CKC3-1-W Datasheet

Copyright©2024

Version Description

DATE	Description of changes	Author.
2025/2/6	V1.0 released	chen

About this manual

This manual describes the CKC3-1-W product parameters and contains the following sections.

Chapter	caption	content
Chapter 1	Product Introduction	Overview of module features and functional applications
Chapter 2	Function Description	Description of module functions and specific explanations
Chapter 3	Electrical Characteristics	Introduction to basic electrical performance parameters of the module
Chapter 4	Module Types and Pin Definitions	Provision of module types, pin definitions, and functional descriptions
Chapter 5	PCB Design	Guidelines for module layout and PCB layout considerations
Chapter 6	Package Information	Provision of module package dimension drawings
Chapter 7	Certification description	Certification description

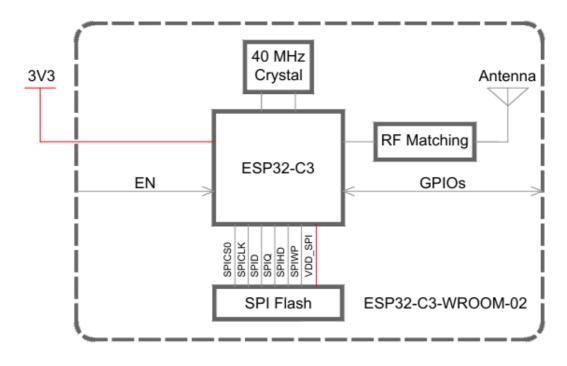
1. Product introduction

CKC3-1-W is a cost-effective, low-power, secure, and stable IoT chip module from CoolKit Home, designed for a range of applications. Based on the RISC-V architecture, it combines Wi-Fi and low-power Bluetooth (LE) wireless communication capabilities, making it ideal for smart home devices, wearable technology, industrial automation, and more.

The CKC3-1-W module features an on-board PCB antenna and is equipped with up to 16 MB of external SPI flash memory.

There are four variants of the CKC3-1-W, each with different flash memory configurations and operating conditions. The comparison of different models is shown in the following table:

Ordering Code	flash	Ambient temperature
CKC3-1-W-N4	4 MB	0-85℃
CKC3-1-W-N8	8 MB	0-85℃
CKC3-1-W-N16	16 MB	0-85℃
CKC3-1-W-H4	4 MB	0-105℃


Note: The recommended operating ambient temperature range for the module is 40° C to 85° C.

Product Features

- Supports IEEE 802.11 b/g/n protocols
- Supports 20MHz and 40MHz bandwidth in the 2.4GHz frequency band
- Supports Station (STA), Access Point (AP), and STA+AP modes
- Supports Low Energy Bluetooth (Bluetooth LE): Bluetooth 5, Bluetooth mesh

2. Functional description

2.1 module functional block diagram

CKC3-W模块框图

3. Electrical Characteristics

3.1 Rated Parameters

Conditions: VDD=3.3V±10%, GND=0V; tested at 25°C room temperature.

Parameter	instructions
modules name	CKC3-1-W
hardware interface	PWM,IIC,GPIO,UART
operating voltage	3.0V~3.6V
operating temperature	-20°C~85°C
Storage environment	Temperature: -10°C~75°C, relative humidity: 20%RH~80%RH
Wireless	wifi :支持IEEE802.11b/g/n/ Bluetooth :支持Bluetooth5.0、Bluetoothmesh
Wireless Security Protocol	GCMP, CCMP, TKIP, WAPI, WEP, BIP, WPA2-PSK/WPA2-Enterprise, and WPA3-PSK/WPA3-Enterprise
Security	AES-128/256 (FIPS PUB 197),HMAC,RSA,SHA(FIPS PUB 180-4),Digital signature

3.3 Current Consumption in Other Modes

3.3.1 Current Consumption in Modem-sleep Mode

	. CPU		Typ (mA)	
Mode	Frequency(MHz)	Description	All Peripherals Clocks Disabled	All Peripherals Clocks Enabled
Modem- sleep	160	CPU is running	23	28
		CPU is idle	16	21
	80	CPU is running	19	22
		CPU is idle	13	18

注意:

- 1. In practice, the current consumption might be different depending on which peripherals are enabled.
- 2. In Modem-sleep mode, Wi-Fi is clock gated.
- 3. In Modem-sleep mode, the consumption might be higher when accessing flash. If the flash rate is 80Mbit/s, the power consumption of flash is 10mA in SPI 2 line mode.

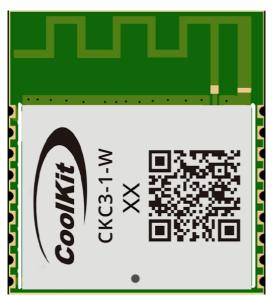
3.3.2 Current Consumptionin Low-Power Modes

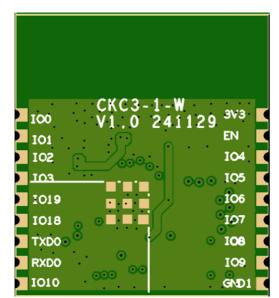
Mode	Description	Тур(µА)
Light- sleep	CPU and wireless communication modules are powered down,peripheral clocks are disabled,and all GPIOs are high-impedance	130
Deep- sleep	RTC timer and LP memory are powered on	5
Power off	CHIP_PU is set to low level,the chip is powered off	1

3.4 Wi-Fi RF Specifications

Conditions: VDD=3.3V±10%, GND=0V; tested at 25°C room temperature.

Descriptions	Performance Parameters	
wireless standard	IEEE 802.11 b/g/n	
Center frequency of operating channel	2412 ~ 2484 MHz	


3.5 Bluetooth RF Specifications

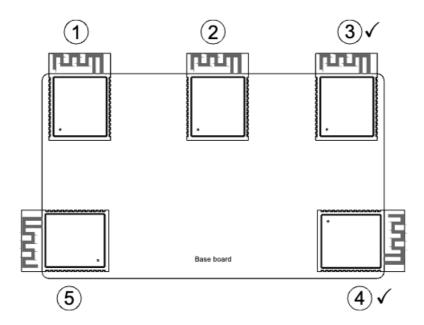

Conditions: VDD=3.3V±10%, GND=0V; tested at 25°C room temperature.

Descriptions	Performance Parameters	
wireless standard	Bluetooth5、Bluetoothmesh	
Center frequency of operating channel	2402 ~ 2480 MHz	

4. Pin Definitions

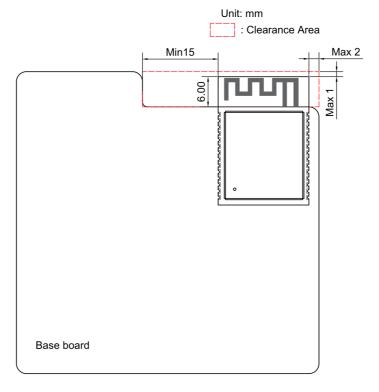
4.1 Pin Layout

CKC3-1-W Module Schematic


4.2 Pin Description

名称	序号	类型	功能
3V3	1	Р	Power supply
EN	2	I	High:on,enablesthechip. Low:off,thechippowersoff. Note:Donot leavetheENpinfloating.
104	3	I/O/T	GPIO4, ADC1_CH4, FSPIHD, MTMS
105	4	I/O/T	GPIO5, ADC2_CH0, FSPIWP, MTDI
1061	5	I/O/T	GPIO6, FSPICLK, MTCK
107	6	I/O/T	GPIO7, FSPID, MTDO
108	7	I/O/T	GPIO8
109	8	I/O/T	GPIO9
GND	9	Р	接地
IO10	10	I/O/T	GPIO10, FSPICS0
RXD	11	I/O/T	GPIO20, U0RXD
TXD	12	I/O/T	GPIO21, U0TXD
IO18	13	I/O/T	GPIO18, USB_D-
IO19	14	I/O/T	GPIO19, USB_D+
103	15	I/O/T	GPIO3, ADC1_CH3
102	16	I/O/T	GPIO2, ADC1_CH2, FSPIQ
IO1	17	I/O/T	GPIO1, ADC1_CH1, XTAL_32K_N
100	18	I/O/T	GPIO0, ADC1_CH0, XTAL_32K_P

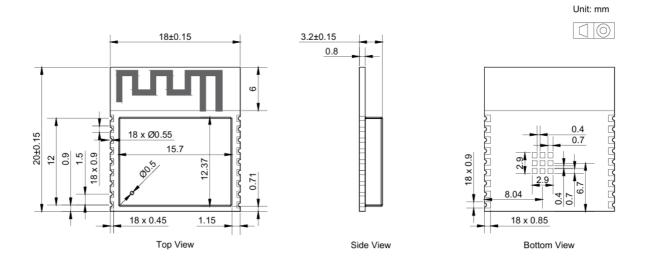
5. PCB Layout Recommendations


PCB layout and module layout considerations:

- 1. Pay attention to the module placement in PCB layout, as far as possible away from interference sources: magnetic components (such as motors, inductors, transformers, etc.), high-frequency signal devices (such as crystal, high-frequency clock signals, etc.)
- 2. Module PCB antenna area and expand 15 mm area to be empty (strictly prohibit the laying of copper, wire, placed components), such as the use of modules for on-board (on-board) design, need to pay attention to the layout of the module in the base plate, should minimise the impact of the base plate on the module PCB antenna performance. It is recommended to extend the antenna area of the module to the edge of the board, and place the feedpoints close to the edge of the bottom board. In the module placement diagram below, ✓ represents the highly recommended placement, other positions are not recommended.

CKC3-1-W Schematic of the position of the series module (antenna feed point on the right) on the base plate

If the antenna can not extend the edge of the board, please ensure that the PCB antenna to a large enough clearance area (prohibited laying copper, wire, placement of components), the clearance area is recommended to at least 15 mm. PCB antenna below the area of the bottom plate, please cut off, in order to minimise the impact of the bottom plate plate on the PCB antenna. The feed point is still placed as close as possible to the edge of the board. As an example, a module with the feedpoint on the right side is drawn with the recommended headroom area.

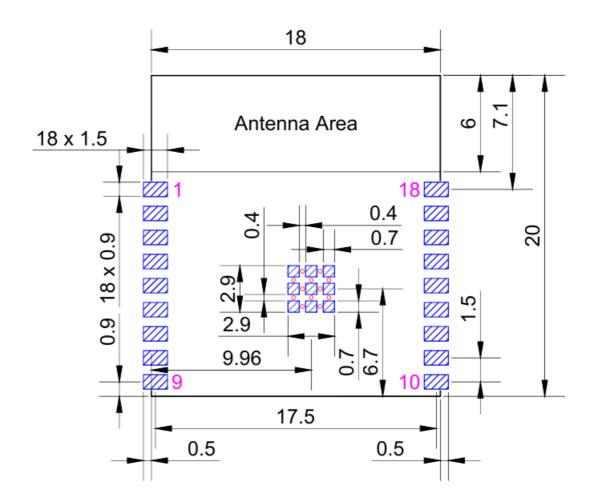


Schematic of antenna area clearance

3. The module's power (VCC) pin capacitors and the module's other pin capacitors and resistors should be placed as close as possible to the module's pins, and the alignment path should be short.

6. Physical Dimensions

Module Dimensions:



Recommended PCB Land Pattern:

Unit: mm

Via for thermal pad

Copper

7. Certification description

7.1 FCC compliance statement

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursua nt to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy a nd, if not installed and used in accordance with the instructions, may cause harmful interference to radio com munications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turn ing the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- -Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help important announcement Important

Radiation Exposure Statement

The device has been evaluated to meet general RF exposure requirement. The device can be used in portable exposure condition without restriction.

Integration instructions for host product manufacturers according to KDB 996369 D03 OEM Manual v01r01

2.2 List of applicable FCC rules

CFR 47 FCC PART 15 SUBPART C has been investigated. It is applicable to the modular transmitter

2.3 Specific operational use conditions

This module is stand-alone modular. If the end product will involve the Multiple simultaneously transmitting condition or different operational conditions for a stand-alone modular transmitter in a host, host manufacturer have to consult with module manufacturer for the installation method in end system.

2.4 Limited module procedures Not applicable

2.5 Trace antenna designs Not applicable

2.6RF exposure considerations

The device has been evaluated to meet general RF exposure requirement. The device can be used in portable exposure condition without restriction.

2.7Antennas

This radio transmitter FCC ID: 2A2SV-CKC31W has been approved by Federal Communications Commission to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Antenna No.	Type of antenna:	Maximum Gain	Frequency range:
Bluetooth/2.4G Wi-Fi	PCB Antenna	0.85dBi	2400-2500MHz

2.8Label and compliance information

The final end product must be labeled in a visible area with the following" Contains FCC ID: 2A2SV-CKC31W ".

2.9Information on test modes and additional testing requirements

Host manufacturer is strongly recommended to confirm compliance with FCC requirements for the transmitter when the module is installed in the host.

2.10Additional testing, Part 15 Subpart B disclaimer

Host manufacturer is responsible for compliance of the host system with module installed with all other applicable requirements for the system such as Part 15 B.

2.11Note EMI Considerations

Host manufacture is recommended to use D04 Module Integration Guide recommending as "best practice" RF design engineering testing and evaluation in case non-linear interactions generate additional non-compliant limits due to module placement to host components or properties.

2.12How to make changes

This module is stand-alone modular. If the end product will involve the Multiple simultaneously transmitting condition or different operational conditions for a stand-alone modular transmitter in a host, host manufacturer have to consult with module manufacturer for the installation method in end system. According to the KDB 996369 D02 Q&A Q12, that a host manufacture only needs to do an evaluation (i.e., no C2PC required when no emission exceeds the limit of any individual device (including unintentional radiators) as a composite. The host manufacturer must fix any failure.

8. Shipping Information

The CKC3-1-W module is shipped in a braided tape and reel package.

Disclaimer and Copyright Notice

The information in this document, including any referenced UL addresses, is subject to change without notice. The document is provided "as is" without any warranty, including any warranty of merchantability, fitness for a particular purpose, or non-infringement, and any warranty mentioned elsewhere in connection with any proposals, specifications, or samples. This document assumes no liability, including liability for infringement of any patent rights arising from the use of the information contained herein. This document does not grant, by estoppel or otherwise, any license to any intellectual property rights, whether express or implied.

Copyright © 2024 CoolHome Technology. All rights reserved.