole axis to liquid distance	8,E.6.6	2.40	R	1.73	1.00	1.00	1.39	1.39	∞
Phantom and set-up									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	∞
Liquid conductivity (temperature uncertainty)	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	∞
Liquid conductivity (measured)	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	M
Liquid permittivity (temperature uncertainty)	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	∞
Liquid permittivity (measured)	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	M
Combined Standard Uncertainty			RSS				9.72	9.52	
Expanded Uncertainty (95% Confidence interval)			K=2				19.44	19.03	

SATIMO Uncertainty- SN 08/21 EPGO352									
o. System Check uncertainty for DUT averaged over 1 gram / 10 gram.									
Uncertainty Component	Sec.	Tol	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
		(+- %)							
Measurement System									
Probe calibration drift	E.2.1.3	5.72	N	1.00	1.00	1.00	5.72	5.72	∞
Axial Isotropy	E.2.2	0.18	R	1.73	0.00	0.00	0.00	0.00	∞
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	∞
Boundary effect	E.2.3	0.8	R	1.73	0.00	0.00	0.00	0.00	∞
Linearity	E.2.4	1.25	R	1.73	0.00	0.00	0.00	0.00	∞
System detection limits	E.2.4	1.20	R	1.73	0.00	0.00	0.00	0.00	∞
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	∞
Readout Electronics	E.2.6	0.26	N	1.00	0.00	0.00	0.00	0.00	∞
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	∞
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	∞
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	0.00	0.00	0.00	0.00	∞
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	0.00	0.00	0.00	0.00	∞
Probe positioner mechanical tolerance	E.6.2	1.2	R	1.73	1.00	1.00	0.69	0.69	∞
Probe positioning with respect to phantom shell	E.6.3	1.4	R	1.73	1.00	1.00	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	3.9	R	1.73	0.00	0.00	0.00	0.00	∞
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	4.8	N	1.00	1.00	1.00	4.80	4.80	∞
Input power and SAR drift measurement	8,6.6.4	5.1	R	1.73	1.00	1.00	2.94	2.94	∞
Dipole axis to liquid distance	8,E.6.6	2.4	R	1.73	1.00	1.00	1.39	1.39	∞
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	3.7	R	1.73	1.00	1.00	2.14	2.14	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1.00	1.00	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	2.4	R	1.73	0.78	0.71	1.08	0.98	∞
Liquid permittivity measurement	E.3.3	4.1	N	1.00	0.78	0.71	3.20	2.91	M
Liquid conductivity—temperature uncertainty	E.3.4	2.7	R	1.73	0.23	0.26	0.36	0.41	∞
Liquid permittivity—temperature uncertainty	E.3.4	4.8	N	1.00	0.23	0.26	1.10	1.25	M
Combined Standard Uncertainty			RSS				5.56	5.20	
Expanded Uncertainty (95% Confidence interval)			K=2				11.12	10.41	

10. Conducted Power Measurement

10.1 Test Result

5.2G WLAN

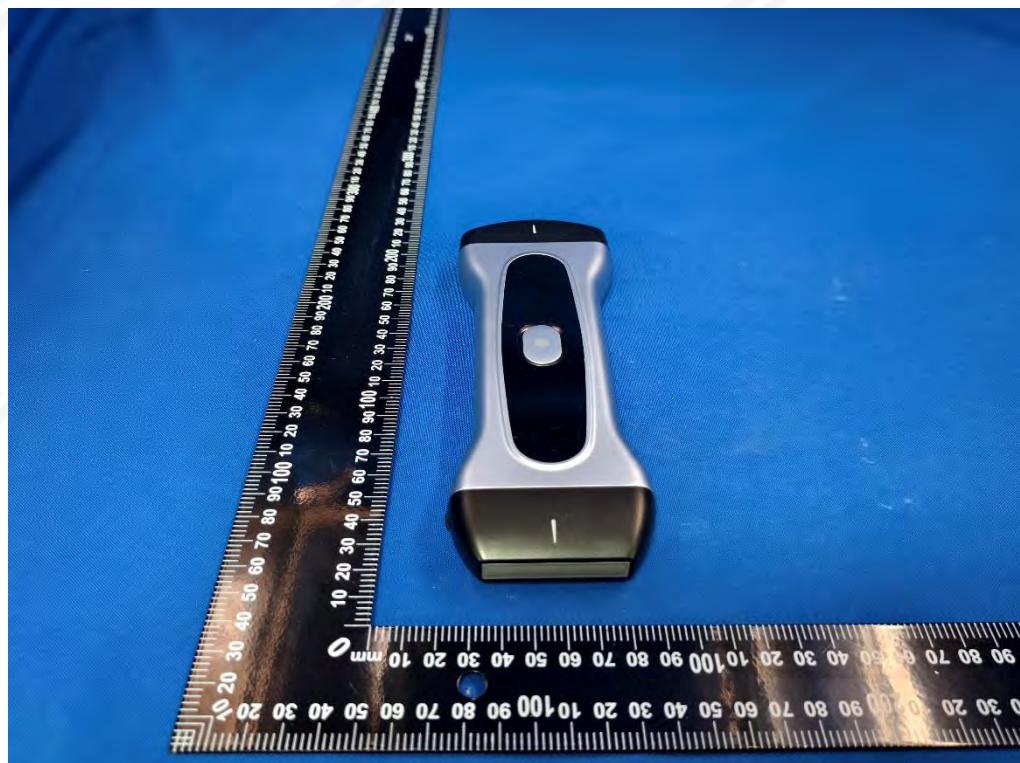
5.2G WLAN				
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)
802.11 n-HT20	36	5180	12.10	16.22
	40	5200	11.70	14.79
	48	5240	12.79	19.01

5.8G WLAN

5.8G WLAN				
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)
802.11 n-HT20	149	5745	11.21	13.21
	157	5785	11.25	13.34
	165	5825	12.43	17.50

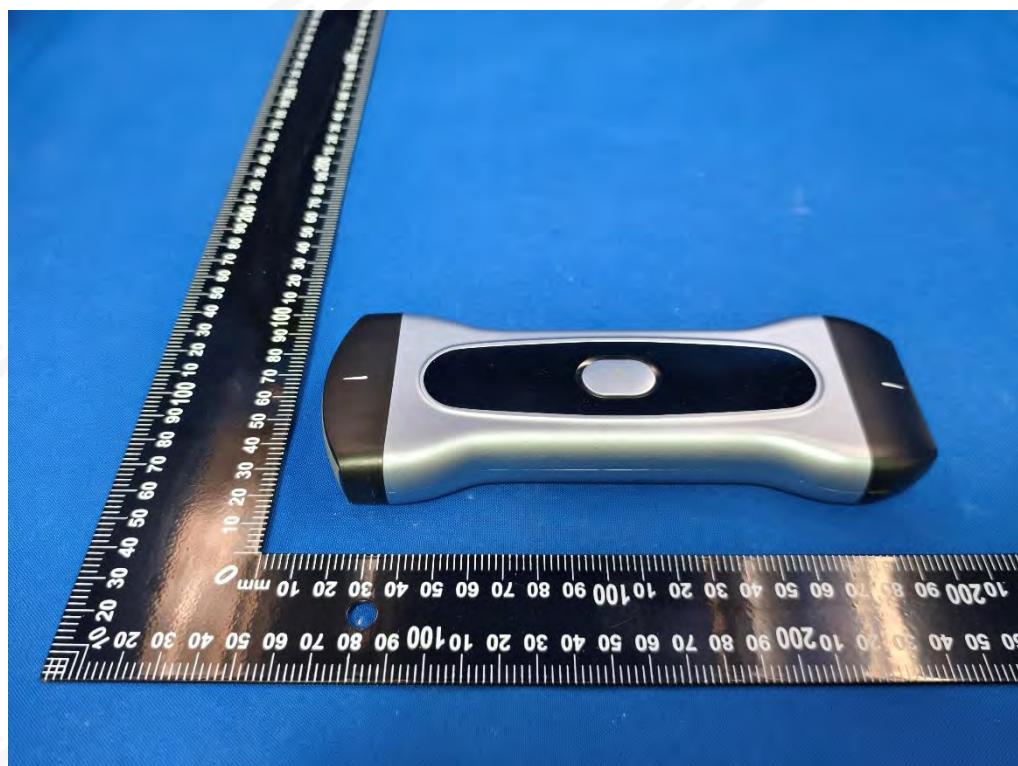
11. EUT and Test Setup Photo

11.1 EUT Photo


Front side

Back side


Top Edge

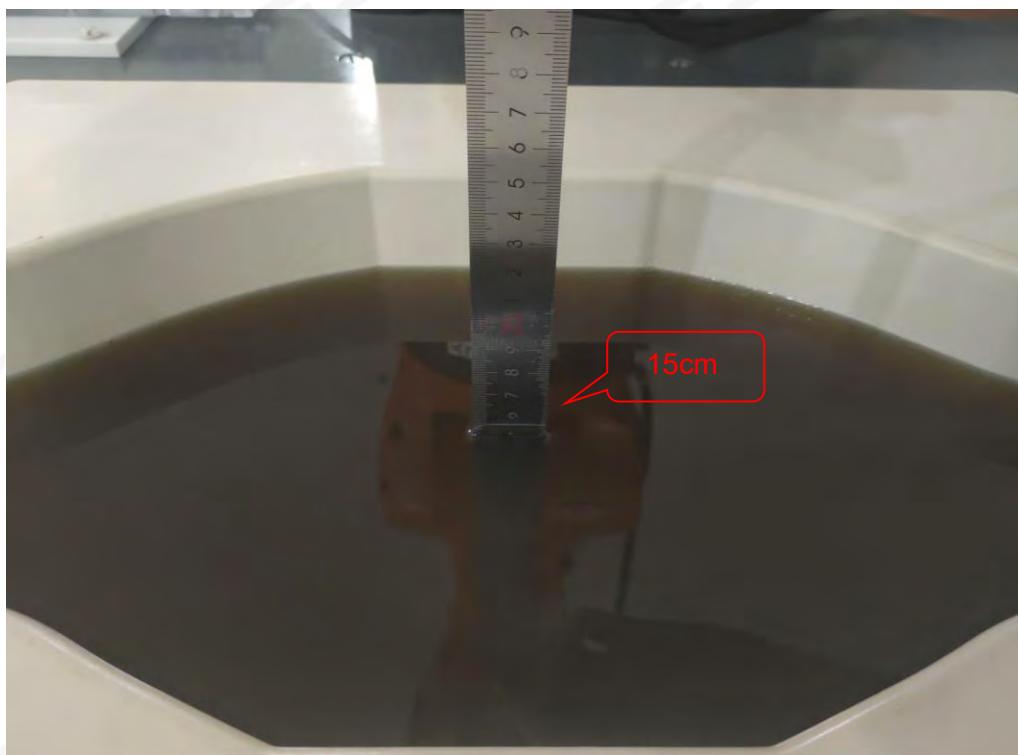

Bottom Edge

Left side

Right side

10.2 Setup Photos

Body Front side


Body Back side

Right Edge

Liquid depth (15 cm)

12. SAR Result Summary

12.1 Body SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas.No.
5.2GHz WLAN	802.11 n- HT20	Front Side	5240	0.321	2.54	13.00	12.79	1.050	0.337	/
		Back Side	5240	0.356	0.55	13.00	12.79	1.050	0.374	/
		Right Side	5240	0.532	-2.13	13.00	12.79	1.050	0.558	1
5.8GHz WLAN	802.11 n- HT20	Front Side	5825	0.394	2.56	12.50	12.43	1.016	0.400	/
		Back Side	5825	0.416	-2.56	12.50	12.43	1.016	0.423	/
		Right Side	5745	0.425	2.64	12.50	11.21	1.346	0.572	/
		Right Side	5785	0.443	-0.62	12.50	11.25	1.334	0.591	/
		Right Side	5825	0.590	1.44	12.50	12.43	1.016	0.600	2

Note:

1. The test separation of all above table is 0mm.
2. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
3. Per KDB 865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg

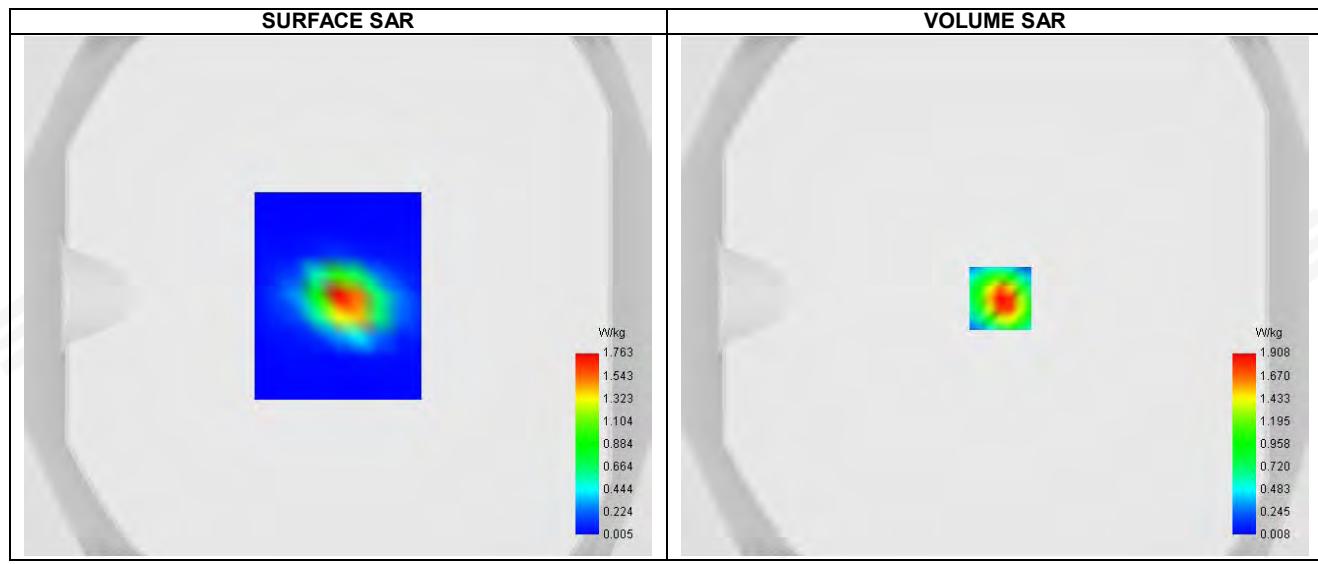
12. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Waveguide	MVG	SWG5500	SN 13/14 WGA32	2023.07.04	2026.07.03
E-Field Probe	MVG	SSE2	SN 08/21 EPGO352	2024.09.18	2025.09.17
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2024.09.18	2025.09.17
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom3	MVG	SAM	SN 21/21 ELLI48	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Attenuator	Agilent	HXT-10-8-SMA	240327017	2025-02-22	2026-02-21
Directional coupler	Xi'an Xingbo	XBOH-OA08-20dB	211123-4-3	2025-02-22	2026-02-21
Network Analyzer	Agilent	E5071C	MY46520378	2024-09-25	2025-09-26
Multi Meter	Keithley	Multi Meter 2000	4050073	2024-09-25	2025-09-26
Signal Generator	Agilent	N5182A	MY50140530	2024-09-25	2025-09-26
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2025-02-22	2026-02-21
Wireless Communication Test Set	R&S	CMW500	156324	2024-09-25	2025-09-26
Power Amplifier	DESAY	ZHL-42W	9638	2024-09-25	2025-09-26
Power Meter	R&S	NRP	100510	2024-09-25	2025-09-26
Power Sensor	R&S	NRP-Z11	101919	2024-09-25	2025-09-26
Power Sensor	Keysight	U2021XA	MY56280002	2024-09-25	2025-09-26
Temperature hygrometer	SuWei	SW-108	N/A	2024.10.15	2025.10.14
Thermograph	Elitech	RC-4	S/N EF7176501537	2024.10.15	2025.10.14

Appendix A. System Validation Plots

System Performance Check Data (5200MHz)

Type: Dipole measurement (Complete)

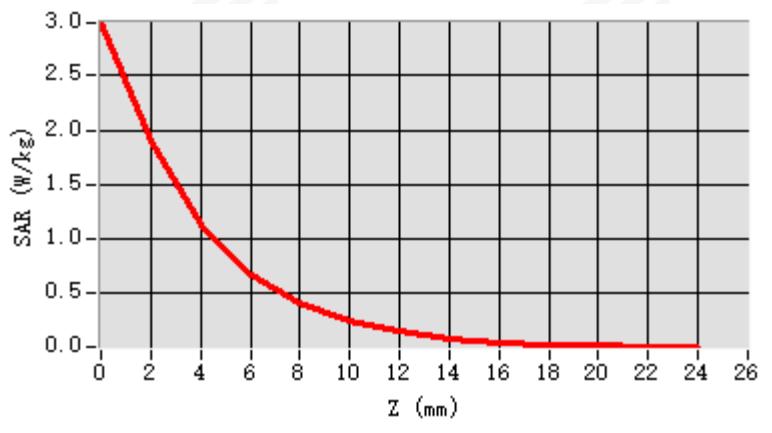
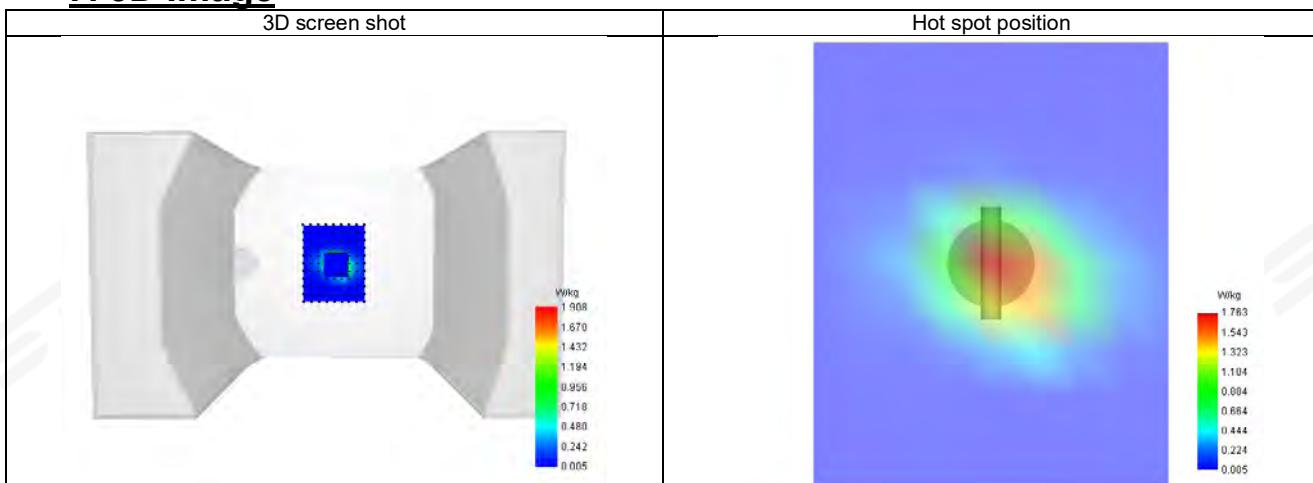

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2025-09-04

Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	5200MHz
Channels	Middle
Signal	CW
Frequency (MHz)	5200
Relative permittivity	36.75
Conductivity (S/m)	4.69
Probe	SN 08/21 EPGO352
ConvF	1.33
Crest factor:	1:1



Maximum location: X=2.00, Y=-1.00 ; SAR Peak: 3.08 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.571
SAR 1g (W/Kg)	1.536
Horizontal validation criteria: minimum distance (mm)	8.944272
Vertical validation criteria: SAR ratio M2/M1 (%)	59.584944

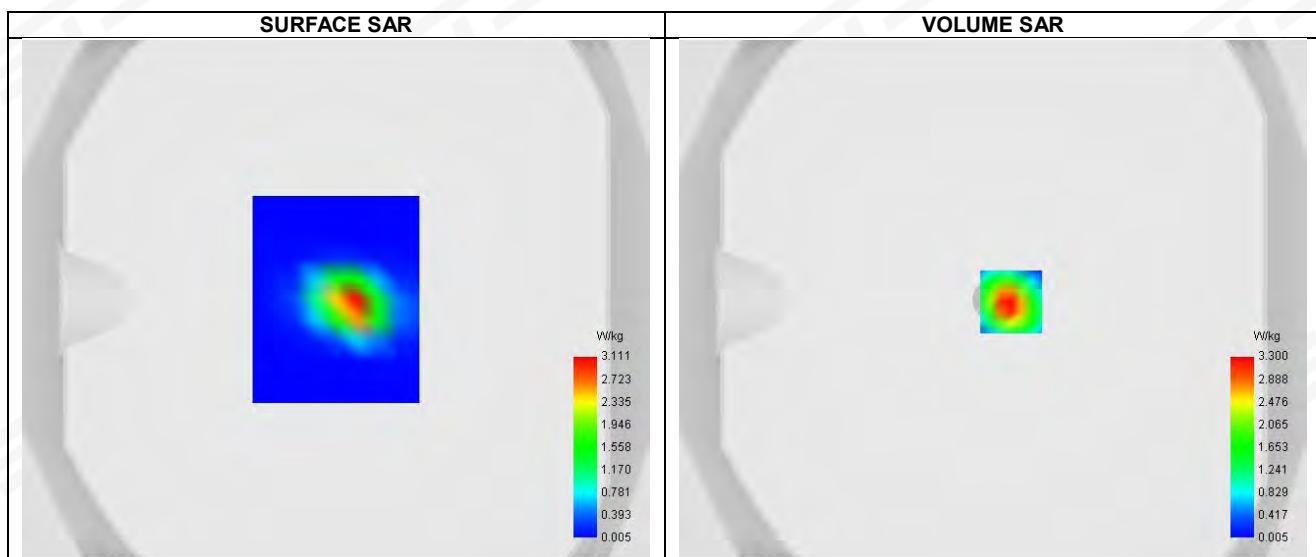
E. Z Axis Scan

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	2.984	1.908	1.137	0.666	0.414	0.249	0.150	0.091	0.055

F. 3D Image

System Performance Check Data (5800MHz)

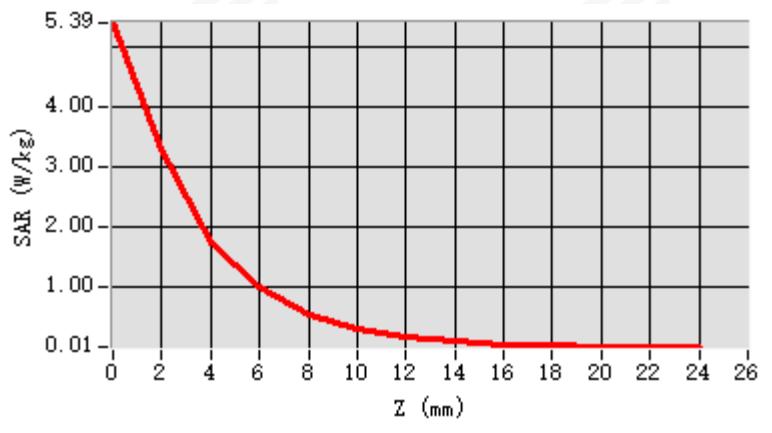
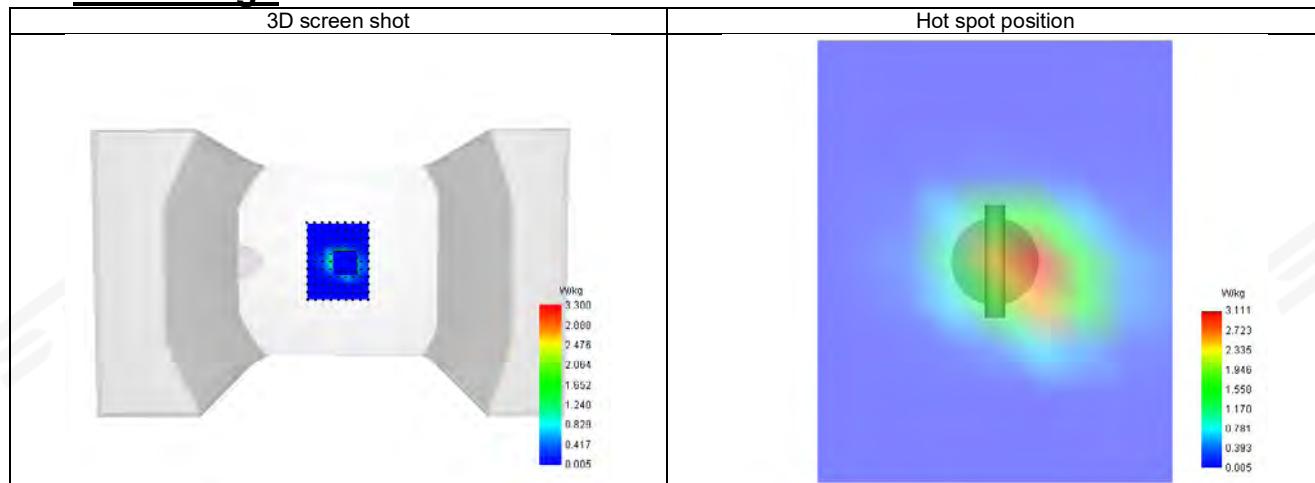
Type: Dipole measurement (Complete)


Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2025-09-04

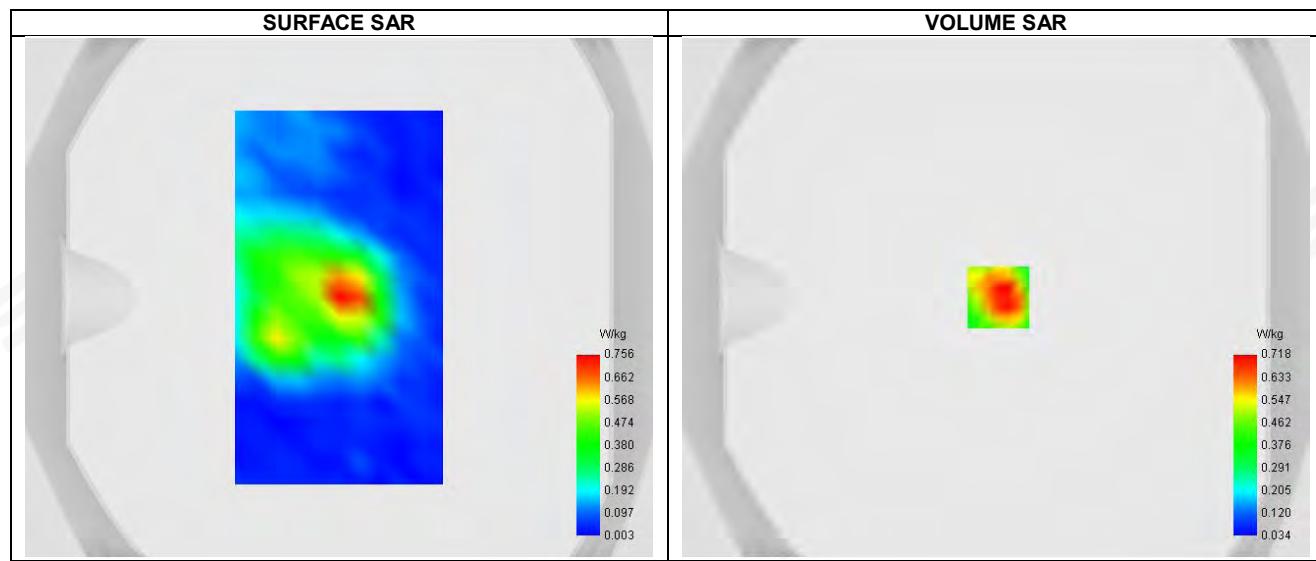
Experimental conditions.



Phantom	Validation plane
Device Position	Dipole
Band	5800MHz
Channels	Middle
Signal	CW
Frequency (MHz)	5800
Relative permittivity	35.60
Conductivity (S/m)	5.31
Probe	SN 08/21 EPGO352
ConvF	1.35
Crest factor:	1:1

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.607
SAR 1g (W/Kg)	1.846
Horizontal validation criteria: minimum distance (mm)	8.944272
Vertical validation criteria: SAR ratio M2/M1 (%)	52.971443

E. Z Axis Scan

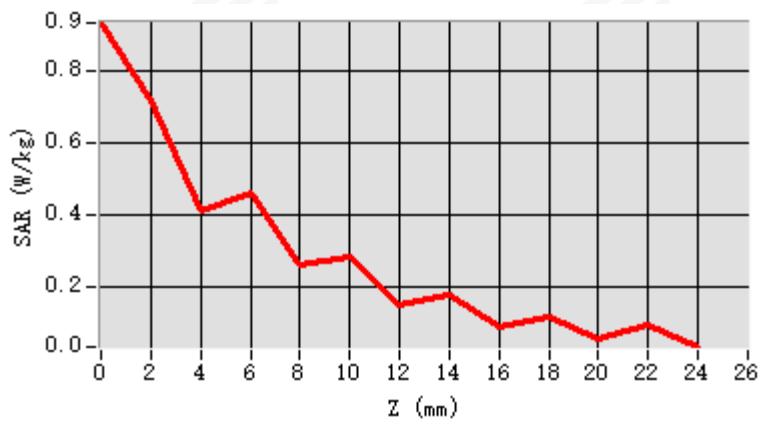
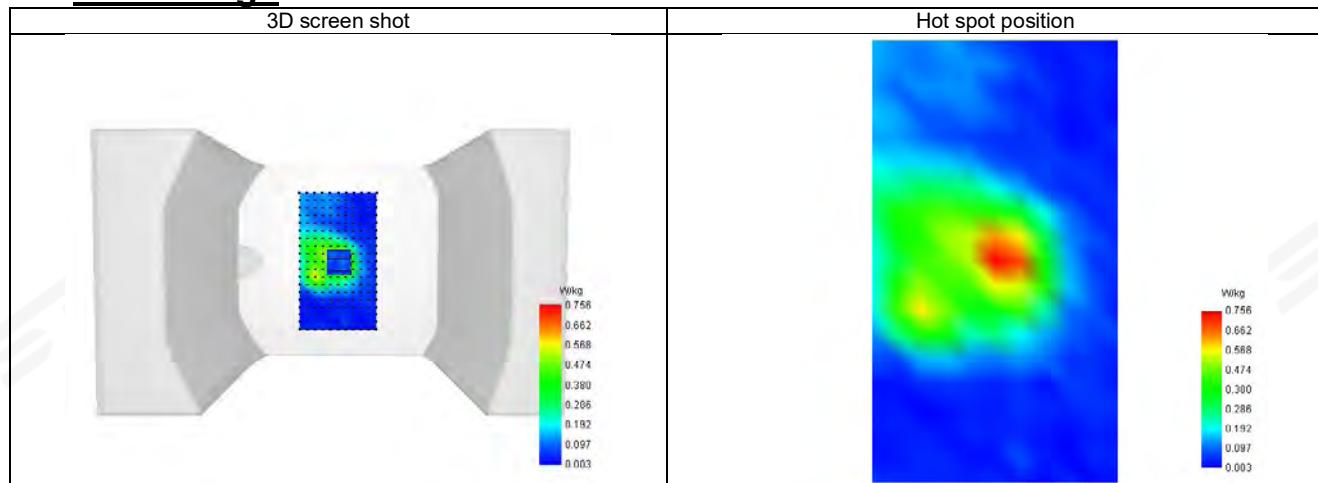

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00
SAR (W/Kg)	5.394	3.300	1.748	0.994	0.549	0.303	0.168	0.093	0.051	0.028	0.016	0.009

F. 3D Image

Appendix B. SAR Test Plots

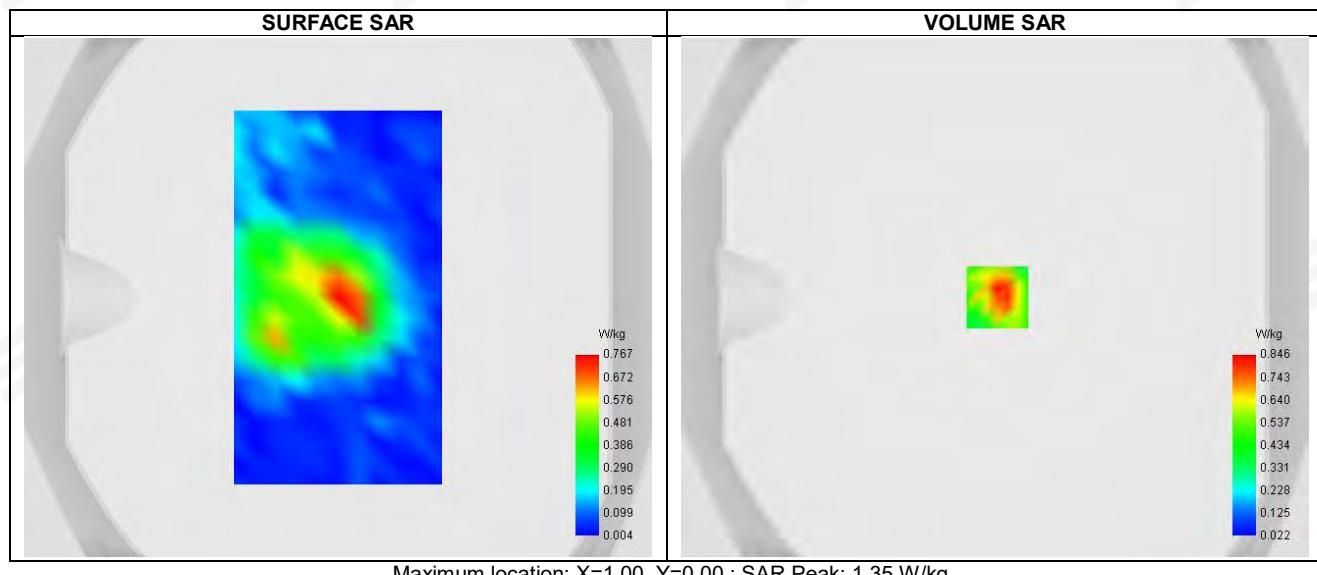
Plot 1: DUT: Wireless Probe Type Ultrasound Scanner; EUT Model: PEU2A

Test Date	2025-09-04
ConvF	1.33
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm dy=8mm, Complete
Zoom Scan	7x7x12, dx=4mm dy=4mm dz=2.0mm, Complete
Phantom	Validation plane
Device Position	Right Side
Band	5.2GHz WLAN
Signal	802.11 n-HT20 (Crest factor: 1.0)
Frequency (MHz)	5240
Relative permittivity (real part)	36.44
Conductivity (S/m)	4.75

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.269
SAR 1g (W/Kg)	0.532
Horizontal validation criteria: minimum distance (mm)	8.944272
Vertical validation criteria: SAR ratio M2/M1 (%)	79.069760

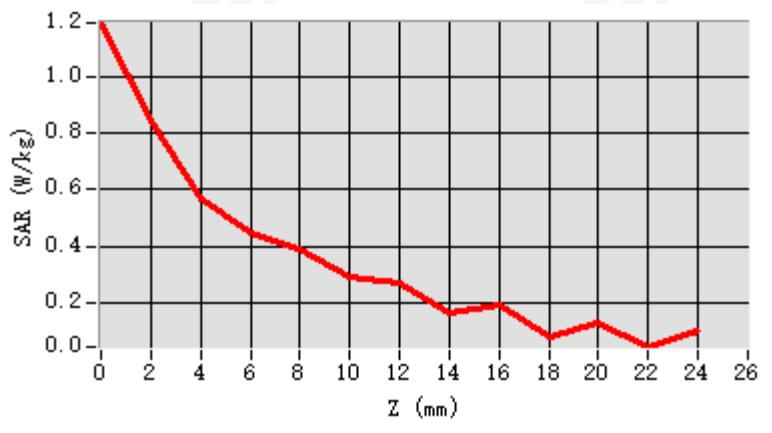
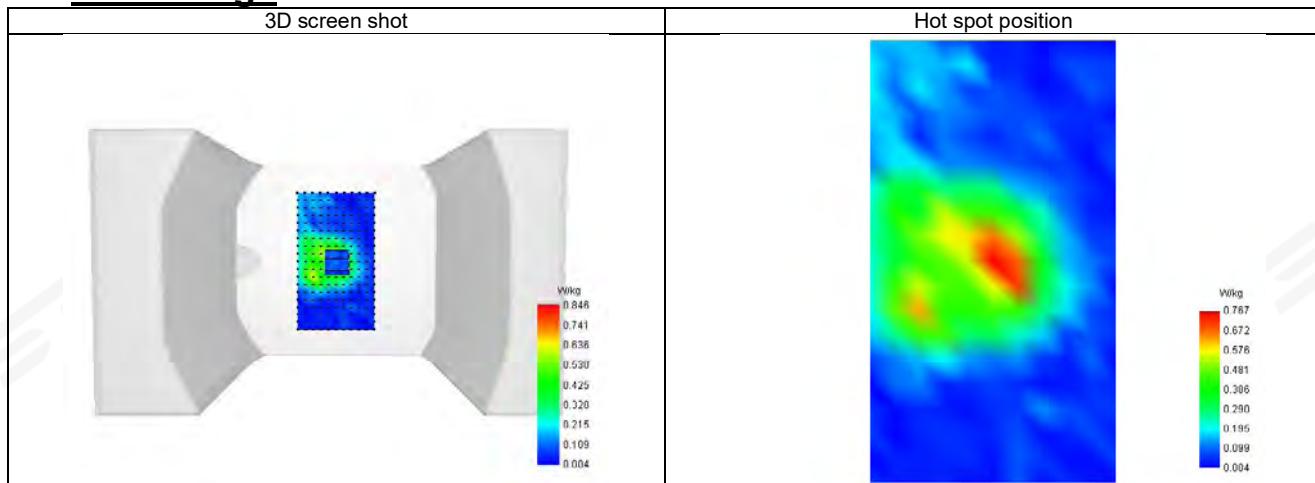

E. Z Axis Scan

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00
SAR (W/Kg)	0.936	0.718	0.413	0.460	0.260	0.287	0.154	0.177	0.091	0.120	0.054	0.096

F. 3D Image

Plot 2: DUT: Wireless Probe Type Ultrasound Scanner; EUT Model: PEU2A

Test Date	2025-09-04
ConvF	1.35
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm dy=8mm, Complete
Zoom Scan	7x7x12, dx=4mm dy=4mm dz=2.0mm, Complete
Phantom	Validation plane
Device Position	Right Side
Band	5.8GHz WLAN
Signal	802.11 n-HT20 (Crest factor: 1.0)
Frequency (MHz)	5825
Relative permittivity (real part)	35.87
Conductivity (S/m)	5.29

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.292
SAR 1g (W/Kg)	0.590
Horizontal validation criteria: minimum distance (mm)	11.313708
Vertical validation criteria: SAR ratio M2/M1 (%)	71.828105

E. Z Axis Scan

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00
SAR (W/Kg)	1.190	0.846	0.564	0.446	0.390	0.293	0.271	0.162	0.188	0.079	0.130	0.042

F. 3D Image

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT*****