

TEST REPORT

Applicant Name: Huizhou Beijia Electronic Technology Co.,Ltd.

Address: 4th Floor, Songshan Group Factory, Baishi Village, Qiuchang

Street, Huiyang District Huizhou Guangdong 516200 China

Report Number: 2504R50247E-RF-00A-M1

FCC ID: 2A2X2-T8

Test Standard (s)

FCC PART 95

Sample Description

Product Type: Walkie talkies

Model No.: T8, T8A, T8B, T8LB, T8LB/A, T8LB/B

Trade Mark: N/A

Date Received: 2025-03-27

Date of Test: 2025-04-07 to 2025-06-11

Report Date: 2025-06-23

Test Result: The EUT complied with the standards above.

Prepared and Checked By:

Amanda Wei

Amanda Wei Bob.Liao

EMC Engineer EMC Engineer

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included but no need marked. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

Tel: +86 755-26503290

Web: www.atc-lab.com

Approved By:

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGYTEST FACILITY	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	7
DESCRIPTION OF TEST CONFIGURATION	7
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLEBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
RF EXPOSURE	
APPLICABLE STANDARD	
FCC §95.587-FRS ADDITIONAL REQUIREMETNTS	
APPLICABLE STANDARD	
Result	
FCC §2.1046 & §95.567-RF OUTPUT POWER	13
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1047 & §95.575-MODULATION CHARACTERISTIC	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §2.1049 & §95.573&§95.579-AUTHOURIZED BANDWIDTH AND EMISSION MASK	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1053 & §95.579-RADIATED SPURIOUS EMISSION	19
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	20
FCC§2.1055 (d) & §95.565-FREQUENCY STABILITY	21
APPLICABLE STANDARD	21
TEST PROCEDURE	
TEST DATA	
FCC§95.571-FRS EMISSION TYPES	23
APPLICABLE STANDARD	
JUDGEMENT	23

APPENDIX	24
Modulation Characteristic	24
AUTHORIZED BANDWIDTH & EMISSION MASK	28
FREQUENCY STABILITY	29
EXHIBIT A-EUT PHOTOGRAPHS	30
EXHIBIT B-TEST SETUP PHOTOGRAPHS	31

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
Rev.00	2504R50247E-RF-00A	Original Report	2025-06-12
Rev.01	Rev.01 2504R50247E-RF-00A-M1		2025-06-23

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

Product Type	Walkie talkies
Tested Model	Т8
Multiple Model	T8A, T8B, T8LB, T8LB/A, T8LB/B
Model Difference [#]	See note 2
Frequency Range	462.5500-462.7250MHz 467.5625-467.7125MHz
The Maximum Output Power	462.5500-462.7250MHz: 18.0dBm 467.5625-467.7125MHz: 17.85dBm
Modulation Technique	FM
Antenna Specification#	0.8dBi (It is provided by the manufacturer)
Voltage Range [#]	DC 3.7V from lithium battery or DC 5V from USB port
Sample Serial Number	30EA-2 (T8) (RF Radiated Test) 30EA-1 (T8) (RF Conducted Test) (Assigned by ATC, Shenzhen)
Sample/EUT Status	Good condition

Report No.: 2504R50247E-RF-00A-M1

Note 1: The Two-way Radio comes with an USB cable (0.8m) and an earphone cable (1.2m). Please refer to EUT Photographs for details.

Note 2#: Model Difference

For model T8A, only color is different with model T8.

For model T8B, only shell shape is different with model T8.

For model T8LB&T8LB/A&T8LB/B, only mode name is different with model T8.

Please refer to DOS letter for detail. The applicant provided the mode" T8" for testing.

Objective

This test report is in accordance with Part 2 and Part 95, Subpart A & Subpart B of the Federal Communication Commissions rules.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with Part 95 Subpart A, Subpart B of the Federal Communication Commissions rules with TIA-603-E 2016, Land Mobile FM or PM-Communications Equipment-Measurement and Performance Standards, and ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.

Unless otherwise stated there are no any additions to, deviations, or exclusions from the method.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

Report No.: 2504R50247E-RF-00A-M1

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF Fre	equency	0.064*10 ⁻⁷
RF output po	wer, conducted	0.3 dB
Unwanted Emi	ssion, conducted	1.2 dB
Audio Frequency Response		0.1 dB
Low Pass Filter Response		1.2 dB
Modulati	on Limiting	1.5 %
Emissions,	30MHz - 1GHz	4.3 dB
Radiated 1GHz - 18GHz		4.9 dB
Temperature		1℃
Humidity		7%
Supply voltages		0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

Description of Channel List

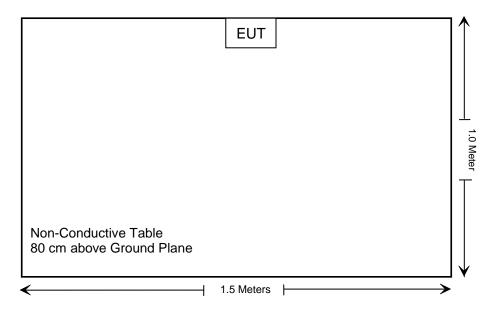
Channel No.	Channel Frequency (MHz)	Channel No.	Channel Frequency (MHz)
1	462.5625	12	467.6625
2	462.5875	13	467.6875
3	462.6125	14	467.7125
4	462.6375	15	462.5500
5	462.6625	16	462.5750
6	462.6875	17	462.6000
7	462.7125	18	462.6250
8	467.5625	19	462.6500
9	467.5875	20	462.6750
10	467.6125	21	462.7000
11	467.6375	22	462.7250

Test channel list as below, EUT was tested with channel 4, and 11.

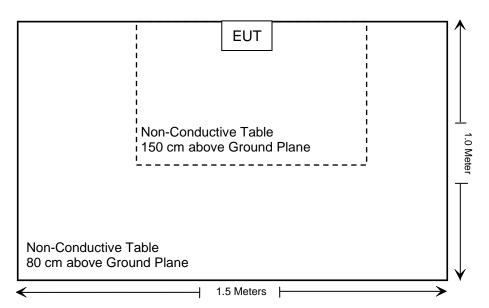
Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable


Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

Radiated emissions below 1G:

Radiated emissions above 1G:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§2.1093	RF Exposure(SAR)	Compliance
§95.587	FRS Additional Requirements	Compliance
§2.1046, §95.567	RF Output Power	Compliance
§2.1047, §95.575	Modulation Characteristic	Compliance
§2.1049, §95.573, §95.579	Authorized Bandwidth & Emission Mask	Compliance
§2.1053, §95.579	Radiated Spurious Emission	Compliance
§2.1055(d), §95.565	Frequency Stability	Compliance
§95.571	FRS Emission Types	Compliance

Note: The Radio unit must be powered off during charging, which was declared by applicant.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Spurious Emission Test (Below 1GHz)							
Rohde& Schwarz	Test Receiver	ESR	102725	2024/11/08	2025/11/07		
SONOMA INSTRUMENT	Amplifier	310N	186131	2025/03/26	2026/03/25		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2024/08/08	2027/08/07		
Unknown	RF Coaxial Cable	No.12	N040	2024/10/08	2025/10/07		
Unknown	RF Coaxial Cable	No.13	N300	2024/10/08	2025/10/07		
Unknown	RF Coaxial Cable	No.14	N800	2024/10/08	2025/10/07		
Schwarzbeck	Bilog Antenna	VULB9163	9163-194	2023/02/14	2026/02/13		
Agilent	Signal Generator	N5183A	MY47420360	2024/09/02	2025/09/01		
	Radiated Emission	on Test Software	: e3 191218 (V9)	j.			
	Radiated Spurio	us Emission Te	st (Above 1GHz)			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2024/10/08	2025/10/07		
A.H. Systems, inc.	Preamplifier	er PAM-0118 226		2025/03/20	2026/03/19		
Schwarzbeck	Horn Antenna	BBHA9120D	837	2023/02/22	2026/02/21		
Unknown	RF Coaxial Cable	No.10	N050	2024/10/08	2025/10/07		
Unknown	RF Coaxial Cable	No.11	N1000	2024/10/08	2025/10/07		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-655	2022/12/26	2025/12/25		
Agilent	Signal Generator	N5183A	MY47420360	2024/09/02	2025/09/01		
Unknown	RF Coaxial Cable	No.16	N200	2024/10/08	2025/10/07		
	Radiated Emission	on Test Software	: e3 191218 (V9)				
	R	F Conducted te	st				
Unknown	RF Coaxial Cable	No.31	RF-01	2024/10/08	2025/10/07		
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101948	2024/10/08	2025/10/07		
HP Agilent	RF Communication test set	8920A	3325U00859	2024/05/24	2025/05/23		
Aeroflex/Weinschel	30dB Attenuator (Input 250W/Output 50W)	58-30-33	PS467	2025/03/26	2026/03/25		
BACL	Temp. & Humid. Chamber	BTH-150-40	30192	2024/10/08	2025/10/07		
UNI-T	DC Power Supply	UTP8305M	/	2025/03/26	2026/03/25		

Report No.: 2504R50247E-RF-00A-M1

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 95 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Report No.: 2504R50247E-RF-00A-M1

Result: Compliance.

Please refer to SAR Report Number: 2502R50248E-20A.

FCC §95.587-FRS ADDITIONAL REQUIREMETNTS

Applicable Standard

According to FCC §95.587

Each FRS transmitter type must be designed to meet the following additional requirements.

- (a) Transmit frequency capability. FRS transmitter types must not be capable of transmitting on any frequency or channel other than those listed in § 95.563.
- (b) Antenna. The antenna of each FRS transmitter type must meet the following requirements.
 - (1) The antenna must be a non-removable integral part of the FRS transmitter type.
 - (2) The gain of the antenna must not exceed that of a half-wave dipole antenna.
 - (3) The antenna must be designed such that the electric field of the emitted waves is vertically polarized when the unit is operated in the normal orientation.

Report No.: 2504R50247E-RF-00A-M1

- (c) Digital data transmissions. FRS transmitter types having the capability to transmit digital data must be designed to meet the following requirements.
 - (1) FRS units may transmit digital data containing location information, or requesting location information from one or more other FRS or GMRS units, or containing a brief text message to another specific FRS or GMRS unit or units.
 - (2) Digital data transmissions may be initiated by a manual action or command of the operator or on an automatic or periodic basis, and FRS units may be designed to automatically respond with location data upon receiving an interrogation request from another
 - (3) Digital data transmissions must not exceed one second in duration.
 - (4) Digital data transmissions must not be sent more frequently than one digital data transmission within a thirty-second period, except that an FRS unit may automatically respond to more than one interrogation request received within a thirty-second period.
- (d) Packet mode. FRS transmitter types must not be capable of transmitting data in the store-and-forward packet operation mode.
- (e) Effective September 30, 2019, no person shall manufacture or import hand-held portable radio equipment capable of operating under this subpart (FRS) and other licensed or licensed-by-rule services in this chapter (part 15 unlicensed equipment authorizations are permitted if consistent with part 15 rules).

Result

- (a) Compliant, please refer to the channel list.
- (b) Compliant, the EUT has an integral vertically ploarized antenna arrangement and the antenna gain is 0.8dBi, fulfill the requirement of this section. Please refer to the EUT photos.
- (c) Not Applicant, EUT not support this function, please refer to user manual.
- (d) Not Applicant, EUT not support this function, please refer to user manual.
- (e) Compliant, EUT only support FRS function operating under FCC part 95B, and not support other function, please refer to user manual.

Result: Compliance.

FCC §2.1046 & §95.567-RF OUTPUT POWER

Applicable Standard

Per FCC §2.1046, and §95.567, Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

Report No.: 2504R50247E-RF-00A-M1

Test Procedure

According to C63.26-2015, Clause 5.2.3.3 & 5.5.3.1

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT .The test was performed by placing the EUT on 3-orthogonal axis.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the emissions were measured by the substitution.

Setup Block Diagram

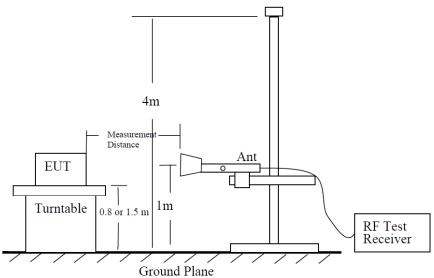


Figure 6—Test site-up for radiated ERP and/or EIRP measurements

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.3 kPa

The testing was performed by Jim Zheng on 2025-04-10.

Test Mode: Transmitting

Test Result: Compliance, please refer to the below data.

	Rece	iver	Rx Antenna		Alasaluta		
Frequency (MHz)	Reading (dBm)	PK/Ave	Polar (H/V)	Factor (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
462.6375MHz							
462.6375	-1.58	PK	Н	5.5	3.92	33	-29.08
462.6375	13.73	PK	V	4.27	18	33	-15
467.6375MHz							
467.6375	-2.24	PK	Н	5.05	2.81	27	-24.19
467.6375	13.3	PK	V	4.55	17.85	27	-9.15

Report No.: 2504R50247E-RF-00A-M1

Note 1: Absolute Level = Reading Level + Substituted Factor

Note 2: Substituted Factor = Substituted Level - Cable loss+ Antenna Gain

Note 3: Margin = Absolute Level – Limit

FCC §2.1047 & §95.575-MODULATION CHARACTERISTIC

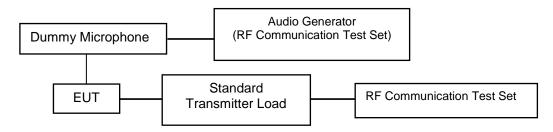
Applicable Standard

Per FCC §2.1047 and §95.575: Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.

Report No.: 2504R50247E-RF-00A-M1

Test Procedure

According to C63.26-2015, Clause 5.3.2 Modulation limiting test methodology


Modulation limiting is the ability of a transmitter circuit to limit the transmitter from producing deviations in excess of a rated system deviation.

- a) Connect the equipment as illustrated in Figure 1.
- b) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- c) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15000Hz. Turn the de-emphasis function off. d) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation. This is the 0 dB reference level.
- e) Increase the level from the audio generator by 20 dB in 5 dB increments recording the deviation as measured from the test receiver in each step. Verify that the audio level used to make the OBW measurement is included in the sweep.
- f) Repeat for step e) at 300Hz, 2500Hz and 3000Hz at a minimum using the 0 dB reference level obtained in step d).
- g) Set the test receiver to measure peak negative deviation and repeat step d) through step f).
- h) The values recorded in step f) and step g) are the modulation limiting.
- i) Plot the data set as a percentage of deviation relative to the 0 dB reference point versus input voltage.

According to C63.26-2015, Clause 5.3.3.2 Audio frequency response test methodology—Constant Input

- a) Connect the equipment as illustrated in Figure 3.
- b) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤50 Hz to ≥15000Hz. Turn the de-emphasis function off.
- c) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- d) Apply a 1000Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
- e) Set the test receiver to measure rms deviation and record the deviation reading as DEVREF.
- f) Set the audio frequency generator to the desired test frequency between 300Hz and 3000Hz.

Setup Block Diagram

Test Data

Environmental Conditions

Temperature:	20-23 ℃		
Relative Humidity:	51-58 %		
ATM Pressure:	99.7-101.3 kPa		

The testing was performed by Benny Li on 2025-04-07 and 2025-06-11.

Report No.: 2504R50247E-RF-00A-M1

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to the Appendix.

FCC §2.1049 & §95.573&§95.579-AUTHOURIZED BANDWIDTH AND EMISSION MASK

Applicable Standard

According to §95.573

Each FRS transmitter type must be designed such that the occupied bandwidth does not exceed 12.5 kHz.

Report No.: 2504R50247E-RF-00A-M1

According to §95.579

Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits in this paragraph.

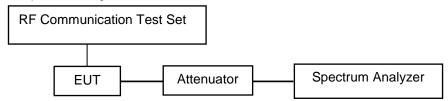
- (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:
- (1) 25 dB (decibels) in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
- 2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
- (3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz.
- (b) Measurement bandwidths. The power of unwanted emissions in the frequency bands specified in paragraphs (a)(1) and (2) of this section is measured with a reference bandwidth of 300 Hz. The power of unwanted emissions in the frequency range specified in paragraph (a)(3) is measured with a reference bandwidth of at least 30 kHz.
- (c) Measurement conditions. The requirements in this section apply to each FRS transmitter type both with and without the connection of permitted attachments, such as an external speaker, microphone and/or power cord.

Test Procedure

According to C63.26-2015, Clause 5.4.4

The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring (99%) power bandwidth:


- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient).
- b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \geq 3 × RBW.
- c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances.
- d) Set the detection mode to peak, and the trace mode to max-hold.
- e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.
- f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

According to ANSI C63.26-2015 Section 5.7.3:

f) See Annex I for example emission mask plots.

Report No.: 2504R50247E-RF-00A-M1

Setup Block Diagram:

Test Data

Environmental Conditions

Temperature:	20-23 ℃
Relative Humidity:	51-58 %
ATM Pressure:	99.7-101.3 kPa

The testing was performed by Benny Li on 2025-04-07 and 2025-06-11.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to the Appendix.

Note: Emission bandwidth was based on calculation method instead of measurement. Emission Designator Per CFR 47 §2.201& §2.202, BW = 2M + 2D

For FM Mode (Channel Spacing: 12.5 kHz)

Emission Designator 11K0F3E

In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 2.5 kHz) = 11 kHz = 11K0

F3E portion of the designator represents an FM voice transmission Therefore, the entire designator for 12.5~kHz channel spacing FM mode is 11K0F3E.

FCC §2.1053 & §95.579-RADIATED SPURIOUS EMISSION

Applicable Standard

FCC §2.1053 and §95.579. Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits in this paragraph.

Report No.: 2504R50247E-RF-00A-M1

- (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:
- (1) 25 dB (decibels) in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
- (2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
- (3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz.
- (b) Measurement bandwidths. The power of unwanted emissions in the frequency bands specified in paragraphs (a)(1) and (2) of this section is measured with a reference bandwidth of 300 Hz. The power of unwanted emissions in the frequency range specified in paragraph (a)(3) is measured with a reference bandwidth of at least 30 kHz.
- (c) Measurement conditions. The requirements in this section apply to each FRS transmitter type both with and without the connection of permitted attachments, such as an external speaker, microphone and/or power cord.

Test Procedure

According to ANSI C63.26-2015 Section 5.5.3

The transmitter was placed on a wooden turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT .The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level Spurious attenuation limit in dB = $43+10 \log_{10}$ (power out in Watts)

Setup Block Diagram

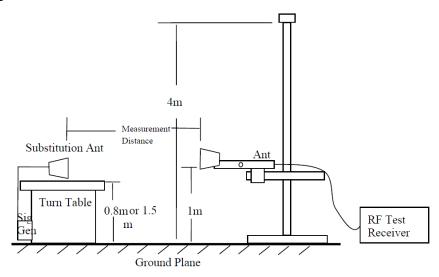


Figure 7 —Substitution method set-up for radiated emission

Test Data

Environmental Conditions

Temperature:	22.6-24 ℃		
Relative Humidity:	55 %		
ATM Pressure:	101.3 kPa		

The Below 1GHz testing was performed by Jim Zheng on 2025-04-10. The Above 1GHz testing was performed by Jim Zheng on 2025-04-18.

EUT operation mode: Transmitting

Test Result: Compliance, please refer to the below data.

30MHz - 5GHz:

Frequency	Recei	ver	Rx Antenna	Substituted	Absolute	Limit	Margin		
(MHz)	Reading (dBm)	PK/Ave	Polar (H/V)	Factor (dB)	Level (dBm)	(dBm)	(dB)		
	462.6375MHz								
925.28	-47.67	PK	Н	8.92	-38.75	-13	-25.75		
925.28	-37.26	PK	V	10.26	-27	-13	-14		
1387.91	-32.75	PK	Н	-1.25	-34	-13	-21		
1387.91	-36.22	PK	V	-1.61	-37.83	-13	-24.83		
2313.19	-25.41	PK	Н	1.66	-23.75	-13	-10.75		
2313.19	-30.34	PK	V	1.66	-28.68	-13	-15.68		
2775.83	-47.43	PK	Н	1.51	-45.92	-13	-32.92		
2775.83	-45.31	PK	V	1.91	-43.4	-13	-30.4		
3238.46	-39.13	PK	Н	2.3	-36.83	-13	-23.83		
3238.46	-38.07	PK	V	2.44	-35.63	-13	-22.63		
4163.74	-46.26	PK	Н	3.93	-42.33	-13	-29.33		
4163.74	-47.09	PK	V	4.06	-43.03	-13	-30.03		
			467.6375N	ЛНz					
935.28	-48.94	PK	Н	9.29	-39.65	-13	-26.65		
935.28	-39.28	PK	V	9.95	-29.33	-13	-16.33		
1402.91	-32.11	PK	Н	-1.33	-33.44	-13	-20.44		
1402.91	-35.78	PK	V	-1.53	-37.31	-13	-24.31		
2338.19	-26.69	PK	Н	1.8	-24.89	-13	-11.89		
2338.19	-28.48	PK	V	1.59	-26.89	-13	-13.89		
2805.83	-49.67	PK	Н	1.95	-47.72	-13	-34.72		
2805.83	-47	PK	V	1.89	-45.11	-13	-32.11		
3273.46	-38.92	PK	Н	2.17	-36.75	-13	-23.75		
3273.46	-39.05	PK	V	2.28	-36.77	-13	-23.77		
4208.74	-47.58	PK	Н	4.35	-43.23	-13	-30.23		
4208.74	-47.72	PK	V	4.41	-43.31	-13	-30.31		

Report No.: 2504R50247E-RF-00A-M1

Note 1: Absolute Level = Reading Level + Substituted Factor

Note 2: Substituted Factor = Substituted Level - Cable Loss+ Antenna Gain

Note 3: Margin = Absolute Level - Limit

FCC§2.1055 (d) & §95.565-FREQUENCY STABILITY

Applicable Standard

According to FCC §2.1055(a) (1), the frequency stability shall be measured with variation of ambient temperature from -20 °C to +50 °C, and according to FCC 2.1055(d) (2), the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point which is specified by the manufacturer.

Report No.: 2504R50247E-RF-00A-M1

According to FCC §95.565, Each FRS transmitter type must be designed such that the carrier frequencies remain within ±2.5 parts-per-million of the channel center frequencies specified in §95.563 during normal operating conditions.

Test Procedure

According to C63.26-2015, Clause 5.6

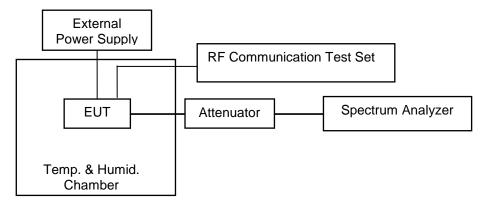
Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20°C and rated supply voltage. The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency determining circuit element shall be made subsequent to this initial set-up. Frequency stability is tested:

- a) At 10°C intervals of temperatures between -30°C and +50°C at the manufacturer's rated supply voltage, and
- b) At +20°C temperature and ±15% supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage. During the test all necessary settings, adjustments and control of the EUT have to be performed without disturbing the test environment, i.e., without opening the environmental chamber. The frequency stabilities can be maintained to a lesser temperature range provided that the transmitter is automatically inhibited from operating outside the lesser temperature range. For handheld equipment that is only capable of operating from internal batteries and the supply voltage cannot be varied, the frequency stability tests shall be performed at the nominal battery voltage and the battery end point voltage specified by the manufacturer. An external supply voltage can be used and set at the internal battery nominal voltage, and again at the battery operating end point voltage which shall be specified by the equipment manufacturer.

If an unmodulated carrier is not available, the mean frequency of a modulated carrier can be obtained by using a frequency counter with gating time set to an appropriately large multiple of bit periods (gating time depending on the required accuracy). Full details on the choice of values shall be included in the test report.

Report No.: 2504R50247E-RF-00A-M1

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a Frequency Counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.


After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Frequency Counter.

Frequency Stability vs. Voltage (item 1or item 2 will be chosen according to different condition):

- □1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- ⊠2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

The output frequency was recorded for each voltage.

Setup Block Diagram:

Test Data

Environmental Conditions

Temperature:	20 ℃
Relative Humidity:	58 %
ATM Pressure:	101.3 kPa

The testing was performed by Benny Li on 2025-04-07.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to the Appendix.

FCC§95.571-FRS EMISSION TYPES

Applicable Standard

FCC §95.571

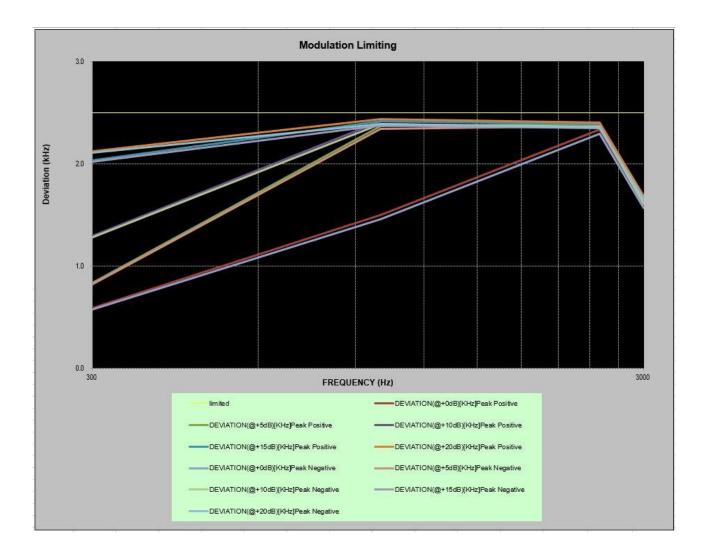
Each FRS transmitter type must be designed such that it can transmit only the following emission types: F3E, G3E, F2D, and G2D.

Report No.: 2504R50247E-RF-00A-M1

Judgement

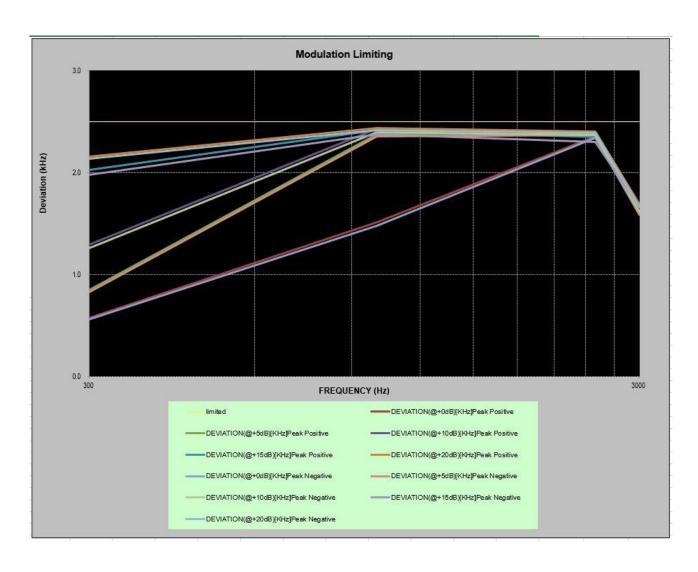
The emission type is F3E Only.

APPENDIX


Modulation Characteristic

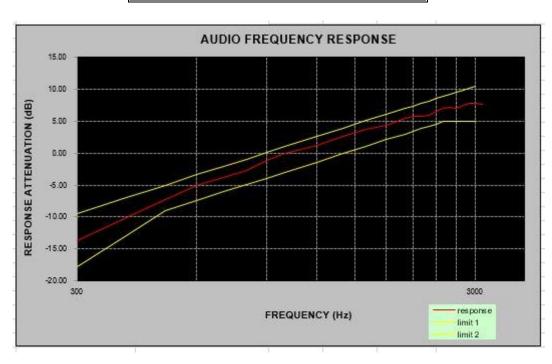
MODULATION LIMITING

Report No.: 2504R50247E-RF-00A-M1

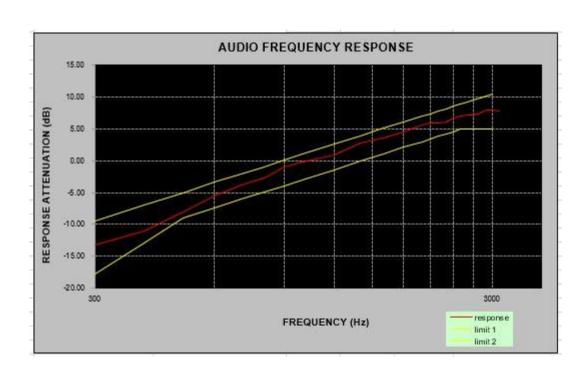

Carrier Frequency: 462.6375MHz

Audio Frequency (Hz)	(@+	EVIATION DEVIATION DEVIATION (@+0dB) (@+5dB) (@+10dB) [kHz]		B) (@+15dB)		dB) (@+20dB)		FCC Limit			
	Peak Positive	Peak Negative	Peak Positive	Peak Negative	Peak Positive	Peak Negative	Peak Positive	Peak Negative	Peak Positive	Peak Negative	
300	0.587	0.570	0.836	0.820	1.294	1.279	2.035	2.018	2.124	2.111	2.500
1000	1.499	1.458	2.371	2.343	2.416	2.388	2.413	2.376	2.438	2.390	2.500
2500	2.331	2.296	2.391	2.370	2.401	2.365	2.390	2.350	2.400	2.355	2.500
3000	1.610	1.565	1.611	1.601	1.645	1.615	1.677	1.663	1.684	1.649	2.500

Carrier Frequency: 467.6375MHz

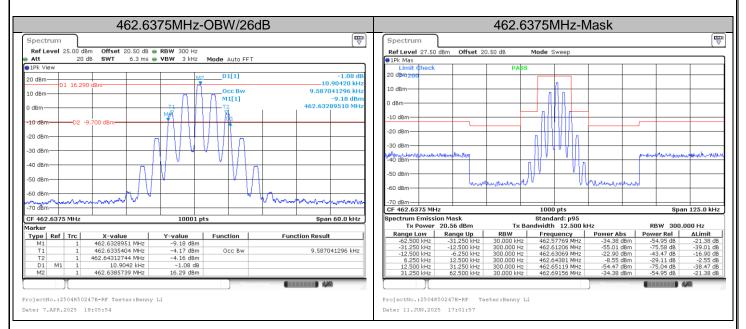

Audio Frequency (Hz)	(@+	ATION 0dB) Hz]	(@+	ATION 5dB) Hz]	(@+	ATION I0dB) Hz]	(@+1	ATION 15dB) Hz]	(@+2	ATION 20dB) Hz]	FCC Limit [kHz]
	Peak Positive	Peak Negative	Peak Positive	Peak Negative	Peak Positive	Peak Negative	Peak Positive	Peak Negative	Peak Positive	Peak Negative	
300	0.574	0.557	0.848	0.823	1.292	1.258	2.026	1.979	2.153	2.132	2.500
1000	1.510	1.474	2.374	2.352	2.433	2.398	2.417	2.377	2.440	2.415	2.500
2500	2.353	2.337	2.380	2.365	2.389	2.371	2.349	2.300	2.404	2.391	2.500
3000	1.606	1.585	1.622	1.590	1.657	1.612	1.681	1.660	1.688	1.661	2.500

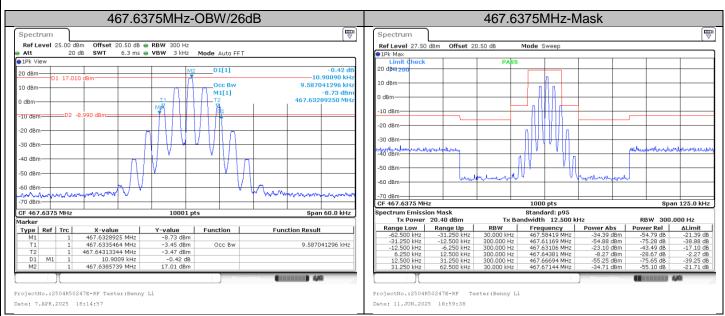
Audio Frequency Response


Carrier Frequency: 462.6375MHz

	10y: 402:007 0HH 12			
Audio Frequency (Hz)	Response Attenuation (dB)			
300	-13.72			
400	-10.12			
500	-7.33			
600	-5.07			
700	-3.74			
800	-2.64			
900	-1.07			
1000	0.00			
1200	1.15			
1400	2.59			
1600	3.76			
1800	4.35			
2000	5.53			
2100	5.71			
2200	5.81			
2300	5.97			
2400	6.60			
2500	7.03			
2600	7.14			
2700	7.10			
2800	7.44			
2900	7.88			
3000	7.75			
3125	7.66			

Carrier Frequency: 467.6375MHz


Audio Frequency (Hz)	Response Attenuation (dB)			
300	-13.31			
400	-11.00			
500	-8.00			
600	-5.48			
700	-3.74			
800	-2.78			
900	-1.01			
1000	0.00			
1200	0.95			
1400	2.81			
1600	3.57			
1800	4.53			
2000	5.69			
2100	5.88			
2200	5.92			
2300	6.15			
2400	6.69			
2500	6.97			
2600	7.20			
2700	7.19			
2800	7.50			
2900	7.99			
3000	7.93			
3125	7.76			



Authorized Bandwidth & Emission Mask

Item	Frequency (MHz)	OBW (kHz)	Limit (kHz)	Result
FM	462.6375	9.587	12.5	Compliance
FM	467.6375	9.587	12.5	Compliance

Report No.: 2504R50247E-RF-00A-M1

FREQUENCY STABILITY

Analog Modulation, Reference Frequency: 462.6375MHz, Limit: ±2.5 ppm								
Test Envir	onment	Frequency Measure with Time Elapsed						
Temperature (°C)	Voltage Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)					
Fre	quency Stability versu	us Input Temperature	е					
50	3.7	462.637647	0.32					
40	3.7	462.637628	0.28					
30	3.7	462.637637	0.30					
20	3.7	462.637644	0.31					
10	3.7	462.637656	0.34					
0	3.7	462.637633	0.29					
-10	3.7	462.637656	0.34					
-20	3.7	462.637644	0.31					
-30	3.7	462.63763	0.28					
F	Frequency Stability versus Input Voltage							
20	3.2	462.637638	0.30					
20	4.3	462.637645	0.31					

Analog Modulation, Reference Frequency: 467.6375MHz, Limit: ±2.5 ppm						
Test Envir	onment	Frequency Measure with Time Elapsed				
Temperature (℃)	Voltage Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)			
Free	quency Stability versu	us Input Temperatur	е			
50	3.7	467.638057	1.19			
40	3.7	467.638059	1.20			
30	3.7	467.638092	1.27			
20	3.7	467.638072	1.22			
10	3.7	467.638069	1.22			
0	3.7	467.638082	1.24			
-10	3.7	467.638076	1.23			
-20	3.7	467.638085	1.25			
-30	3.7	467.638079	1.24			
Frequency Stability versus Input Voltage						
20	3.2	467.638071 1.22				
20	4.3	467.638061	1.20			

Note: the voltage range was declared by manufacturer.