

TEST REPORT

Applicant: Shanghai Xiangcheng Communication Technology Co., Ltd
Address: 6th Floor, Building 10, No.3000, Longdong Avenue, Pudong New District, Shanghai
Equipment Type: P17 Smart PINPAD
Model Name: P17
Brand Name: KOBILE, KOZEN
FCC ID: 2A2UU-P17
Test Standard: 47 CFR Part 15 Subpart C
Sample Arrival Date: Dec. 04, 2023
Test Date: Mar. 05, 2024 - Jul. 02, 2024
Date of Issue: Jul. 17, 2024

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Xin Liao **Checked by:** Liu Zhenxiang **Approved by:** Liao Jianming
(Technical Director)

Revision History

Version	Issue Date	Revisions
<u>Rev. 01</u>	<u>Jul. 17, 2024</u>	<u>Initial Issue</u>

TABLE OF CONTENTS

1 GENERAL INFORMATION	4
1.1 Test Laboratory	4
1.2 Test Location.....	4
2 PRODUCT INFORMATION	5
2.1 Applicant Information.....	5
2.2 Manufacturer Information	5
2.3 General Description for Equipment under Test (EUT).....	5
2.4 Technical Information	6
3 SUMMARY OF TEST RESULTS	7
3.1 Test Standards.....	7
3.2 Verdict.....	7
3.3 Test Uncertainty	7
4 GENERAL TEST CONFIGURATIONS.....	8
4.1 Test Environments	8
4.2 Test Setups	8
5 TEST ITEMS.....	10
5.1 Antenna Requirements.....	10
5.2 Emission Bandwidth	11
5.3 Field Strength of Fundamental Emissions and Radiated Emissions	13
5.4 Frequency Tolerance.....	15
5.5 Conducted Emission	16
ANNEX A TEST RESULT	17
A.1 Emission Bandwidth.....	17
A.2 Field Strength of Fundamental Emissions	19

A.3 Radiated Emissions	21
A.4 Frequency Stability	25
A.5 Conducted Emissions	27
ANNEX B TEST SETUP PHOTOS	30
ANNEX C EUT EXTERNAL PHOTOS	30
ANNEX D EUT INTERNAL PHOTOS	30

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.
Location	<input checked="" type="checkbox"/> Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China <input type="checkbox"/> 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, No. 1008, Songbai Road, Yangguang Community, Xili Sub-district, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Shanghai Xiangcheng Communication Technology Co., Ltd
Address	6th Floor, Building 10, No.3000, Longdong Avenue, Pudong New District, Shanghai

2.2 Manufacturer Information

Manufacturer	Shanghai Xiangcheng Communication Technology Co., Ltd
Address	6th Floor, Building 10, No.3000, Longdong Avenue, Pudong New District, Shanghai

2.3 General Description for Equipment under Test (EUT)

EUT Name	P17 Smart PINPAD
Model Name Under Test	P17
Series Model Name	N/A
Description of Model name differentiation	N/A
Hardware Version	P1781_MAIN_PCB_V1.0E
Software Version	P1782_Kozen_
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

Note 1: All tests were performed on model P17(FPC), and the differential prototype was not tested because it did not affect the NFC function.

Note 2:

The product keypad designed with two different Hardware. Please find bellow detail:

1. Relative to the front shell, the buttons of keypad support two different assembly methods (outer or inner), and the size of the buttons are different.
2. Keypad designed supporting mesh FPC or not.
3. One design includes two additional dome anti-tamper points between the mainboard and the front case, the other does not. And the keypad PCB Layout with minor different.
4. The DOME location varies slightly.
5. Button backlighting designed with front-facing illumination or side illumination.

Remarks:

Except for the above, there are no other difference between two types of products, including software, RF wireless performance metrics, the motherboard schematic layout construction, battery and all.

2.4 Technical Information

Network and Wireless connectivity	Bluetooth (BR+EDR+BLE) 2.4G WIFI 802.11b, 802.11g, 802.11n(HT20/40) NFC
-----------------------------------	---

The requirement for the following technical information of the EUT was tested in this report:

Modulation Type	ASK
Product Type	<input type="checkbox"/> Mobile <input checked="" type="checkbox"/> Portable <input type="checkbox"/> Fix Location
Frequency Range	13.56 MHz
Receiver Categorization	3
Number of channel	1
Tested Channel	1
Antenna Type	FPC Antenna

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Miscellaneous Wireless Communications Services
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.2 Verdict

No.	Description	FCC Part No.	Verdict
1	Antenna Requirement	15.203	Pass <small>Note</small>
2	Emissions Bandwidth	15.215	Pass
3	Field Strength of Fundamental Emissions	15.225(a)	Pass
4	Radiated Emissions	15.225(d) / 15.209	Pass
5	Frequency Stability	15.225(e)	Pass
6	Conducted Emission	15.207	Pass

Note: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203

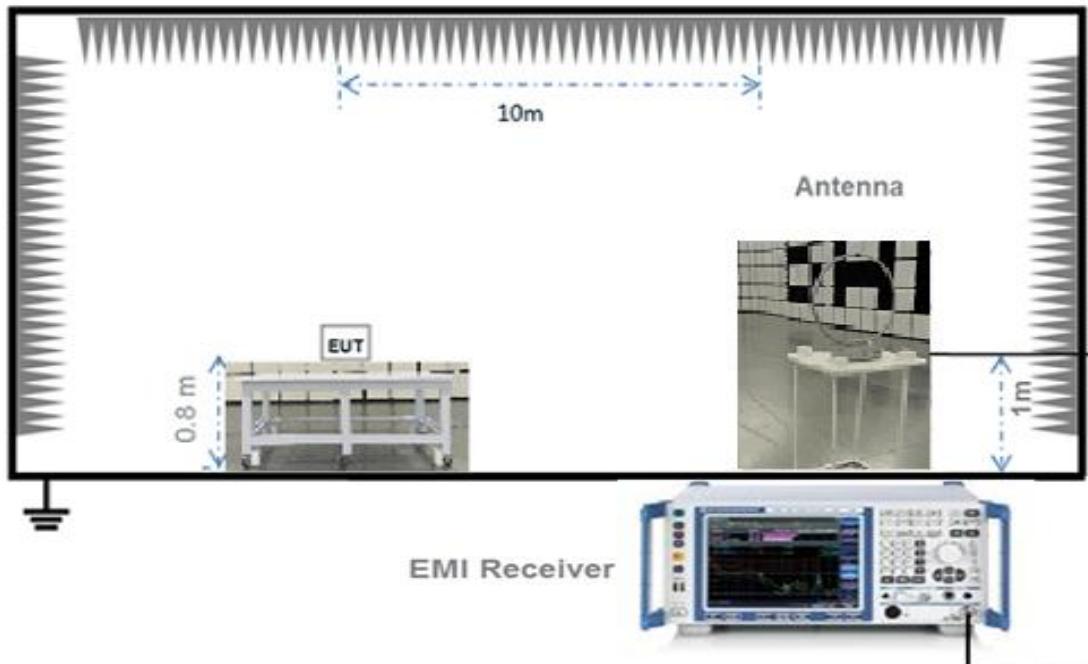
3.3 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions (9 kHz-30 MHz)	3.2 dB
Radiated emissions (9 kHz-30 MHz)	4.3 dB
Radiated emissions (30 MHz-1 GHz)-10m	4.3 dB
Radiated emissions (30 MHz-1 GHz)-3m	4.4 dB
Radiated emissions (1 GHz-18 GHz)-3m	5.0 dB

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

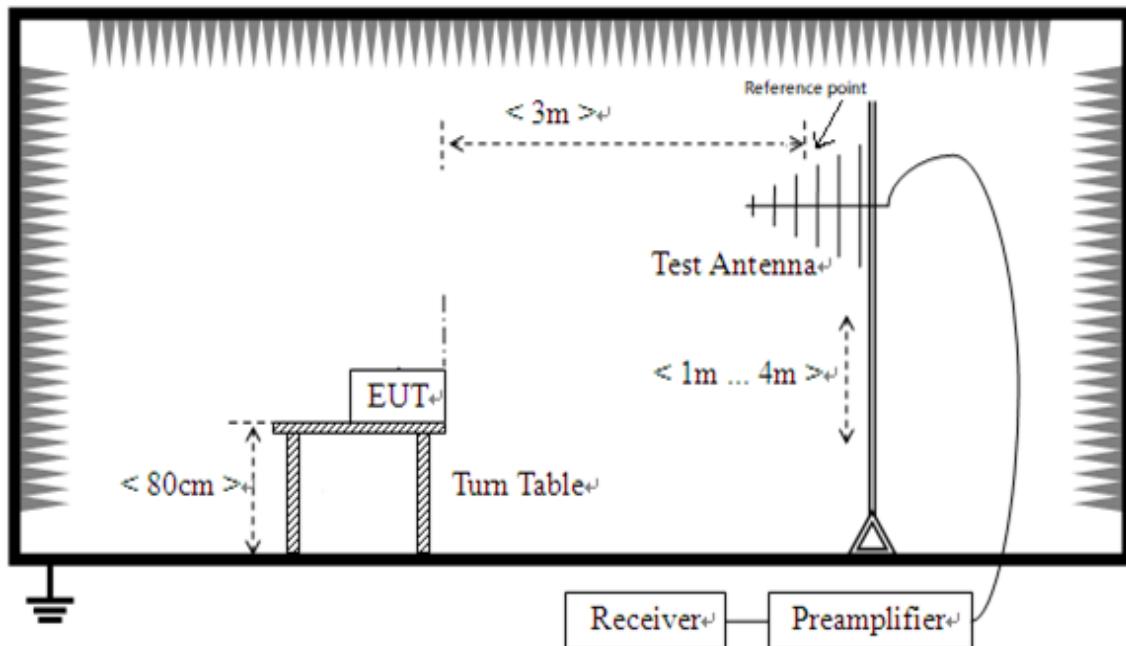

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	30% to 60%	
Atmospheric Pressure	100 kPa to 102 kPa	
Temperature	NT (Normal Temperature)	+22°C to +25°C
Working Voltage of the EUT	NV (Normal Voltage)	5 V

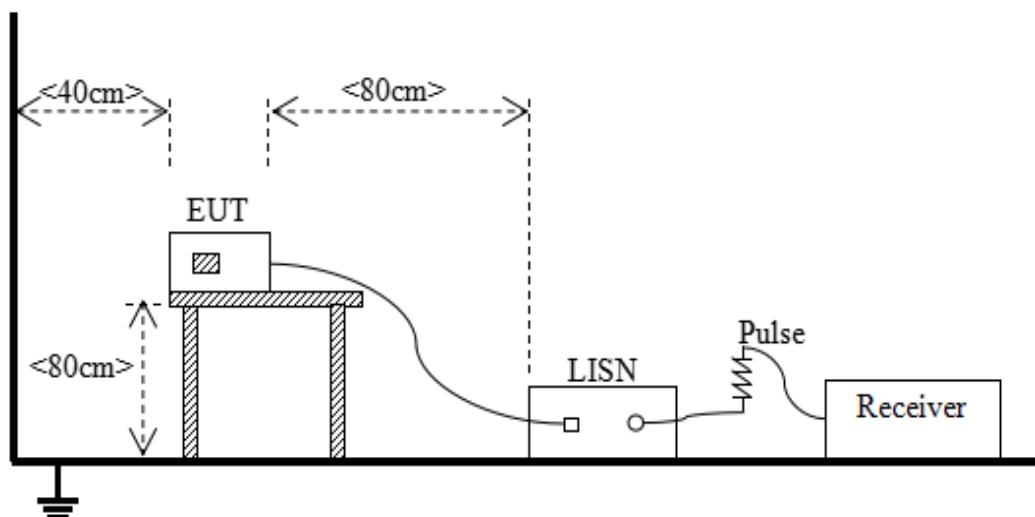
4.2 Test Setups

Test Setup 1

Radiated Test (Below 30 MHz)



(Diagram 1)


3m

Test Setup 2

Radiated Test (30 MHz-1 GHz)

(Diagram 2)

Test Setup 3**AC Power Supply Port Test**

(Diagram 3)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	An embedded-in antenna design is used.

Reference Documents	Item
Photo	Please refer EUT internal photos.

5.2 Emission Bandwidth

5.2.1 Definition

15.215(c);

Intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to “Sample”. However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or “Max Hold”) may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

5.2.2 Test Setup

See section 4.2(Diagram 1) for test setup for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

The 20dB bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT while the EUT is operating in transmission mode.

Use the following spectrum analyzer settings:

Span = between 2 to 5 times the OBW

RBW = 1% to 5% the OBW

VBW \geq 3RBW

Sweep = auto

Detector function = peak

Trace = max hold

The 99% emission bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT while the EUT is operating in transmission mode.

Use the following spectrum analyzer settings:

Span = between 1.5 to 5 times the OBW

RBW = 1% to 5% OBW

VBW \geq 3RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.2.4 Test Result and Test Equipment List

Please refer to ANNEX A.1

5.3 Field Strength of Fundamental Emissions and Radiated Emissions

5.3.1 Limit

FCC §15.225(a), (b), (c)

According to FCC section 15.225, for <30 MHz, Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set 10 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the center of the loop. The measuring bandwidth was set to 10 kHz. (Note: During testing the receive antenna was rotated about its axis to maximize the emission from the EUT)

There was no detected Restricted bands and Radiated spurious emission below 30MHz. The 30m limit was converted to 3m Limit using square factor(x) as it was found by measurements as follows; 3 m Limit(dB μ V/m) = 20log(X)+40log(30/3)= 20log(15848)+40log(30/3) = 124dB μ V

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency range (MHz)	Field Strength@30m		Field Strength@10m	Field Strength@3m
	μ V/m	dB μ V/m	dB μ V/m	dB μ V/m
Below 13.110	30	29.5	48.58	69.5
13.110 ~ 13.410	106	40.5	59.58	80.5
13.410 ~ 13.553	334	50.5	69.58	90.5
13.553 ~13.567	15848	84	103.08	124
13.567 ~ 13.710	334	50.5	69.58	90.5
13.710 ~14.010	106	40.5	59.58	80.5
Above 14.010	30	29.5	48.58	69.5

NOTE:

1. Field Strength (dB μ V/m) = 20*log[Field Strength (μ V/m)].
2. In the emission tables above, the tighter limit applies at the band edges.

FCC §15.225(d)

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μ V/m)	Measurement distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

1. For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
2. For above 1000 MHz, limit field strength of harmonics: 54dB μ V/m@3m (AV) and 74dB μ V/m@3m (PK).

5.3.2 Test Setup

See section 4.2(Diagram 1 and Diagram 2) for test setup for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented. The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for 30 MHz $< f < 1$ GHz, 10 kHz for 150 kHz $< f < 30$ MHz, 300 Hz for $f < 150$ kHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.3.4 Test Result and Test Equipment List

Please refer to ANNEX A.2 and A.3

NOTE:

1. Results (dB μ V/m) = Reading (dB μ V) + Factor (dB/m)

The reading level is calculated by software which is not shown in the sheet

2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) – Amplifier Gain (dB)

3. Margin = Limit – Results

5.4 Frequency Tolerance

5.4.1 Limit

FCC §15.225(e)

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to $+50$ degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4.2 Test Setup

See section 4.2(Diagram 1) for test setup for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

1. The test is performed in a Temperature Chamber.
2. The EUT is configured as MS + DC Power Supply.

5.4.4 Test Result and Test Equipment List

Please refer to ANNEX A.4.

5.5 Conducted Emission

5.5.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
0.50 - 30	60	50

5.5.2 Test Setup

See section 4.2(Diagram 3) for test setup for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.5.4 Test Result and Test Equipment List

Please refer to ANNEX A.5.

NOTE:

1. Results (dB μ V) = Reading (dB μ V) + Factor (dB)

The reading level is calculated by software which is not shown in the sheet

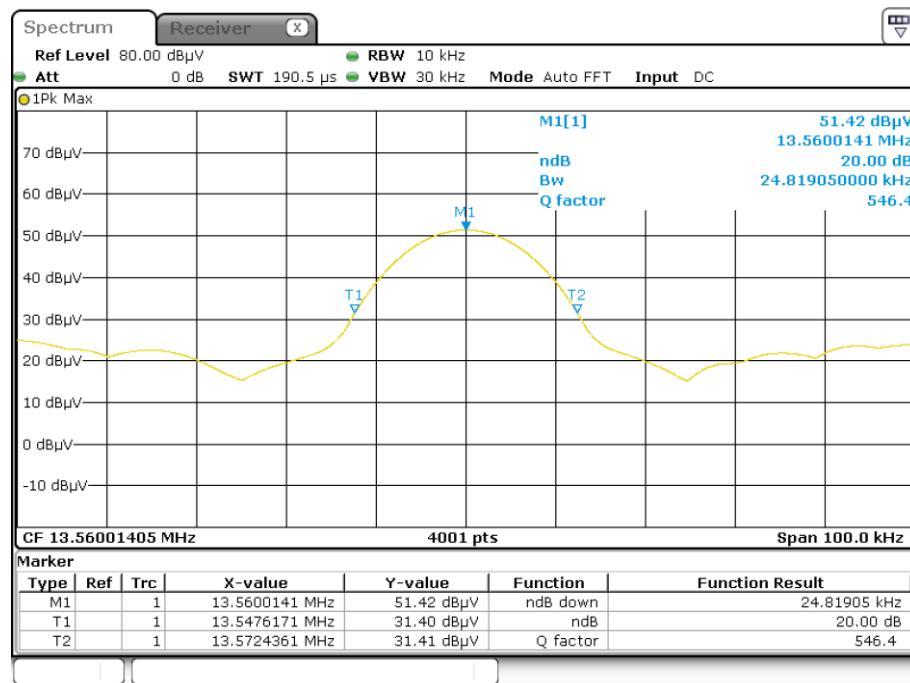
2. Factor = Insertion loss + Cable loss

3. Margin = Limit – Results

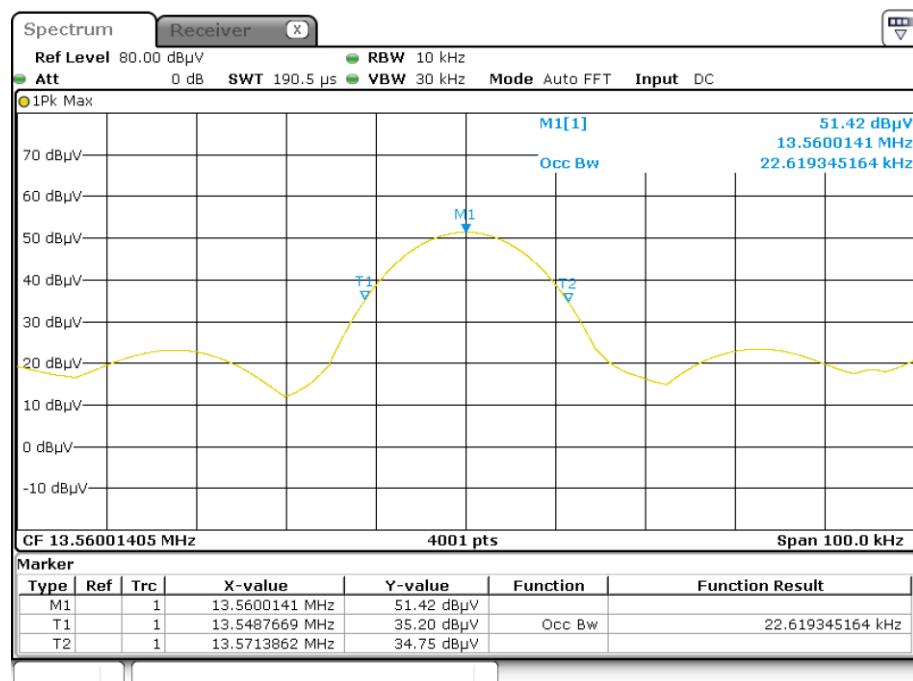
ANNEX A TEST RESULT

A.1 Emission Bandwidth

Note: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.


Sample No.	S02	Temperature	22.4 °C
Humidity	50%RH	Pressure	101kPa
Test Engineer	Xi Zifeng	Test Date	2024.03.11

Test Data


Frequency (MHz)	Emission Bandwidth (20dB down) (kHz)	Occupied Bandwidth (99%) (kHz)
13.56	24.819	22.619

Test Plots

Emission Bandwidth

Note: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW

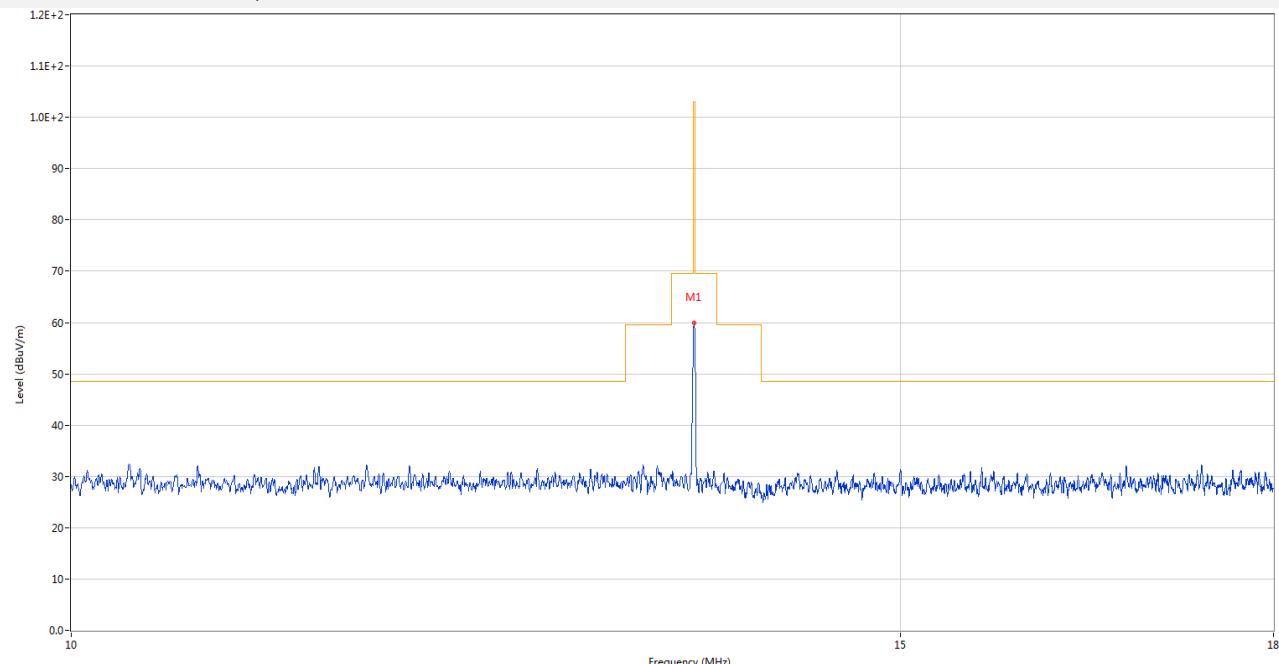
99% Occupied Bandwidth

Note: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2023.09.05	2024.09.04	<input checked="" type="checkbox"/>
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2021.04.16	2024.04.15	<input checked="" type="checkbox"/>
Anechoic Chamber (10M)	EMC TECHNOLOGY LTD	20.1m*11.6 m*7.35m	130	2021.08.15	2024.08.14	<input checked="" type="checkbox"/>

A.2 Field Strength of Fundamental Emissions

Note: Field Strength of Fundamental Emissions tests were performed in X, Y, Z axis direction of EUT. And only the worst axis test condition was recorded in this test report.


Sample No.	S02	Temperature	22.4 °C
Humidity	50%RH	Pressure	101kPa
Test Engineer	Xi Zifeng	Test Date	2024.03.11

Test Data

Field Strength of Fundamental Emissions Value					
Frequency (MHz)	Detector	Field Strength (dB μ V/m)	Limit @10m (dB μ V/m)	EUT	Margin (dB)
13.560	PEAK	59.93	103.1	Y axis	43.17

Test Plot

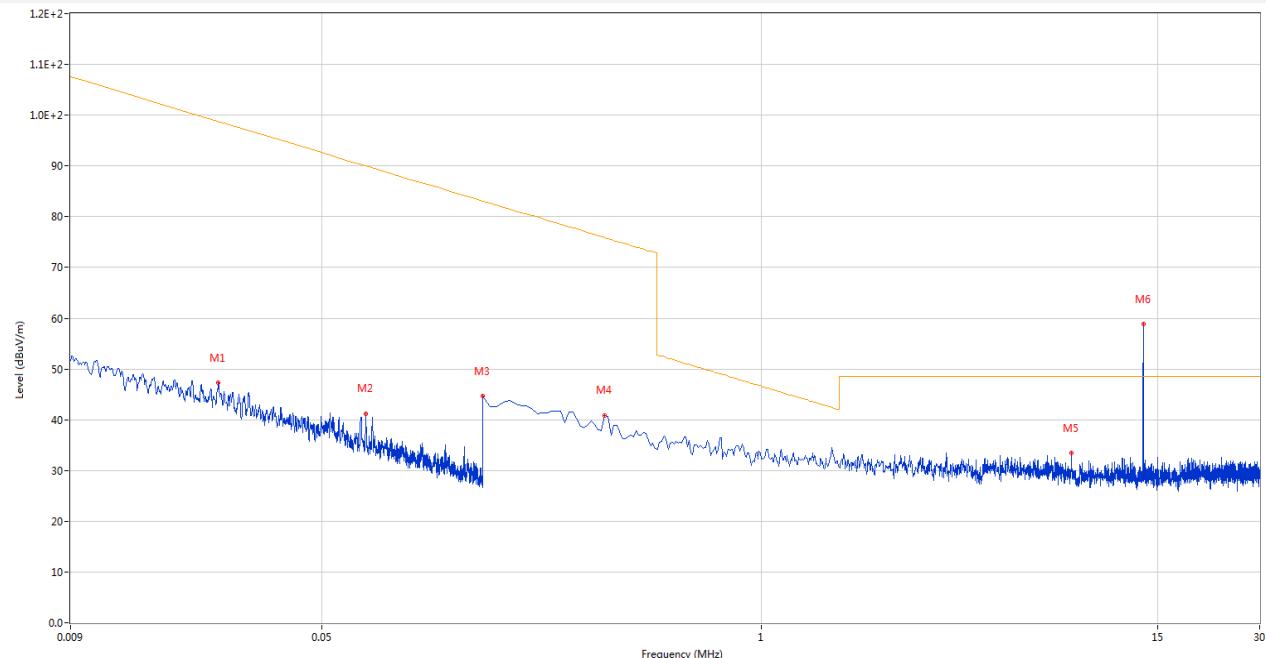
Test Antenna-LOOP, EUT Y axis

No.	Frequency (MHz)	Results (dB μ V/m)	Factor (dB)	Limit (dB μ V/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	13.560	59.93	20.86	103.1	43.17	Peak	279.00	100	Vertical	Pass

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2023.09.05	2024.09.04	<input checked="" type="checkbox"/>
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2021.04.16	2024.04.15	<input checked="" type="checkbox"/>
Anechoic Chamber (10M)	EMC TECHNOLOGY LTD	20.1m*11.6 m*7.35m	130	2021.08.15	2024.08.14	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/	/	Use
Test Software	BALUN	BL410-E	V22.930			<input checked="" type="checkbox"/>

A.3 Radiated Emissions

Note 1: This frequency which near 13.560 MHz with circle should be ignored because they are NFC carrier frequency.


Note 2: All Radiated Emissions tests were performed in X, Y, Z axis direction of EUT. And only the worst axis test condition was recorded in this test report.

(9 kHz ~ 30 MHz)(at 10m chamber)

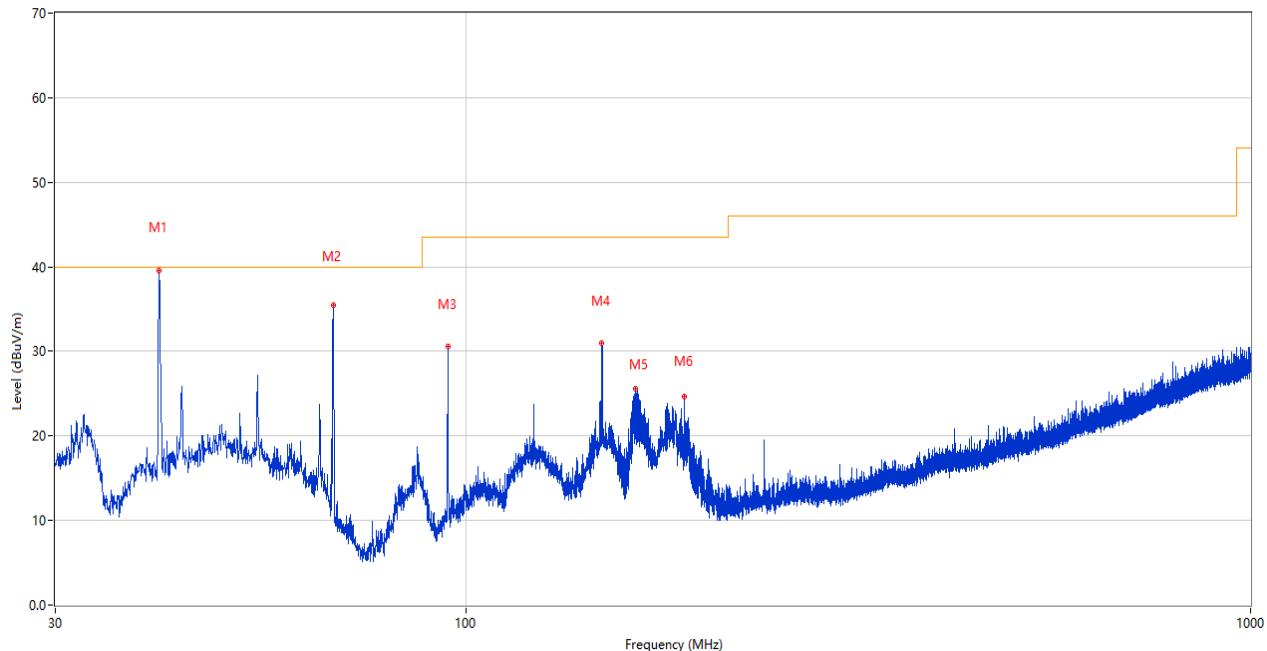
Sample No.	S02	Temperature	22.4 °C
Humidity	50%RH	Pressure	101kPa
Test Engineer	Xi Zifeng	Test Date	2024.03.11

The Data and Plots

Below 30 MHz, Test Antenna LOOP, EUT Y axis

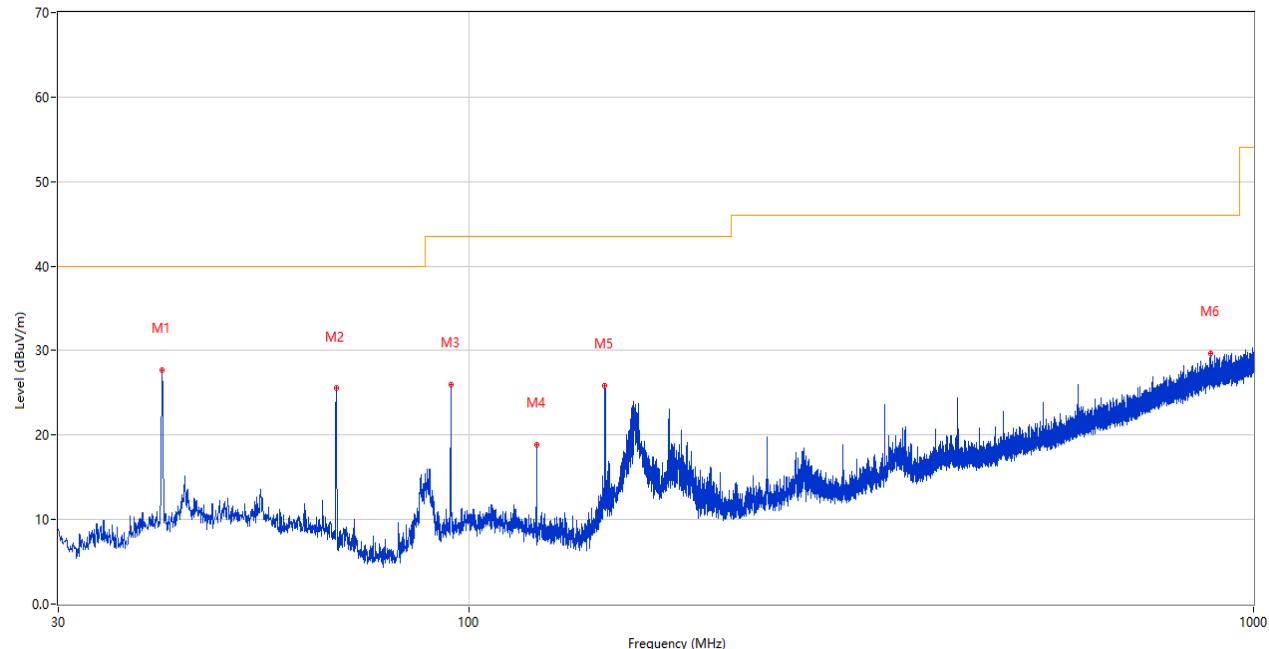
No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	0.025	47.22	20.24	98.8	51.58	Peak	247.00	100	Vertical	Pass
2	0.067	41.17	20.18	90.0	48.83	Peak	0.00	100	Vertical	Pass
3	0.150	28.21	20.15	83.1	54.89	Peak	170.00	100	Vertical	Pass
4	0.344	40.81	20.16	75.9	35.09	Peak	177.00	100	Vertical	Pass
5	8.321	33.44	20.81	48.5	15.06	Peak	74.00	100	Vertical	Pass
6	13.560	58.78	20.86	48.5	-10.28	Peak	80.00	100	Vertical	N/A

Note 1: This frequency which near 13.560 MHz with circle should be ignored because they are NFC.


Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
Frequency Below 1 GHz						
EMI Receiver	ROHDE&SC HWARZ	ESRP	101036	2023.09.05	2024.09.04	<input checked="" type="checkbox"/>
Test Antenna-Loop	SCHWARZB ECK	FMZB 1519	1519-037	2021.04.16	2024.04.15	<input checked="" type="checkbox"/>
Anechoic Chamber (10M)	EMC TECHNOLOGY LTD	20.1m*11.6m*7.35m	130	2021.08.15	2024.08.14	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/		Use
Test Software	BALUN	BL410-E	V22.930	/		<input checked="" type="checkbox"/>

(30 MHz ~ 10th Harmonic)

Sample No.	S02	Temperature	21.7 °C
Humidity	43%RH	Pressure	101kPa
Test Engineer	He Shichang	Test Date	2024.03.06


The Data and Plots

30 MHz to 1 GHz, Test Antenna Vertical

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	40.718	39.48	-26.49	40.0	0.52	Peak	142.00	100	Vertical	Pass
2	67.830	35.46	-28.45	40.0	4.54	Peak	14.00	100	Vertical	Pass
3	94.941	30.61	-27.58	43.5	12.89	Peak	21.00	100	Vertical	Pass
4	149.165	31.01	-30.05	43.5	12.49	Peak	304.00	100	Vertical	Pass
5	164.539	25.56	-29.34	43.5	17.94	Peak	9.00	100	Vertical	Pass
6	189.856	24.70	-27.48	43.5	18.80	Peak	304.00	100	Vertical	Pass

30 MHz to 1 GHz, Test Antenna Horizontal

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	40.670	27.74	-26.51	40.0	12.26	Peak	299.00	200	Horizontal	Pass
2	67.830	25.58	-28.45	40.0	14.42	Peak	321.00	200	Horizontal	Pass
3	94.941	25.93	-27.58	43.5	17.57	Peak	261.00	200	Horizontal	Pass
4	122.053	18.82	-28.82	43.5	24.68	Peak	193.00	200	Horizontal	Pass
5	149.165	25.81	-30.05	43.5	17.69	Peak	28.00	200	Horizontal	Pass
6	881.708	29.61	-10.29	46.0	16.39	Peak	1.00	100	Horizontal	Pass

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
Frequency Below 1 GHz						
EMI Receiver	Keysight	N9038A	MY55330120	2023.09.05	2024.09.04	<input checked="" type="checkbox"/>
Amplifier (30-1GHz)	COM-MV	ZT30-1000M	B2017119081	2023.12.05	2024.12.04	<input checked="" type="checkbox"/>
Test Antenna-Bi-Log	SCHWARZB ECK	VULB 9168	9168-00867	2022.04.12	2025.04.11	<input checked="" type="checkbox"/>
Anechoic Chamber (#2)	YiHeng	9m*6m*6m	142	2021.08.19	2024.08.18	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/		Use
Test Software	BALUN	BL410-E	V22.930	/		<input checked="" type="checkbox"/>

A.4 Frequency Stability

Note 1: Because the 85%(4.25V) and 115% (5.75V) of the rated supply voltage value exceeds the cut-off voltage upper(5.25V) and lower(4.9V) limit of the manufacturer, the cut-off voltage of EUT is test here.

Note 2: The operating temperature range of the EUT is 0°C to 35°C.

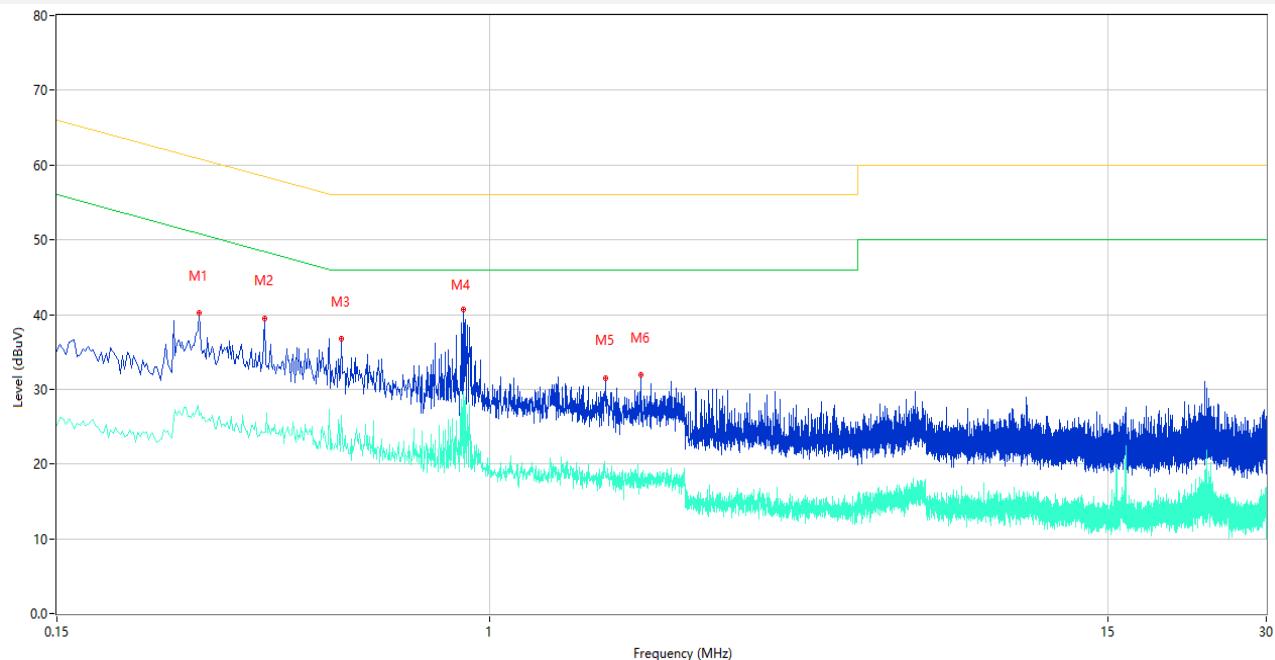
Sample No.	S02	Temperature	22.4 °C
Humidity	50%RH	Pressure	101kPa
Test Engineer	Xi Zifeng	Test Date	2024.03.11

OPERATING FREQUENCY:	13560000 Hz
REFERENCE VOLTAGE:	5 V
DEVIATION LIMIT:	±0.01%

Test Data

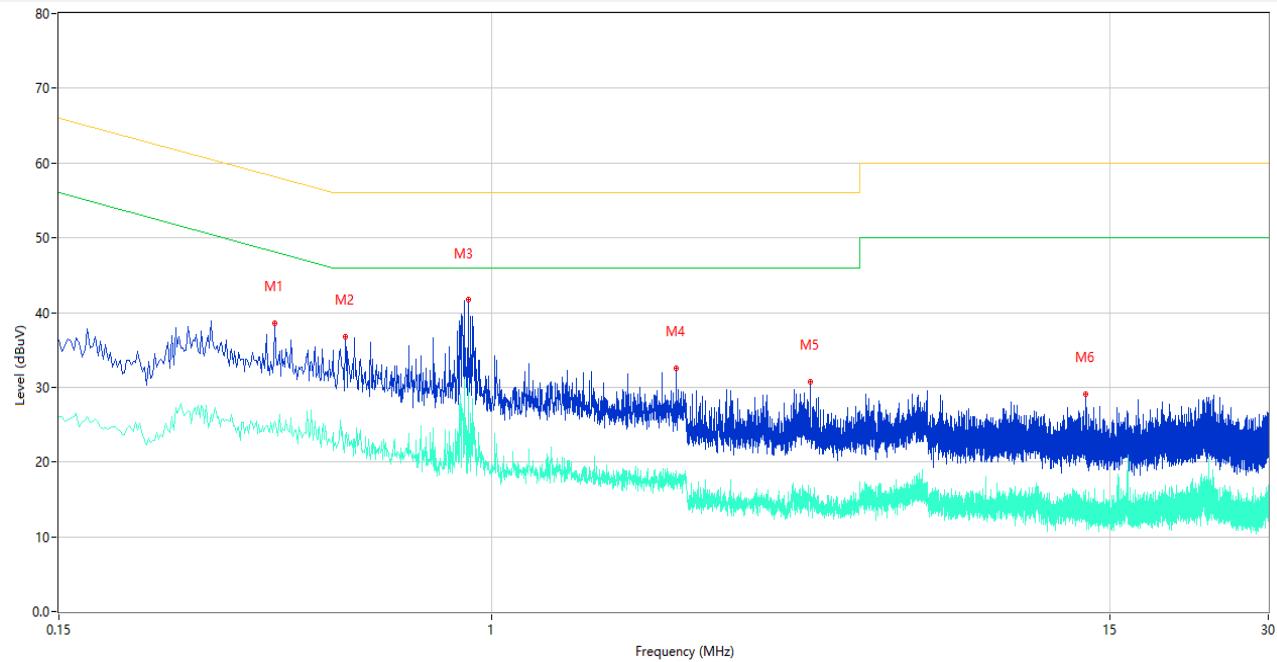
VOLTAGE (%)	Test Conditions		Frequency (Hz)	Deviation (%)	Verdict
	Power (VDC)	Temperature (°C)			
100	5	-20	13560050	0.000369	Pass
100		-10	13560050	0.000369	Pass
100		0	13560050	0.000369	Pass
100		+10	13560025	0.000184	Pass
100		+20	13560025	0.000184	Pass
100		+25	13560025	0.000184	Pass
100		+30	13560025	0.000184	Pass
100		+40	13560075	0.000553	Pass
100		+50	13560075	0.000553	Pass
MAX(Cut-off Point, 85)	4.9	+20	13560075	0.000553	Pass
MIN(Cut-off Point, 115)	5.25	+20	13560075	0.000553	Pass

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SC HWARZ	ESRP	101036	2023.09.05	2024.09.04	<input checked="" type="checkbox"/>
Test Antenna-Loop	SCHWARZB ECK	FMZB 1519	1519-037	2021.04.16	2024.04.15	<input checked="" type="checkbox"/>
Temperature Chamber	AHK	SP20	1412	2023.09.11	2024.09.10	<input checked="" type="checkbox"/>
DC Power Supply	ROHDE&SC HWARZ	HMP2020	018141664	2023.05.15	2024.05.14	<input checked="" type="checkbox"/>
Anechoic Chamber (10M)	EMC TECHNOLOGY LTD	20.1m*11.6m*7.35m	130	2021.08.15	2024.08.14	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/		Use
Test Software	/	/	/	/		<input checked="" type="checkbox"/>


A.5 Conducted Emissions

Note: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

Sample No.	S02	Temperature	21.7°C
Humidity	43%RH	Pressure	101kPa
Test Engineer	Yang Yang	Test Date	2024.03.07


Test Data and Plots

PHASE L

No.	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector	Line	Verdict
1	0.280	40.24	9.43	60.82	20.58	Peak	L	Pass
1**	0.280	26.48	9.43	50.82	24.34	AV	L	Pass
2	0.372	39.53	9.63	58.46	18.93	Peak	L	Pass
2**	0.372	24.30	9.63	48.46	24.16	AV	L	Pass
3	0.522	36.75	9.74	56.00	19.25	Peak	L	Pass
3**	0.522	26.46	9.74	46.00	19.54	AV	L	Pass
4	0.892	40.71	9.41	56.00	15.29	Peak	L	Pass
4**	0.892	29.68	9.41	46.00	16.32	AV	L	Pass
5	1.662	31.56	9.85	56.00	24.44	Peak	L	Pass
5**	1.662	18.24	9.85	46.00	27.76	AV	L	Pass
6	1.934	31.94	9.45	56.00	24.06	Peak	L	Pass
6**	1.934	17.41	9.45	46.00	28.59	AV	L	Pass

PHASE N

No.	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector	Line	Verdict
1	0.386	38.62	9.82	58.15	19.53	Peak	N	Pass
1**	0.386	25.41	9.82	48.15	22.74	AV	N	Pass
2	0.526	36.78	9.75	56.00	19.22	Peak	N	Pass
2**	0.526	23.34	9.75	46.00	22.66	AV	N	Pass
3	0.902	41.72	9.38	56.00	14.28	Peak	N	Pass
3**	0.902	29.93	9.38	46.00	16.07	AV	N	Pass
4	2.242	32.51	9.65	56.00	23.49	Peak	N	Pass
4**	2.242	18.84	9.65	46.00	27.16	AV	N	Pass
5	4.034	30.70	9.52	56.00	25.30	Peak	N	Pass
5**	4.034	14.03	9.52	46.00	31.97	AV	N	Pass
6	13.500	29.09	7.65	60.00	30.91	Peak	N	Pass
6**	13.500	12.91	7.65	50.00	37.09	AV	N	Pass

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	KEYSIGHT	N9010B	MY57110309	2023.09.05	2024.09.04	<input checked="" type="checkbox"/>
LISN	SCHWARZB ECK	NSLK 8127	8127-687	2023.05.16	2024.05.15	<input checked="" type="checkbox"/>
ISN	TESEQ	ISN T800	34449	2023.11.10	2024.11.09	<input type="checkbox"/>
ISN	TESEQ	ISN T8-Cat6	53561	2023.04.23	2024.04.22	<input type="checkbox"/>
Shielded Room	YiHeng Electronic Co., Ltd	3.5m*3.1m*2. 8m	112	2022.02.19	2025.02.18	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/		Use
Test Software	BALUN	BL410-E	V22.930	/		<input checked="" type="checkbox"/>

ANNEX B TEST SETUP PHOTOS

Please refer the document “BL-SZ23C0168-AE-2.PDF”.

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document “BL-SZ23C0168-AW.PDF”.

ANNEX D EUT INTERNAL PHOTOS

Please refer the document “BL-SZ23C0168-AI.PDF”.

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--