

Canada

Exhibit: RF Exposure – FCC

FCC ID: 2A2RL-LW2300

Report File #: 7169009956R-000

© TÜV SÜD Canada Inc. This test report shall not be reproduced except in full, without written approval of TÜV SÜD Canada Inc.

Client	AOMS Technologies	 Canada
Product	LumiNode LW2300	
Standard(s)	FCC Part 15 Subpart 15.249 FCC KDB 447498 v06	

RF Exposure – FCC

The device is a mobile device intended to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure and the body of the user or nearby persons.

Radiofrequency Radiation Exposure Evaluation: Mobile Devices

Mobile devices shall be evaluated for RF radiation exposure according to the provisions of FCC §2.1091 and the MPE guidelines identified in FCC §1.1310.

As per FCC §1.1310 Table 1(B), the limit for Maximum Permissible Exposure (MPE) to radiofrequency electromagnetic fields for General Population/Uncontrolled Exposure in the frequency range of 300 MHz to 1.5 GHz is $f/1500$ mW/cm² and in the frequency range of 1.5GHz to 100GHz is 1.0 mW/cm². Where f = frequency in MHz.

The power density formula is given by:

$$P_d = (P_{EIRP}) / (4 * \pi * R^2)$$

Where,

P_d = Power density in mW/cm²

P_{EIRP} = Equivalent Isotropically Radiated Power output in mW

π = 3.1416

R = Separation distance in cm

MPE Calculation: 903.9 – 927.0 MHz LoRa transmitter

The transmitter has a maximum e.i.r.p of -2.0dBm or 0.63mW.

For a distance of 20cm, the power density is:

$$P_d = (0.63\text{mW}) / (4 * 3.1416 * (20\text{cm})^2)$$

$$P_d = 0.000125 \text{ mW/cm}^2$$

The device passes the requirement. The calculated power density of 0.000125mW/cm² is below the $(903.9/1500) = 0.6$ mW/cm² limit.