

Nemko Korea Co., Ltd.

165-51, Yurim-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17042, Republic of Korea
TEL:+82 31 330-1700 FAX:+82 31 322 2332

FCC & IC EVALUATION REPORT FOR CERTIFICATION

Project No. : NK-25-R-066

Dates of receipt : February 27, 2025

Applicant : Medit Corp.

Dates of Issue : July 24, 2025

9F, 10F, 13F, 14F, 16F, 8, Yangpyeong-ro 25-gil,
Yeongdeungpo-gu, Seoul, 07207, Korea, Republic of

Test Site :

Nemko Korea Co., Ltd.

FCC ID :

2A2QMM03-WFH

IC :

27675-MO3WFH

Applicant :

Medit Corp.

Brand Name :

MEDIT

Model: **MO3-WFH**

Additional Model(s): -

EUT Type: **Wireless Hub**

Classification: **Unlicensed National Information Infrastructure (NII)**

Date of Test: **April 21, 2025 ~ July 23, 2025**

Applied Standard: **FCC 47 CFR Part 15.407**
RSS-248 issue3, RSS-Gen issue5

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By : Jinhee Goo
Test Engineer

Reviewed By : Hoonpyo Lee
Technical Manager

Revision History

Rev.	Issue Date	Revisions	Revised By
00	July 24, 2025	Initial issue	Jinhee Goo

TABLE OF CONTENTS

1. INTRODUCTION	5
1.1 Test facility	5
1.2 Accreditation and listing	5
2. EUT INFORMATION & TEST CONDITIONS	6
2.1 EUT Information	6
2.2 Operation During Test	7
2.3 Support Equipment	9
2.4 Setup Drawing	9
3. ANTENNA REQUIREMENTS	10
4. SUMMARY OF TEST RESULTS	11
5. TEST METHODOLOGY	11
6. DESCRIPTION OF TESTS	12
6.1 26 dB Bandwidth / Occupied Bandwidth	12
6.2 Maximum e.i.r.p.	13
6.3 Maximum e.i.r.p. Spectral Density	14
6.4 In-Band Emissions	15
6.5 Contention Based Protocol	16
6.6 Radiated Emissions	18
6.7 AC Line Conducted Emissions	19
6.8 Frequency Stability	20
7. TEST DATA	21
7.1 26 dB Bandwidth / Occupied Bandwidth	21
7.2 Maximum e.i.r.p.	25
7.3 Maximum e.i.r.p. Spectral Density	29
7.4 In-Band Emissions	34
7.5 Contention Based Protocol	37
7.6 Radiated Spurious Emissions	43
7.6.1 Radiated Spurious Emissions – U-NII-5 Band	43
7.6.2 Radiated Spurious Emissions – U-NII-6 Band	46
7.6.3 Radiated Spurious Emissions – U-NII-7 Band	49
7.6.4 Radiated Spurious Emissions – U-NII-8 Band	52
7.7 Radiated Band Edge	55
7.7.1 Radiated Band Edge – U-NII-5 Band	55
7.7.2 Radiated Band Edge – U-NII-8 Band	57
7.8 Radiated Emissions_Below 1GHz	59

7.9 AC Line Conducted Emissions.....	61
7.10 Simultaneous radiation	62
7.11 Frequency Stability	64
8. TEST EQUIPMENT	65
9. ACCURACY OF MEASUREMENT & DECISION RULE	67
9.1 Uncertainty Calculation.....	67
9.2 Decision rule.....	67

1. INTRODUCTION

1.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating.

These measurement tests were conducted at **Nemko Korea Co., Ltd.**

The site address 165-51, Yurim-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17042, Rep. of Korea.

1.2 Accreditation and listing

Accreditation type	Accreditation number
	CAB Accreditation for DOC Designation No. KR0026
	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme) Registration No. KT155
Industry Canada	Canada IC Registered site Site No. 29506
	VCCI registration site(RE/CE/Telecom CE) Member No. 2118
	EMC CBTL TL124
	KCC(RRL)Designated Lab. Registration No. KR0026

2. EUT INFORMATION & TEST CONDITIONS

2.1 EUT Information

2.1.1 Specifications

EUT Type	Wireless Hub
Model Name	MO3-WFH
Frequency of Operation	<u>For U-NII-5 Band</u> 6 025 – 6 345 MHz : 802.11ax (160 MHz) <u>For U-NII-6 Band</u> 6 505 MHz : 802.11ax (160 MHz) <u>For U-NII-7 Band</u> 6 665 – 6 825 MHz : 802.11ax (160 MHz) <u>For U-NII-8 Band</u> 6 985 MHz : 802.11ax (160 MHz)
Maximum Conducted Output Power	802.11ax (160 MHz) : 8.93 dBm
Number of Channels	<u>For U-NII-5 Band</u> 802.11ax (160 MHz) : 3 ch <u>For U-NII-6 Band</u> 802.11ax (160 MHz) : 1 ch <u>For U-NII-7 Band</u> 802.11ax (160 MHz) : 2 ch <u>For U-NII-8 Band</u> 802.11ax (160 MHz) : 1 ch
Modulations	BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM
Antenna Gain (peak)	U-NII-5 : 6.86 dBi (Directional Gain: 9.87 dBi) U-NII-6 : 6.86 dBi (Directional Gain: 9.87 dBi) U-NII-7 : 5.43 dBi (Directional Gain: 8.44 dBi) U-NII-8 : 5.73 dBi (Directional Gain: 8.74 dBi)
Antenna Setup	2TX / 2RX
EUT Rated Voltage	DC 5.0 V
EUT Test Voltage	DC 5.0 V
HVIN (Hardware Version Number)	Ver 0.8.0
FVIN (Firmware Version Identification Number)	Silex SX-PCEAX-SMT: ver 1.0 Silicon Labs BGX220SC22WGA2: ver 0.0.8
Remarks	-

2.2 Operation During Test

The EUT is the transceiver which is module supporting the 802.11ax (160 MHz) mode.

The Laptop PC was used to control the EUT to transmit the wanted TX channel by the testing program and testing command supported by manufacturer.

The operating voltage of EUT was 5.0 Vdc supplied from battery.

The EUT was tested at the lowest, middle and the highest channels with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

2.2.1 Table of Test power setting

Frequency [MHz]	Band	Mode	Power setting Level
6 025	U-NII-5	802.11ax EHT160	5.5
6 185			
6 345			
6 505	U-NII-6	802.11ax EHT160	5.5
6 665	U-NII-7		
6 825			
6 985	U-NII-8		

2.2.2 Table of Test frequency

Frequency band	Modulation	Test Channel (CH)	Frequency (MHz)
U-NII-5	802.11ax (160 MHz)	15	6 025
U-NII-5	802.11ax (160 MHz)	47	6 185
U-NII-5	802.11ax (160 MHz)	79	6 345
U-NII-6	802.11ax (160 MHz)	111	6 505
U-NII-7	802.11ax (160 MHz)	143	6 665
U-NII-7	802.11ax (160 MHz)	175	6 825
U-NII-8	802.11ax (160 MHz)	207	6 985

2.2.3 Antenna Information

Frequency band	Mode	Data rate	Antenna TX mode	Support CDD	Support MIMO
6 GHz	802.11ax (160MHz)	MCS 0~11	<input type="checkbox"/> 1TX, <input checked="" type="checkbox"/> 2TX	<input checked="" type="checkbox"/> Yes, <input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes, <input type="checkbox"/> No
Note. WLAN operates as CDD(co-related) in MIMO mode only.					

2.2.4 Additional Information Related to Testing

The cable and attenuator loss from 30 MHz to 26.5 GHz was reflected in spectrum analyzer with correction factor for all conducted testing.

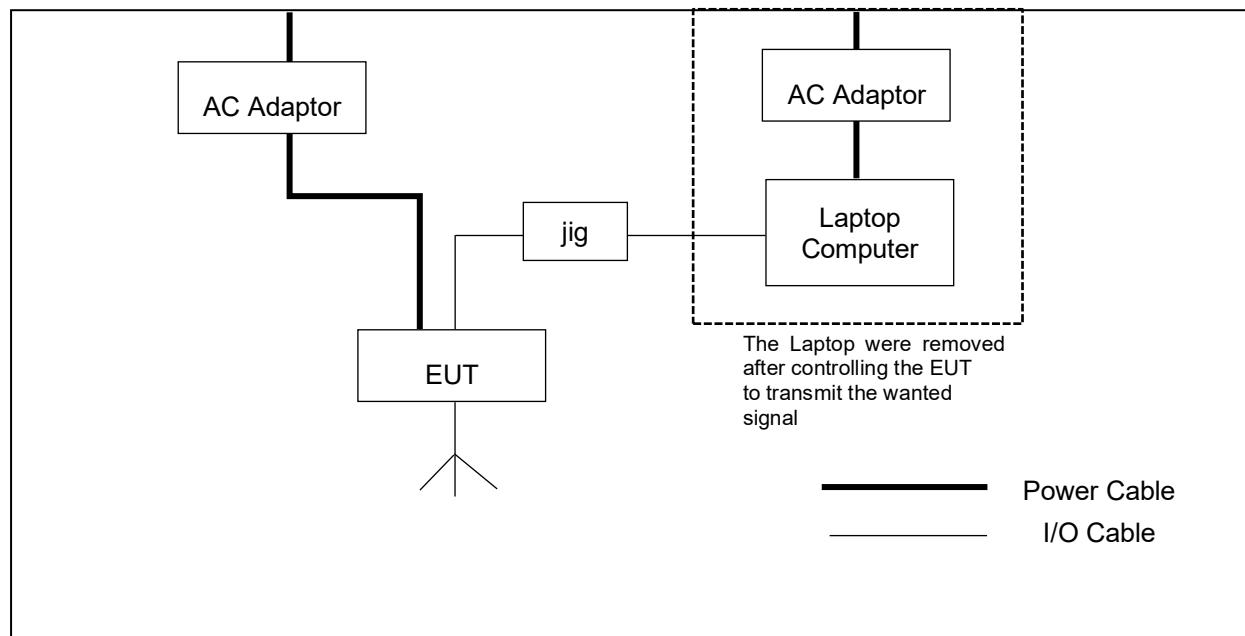
2.2.5 Worst-case Configuration and Mode

Radiated emission below 1GHz was performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Radiated emission above 1GHz was performed with the EUT set to transmit low/mid/high channels. The emissions (Band-edge & spurious emissions) were tested in orthogonal orientations X because the wireless hub is designed to resemble a desktop cradle.

Accordingly, the orientation was determined and tested as shown in the table below:

Test Items	X	Y	Z
Band-edge	O	-	-
Spurious emissions	O	-	-


2.2.6 Additional model covered by this report

- N/A

2.3 Support Equipment

EUT	Medit Corp. Model : MO3-WFH	S/N: N/A
Laptop Computer	Lenovo Model : IdeaPad Slim 3 15ABR8	FCC DOC S/N : PF4YWJKK
AC Adapter	Lenovo Model : ADI.X65NCC3A	FCC DOC S/N : 8SGX21J75539C1TJ43F12CL

2.4 Setup Drawing

3. ANTENNA REQUIREMENTS

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the EUT and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

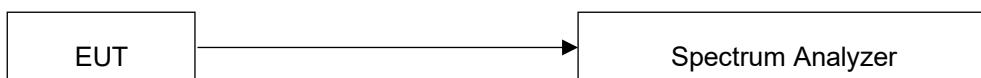
The transmitter has attached FPCB antenna (Internal antenna) inside the EUT case.

Used Antenna	
Model name	6 025 MHz ~ 6 985 MHz
	Max. peak gain (dBi)
INNO-AFP-0420	U-NII-5 : 6.86 U-NII-6 : 6.86 U-NII-7 : 5.43 U-NII-8 : 5.73

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	FCC/IC Paragraph No.	Test Condition	Result	Remark
26dB Bandwidth & Occupied Bandwidth	15.407(a) RSS-248 (4.4)	Conducted	Complies	-
Maximum e.i.r.p.	15.407(a) RSS-248 (4.5)		Complies	-
Maximum e.i.r.p. Spectral Density	15.407(a) RSS-248 (4.5)		Complies	-
In-Band Emissions	15.407(b) RSS-248 (4.6)		Complies	-
Contention Based Protocol	15.407(d) RSS-248 (4.7)		Complies	-
Frequency Stability	FCC §15.407 RSS-Gen (6.11)		Complies	-
Radiated Spurious Emission	15.407(b) 15.205, 15.209 RSS-248 (4.6) RSS-Gen (8.9),(8.10)	Radiated	Complies	-
AC Line Conducted Emission	15.407 RSS-Gen (8.8)	Line Conducted	Complies	-


5. TEST METHODOLOGY

1. FCC CFR 47 Part 2.
2. FCC CFR 47 Part 15.
3. KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
4. KDB 987594 D02 U-NII 6 GHz EMC Measurement
5. ANSI C63.10-2013.
6. RSS-Gen Issue 5
7. RSS-248

6. DESCRIPTION OF TESTS

6.1 26 dB Bandwidth / Occupied Bandwidth

Test Setup

Test Measurement Method

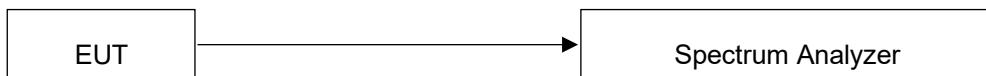
ANSI C63.10-2013, Section 12.3
KDB 789033 D02 v02r01, Section E

Test Procedure

EUTs 26 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

RBW = approximately 1 % of the emission bandwidth

VBW > RBW


Detector = Peak

Trace mode = max hold

The bandwidth measurement function on the spectrum analyzer is used to measure the 26 dB bandwidth and 99% occupied bandwidth.

6.2 Maximum e.i.r.p.

Test Setup

Test Measurement Method

ANSI C63.10-2013, Section 12.3
KDB 789033 D02 v02r01, Section E

Test Procedure

EUTs Maximum e.i.r.p. is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Measure the duty cycle, x , of the transmitter output signal.

Span to encompass the entire 26 dB EBW or 99% OBW of the signal.

RBW = 1 MHz

VBW \geq 3 MHz

Number of points in sweep \geq 2 x span / RBW

Sweep time \geq [10 \times (number of points in sweep) \times (total ON/OFF period of the transmitted signal)].

Detector = RMS

Trace average at least 100 traces in power averaging mode.

Add $10 \log(1/x)$, where x is the duty cycle.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.

6.3 Maximum e.i.r.p. Spectral Density

Test Setup

Test Measurement Method

ANSI C63.10-2013, Section 12.5
KDB 789033 D02 v02r01, Section F

Test Procedure

EUTs Power Spectral Density is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Measure the duty cycle, x, of the transmitter output signal

Center frequency = Channel center frequency

Span = encompass the EBW of the signal

RBW \geq 1 MHz for UNII-1, 2A, 2C band or 500 kHz for UNII-3 band

VBW \geq 3 x RBW

Detector = RMS

Sweep time = auto couple

Trace average at least 100 traces in power averaging mode

Allow the trace to stabilize.

The peak search function on the spectrum analyzer is used to determine the maximum amplitude level within the RBW.

6.4 In-Band Emissions

Test Measurement Method

KDB 987594 D02 U-NII 6 GHz EMC Measurement Section J

Test Procedure

Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:

Set the span to encompass the entire 26 dB EBW of the signal.

Set RBW = same RBW used for 26 dB EBW measurement.

Set VBW \geq 3 X RBW

Number of points in sweep \geq [2 X span / RBW].

Sweep time = auto.

Detector = RMS (i.e., power averaging)

Trace average at least 100 traces in power averaging (rms) mode.

Use the peak search function on the instrument to find the spectrum's peak.

To develop the emission mask, the channel bandwidth is defined as 26 dB Equivalent Bandwidth (EBW) or 99% of the occupied bandwidth.

Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:

Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is the 26-dB point on either side of the carrier center frequency).

Suppressed by 28 dB at one channel bandwidth from the channel center.

Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.

Adjust the span to encompass the entire mask as necessary. Clear trace. Trace average at least 100 traces in power averaging (rms) mode. Adjust the reference level as necessary so that the channel's crest touches the top of the emission mask.

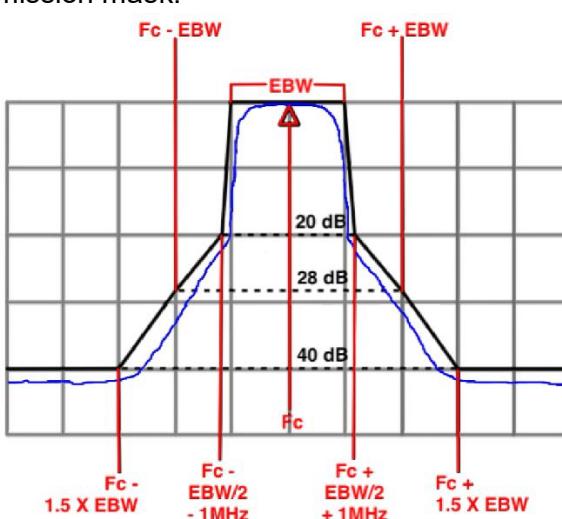


Figure 5. Generic Emission Mask

6.5 Contention Based Protocol

Test Measurement Method

KDB 987594 D02 U-NII 6 GHz EMC Measurement Section I

Test Procedure

Simulating Incumbent Signal

The incumbent signal is assumed to be noise-like. One example of such transmission could be Digital Video Broadcasting (DVB) systems that use Orthogonal Frequency Division Multiplexing (OFDM). Incumbent systems may also use different bandwidths for their transmissions. A 10 MHz-wide additive white Gaussian noise (AWGN) signal is selected to simulate and represent incumbent transmission.

Required number of tests

Incumbent and EUT (access point, subordinate, or client) signals may occupy different channel portions. Depending on the EUT transmission bandwidth and incumbent signal center frequency (simulated by a 10 MHz-wide AWGN signal), the center frequency of the EUT signal may fall within the incumbent's occupied bandwidth (Figure 1. a), or outside of it (Figure 1. b).

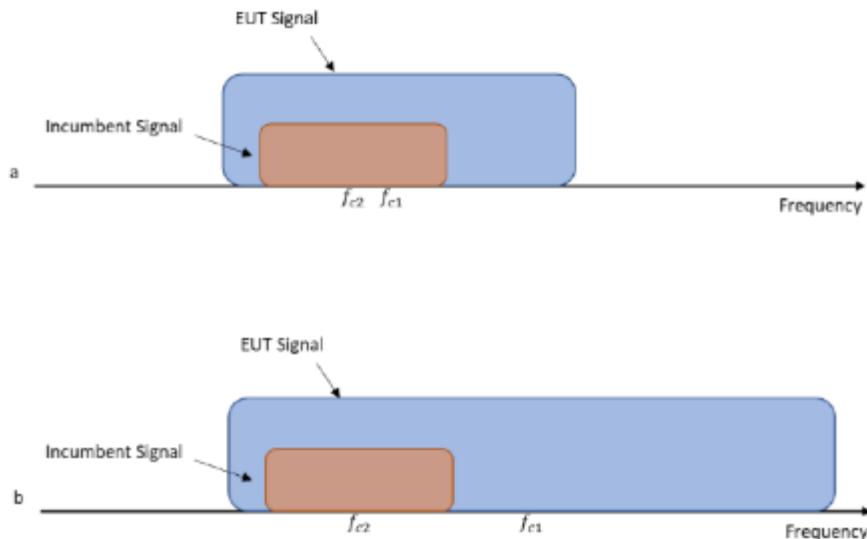


Figure 1. Two possible scenarios where a) center frequency of EUT transmission falls within the incumbent's bandwidth, or b) outside of it

To ensure EUT reliably detects an incumbent signal in both scenarios shown in Figure 1, the detection threshold test may be repeated more than once with the incumbent signal (having center frequency 2) tuned to different center frequencies within the EUT transmission bandwidth. The criteria specified in Table 1 determine how many times the detection threshold test must be performed.

If	Number of Tests	Placement of Incumbent Transmission
$BW_{EUT} \leq BW_{inc}$	Once	Tune incumbent and EUT transmissions ($f_{c1} = f_{c2}$)
$BW_{inc} < BW_{EUT} \leq 2 BW_{inc}$	Once	Incumbent transmission is contained within BW_{EUT}
Two $BW_{inc} < BW_{EUT} \leq 4 BW_{inc}$	Twice. Incumbent transmission is contained within BW_{EUT}	Incumbent transmission is close to the EUT channel's lower and upper edges.
$4BW_{EUT} > 4BW_{inc}$	Three times	Incumbent transmission is located as closely as possible to the lower edge of the EUT channel, in the middle of the EUT channel, and as closely as possible to the upper edge of the EUT channel.

BW_{EUT} : Transmission bandwidth of EUT signal

BW_{inc} : Transmission bandwidth of the simulated incumbent signal (10 MHz wide AWGN signal)

f_{c1} : The center frequency of EUT transmission

f_{c2} : Center frequency of the simulated incumbent signal

6.6 Radiated Emissions

Test Measurement Method

ANSI C63.10-2013, Section 6.6.4.3, Section 12.7
KDB 789033 D02 v02r01, Section G

Test Procedure

The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013. The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna and 30 to 1000 MHz using Trilog broadband test antenna. Above 1 GHz, Horn antenna was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in ANSI 63.10-2013 section 12.7. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 10 kHz, Detector = Peak, Trace mode = max hold. Allow max hold to run for at least 50 times (1/duty cycle) traces.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3

Radiated Emissions Limits per 47 CFR 15.209(a)

6.7 AC Line Conducted Emissions

Test Measurement Method

ANSI C63.10-2013, Section 6.2

Test Procedure

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 meter shielded enclosure. It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6. A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room. Rohde & Schwarz (ENV216) of the 50 ohm/50 μ H Line Impedance Stabilization Network (LISN) are bonded to the shielded room. The EUT is powered from the Rohde & Schwarz LISN. Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ". If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs. All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1 meter length. Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time. The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESR3). The detector functions were set to CISPR quasi-peak mode & average mode. The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission. Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

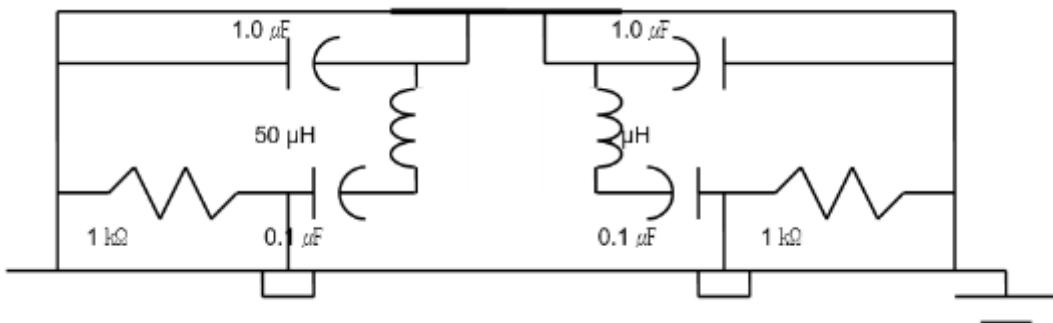


Fig. 2. LISN Schematic Diagram

6.8 Frequency Stability

Test Measurement Method

FCC §15.407

Test Procedure

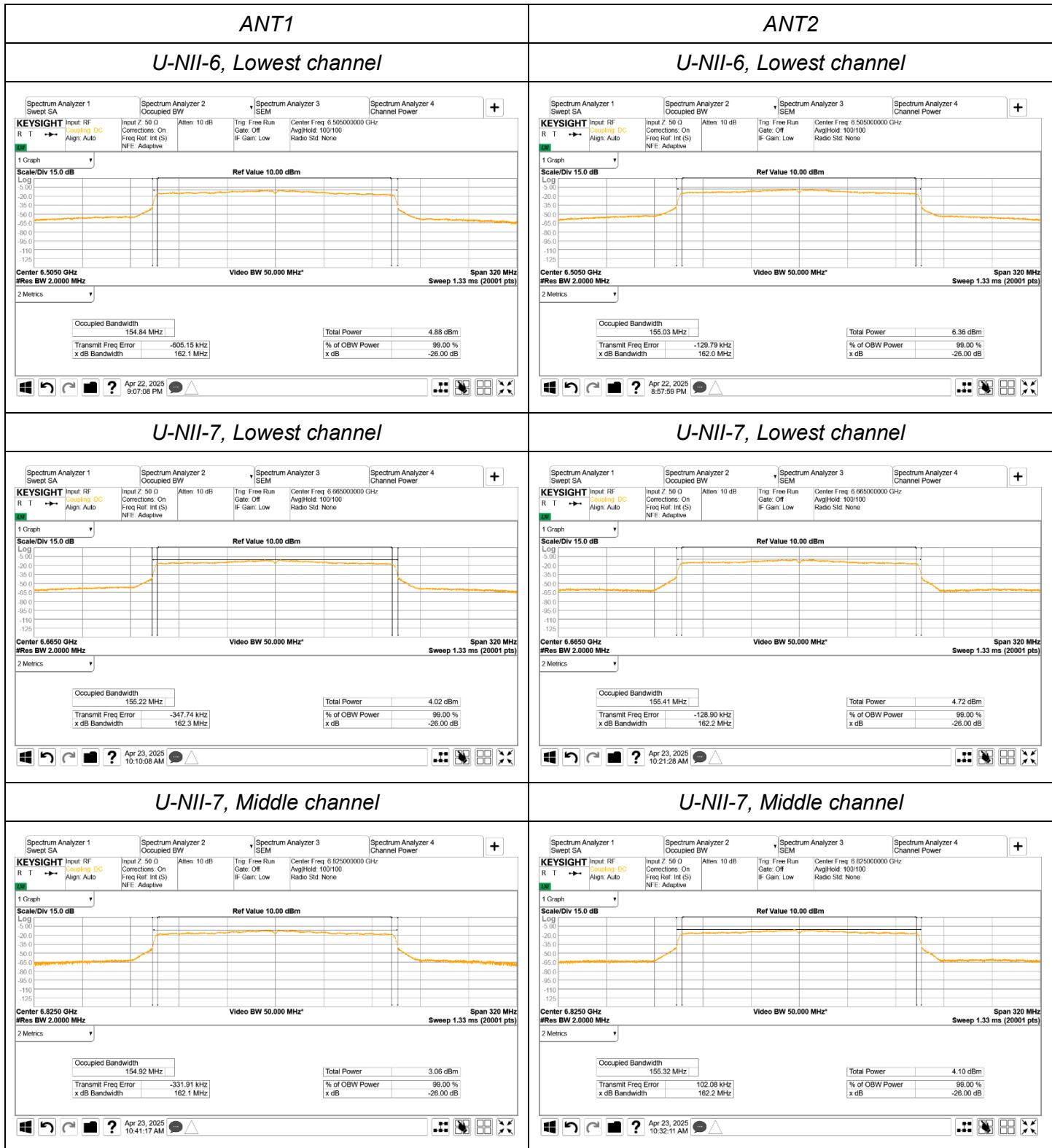
Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

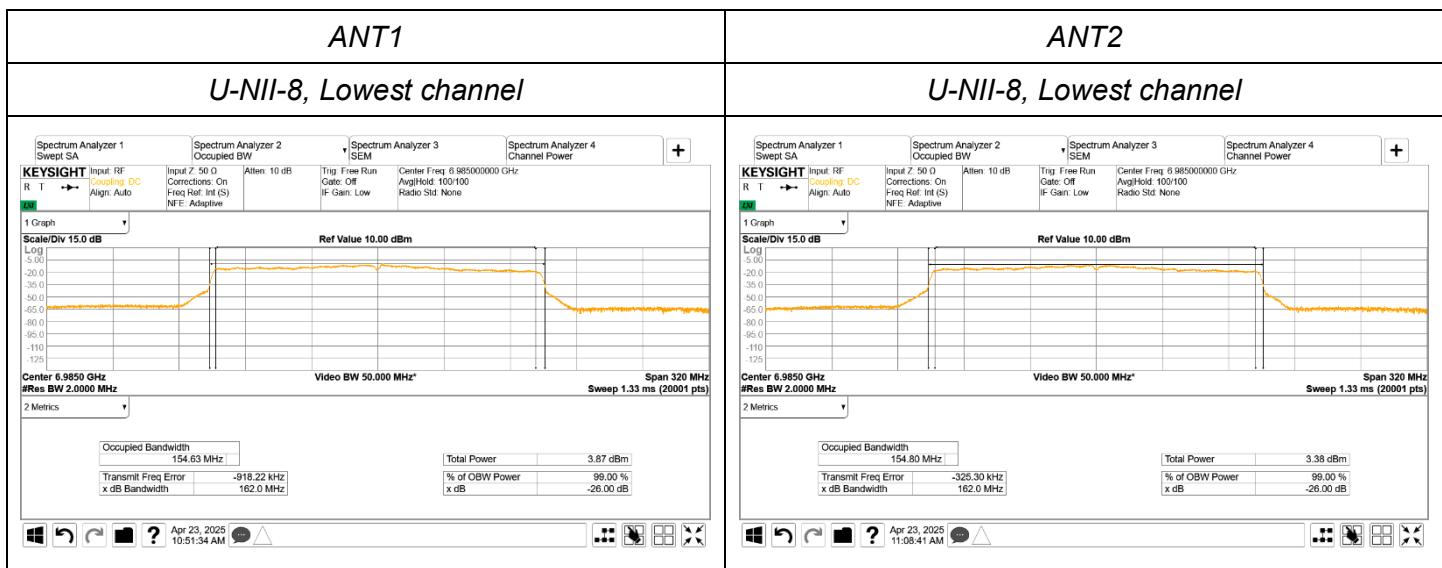
7. TEST DATA

7.1 26 dB Bandwidth / Occupied Bandwidth

FCC §15.407(a), RSS-248 (4.4)

Test Mode : Set to Lowest channel, Middle channel and Highest channel


Result


802.11ax(160 MHz) mode

Band	Frequenc y (MHz)	26 dB Bandwidth (MHz) Ant1	26 dB Bandwidth (MHz) Ant2	99% Occupied Bandwidth (MHz) Ant1	99% Occupied Bandwidth (MHz) Ant2	Limit (MHz)
U-NII-5	6 025	162.3	162.2	155.15	155.07	320
U-NII-5	6 185	162.3	162.2	155.29	155.53	320
U-NII-5	6 345	162.1	162.3	154.92	155.33	320
U-NII-6	6 505	162.1	162.0	154.84	155.03	320
U-NII-7	6 665	162.3	162.2	155.22	155.41	320
U-NII-7	6 825	162.1	162.2	154.92	155.32	320
U-NII-8	6 985	162.0	162.0	154.63	154.80	320

PLOTS OF EMISSIONS

7.2 Maximum e.i.r.p.

FCC §15.407(a), RSS-248(4.5)

Test Mode : Set to Lowest channel, Middle channel and Highest channel

Result

U-NII-5, 802.11ax(160 MHz)

Channel	Reading Power (dBm) ANT1	Reading Power (dBm) ANT2	Measured Power (dBm)	Duty Factor (dB)	*Maximum Power (dBm)	Antenna Gain (dBi)	Maximum e.i.r.p. (dBm)	Limit (dBm)
6 025	3.03	3.66	6.37	0.03	6.40	9.87	16.24	30
6 185	3.81	3.42	6.63	0.03	6.66	9.87	16.50	30
6 345	5.02	5.39	8.22	0.03	8.25	9.87	18.09	30

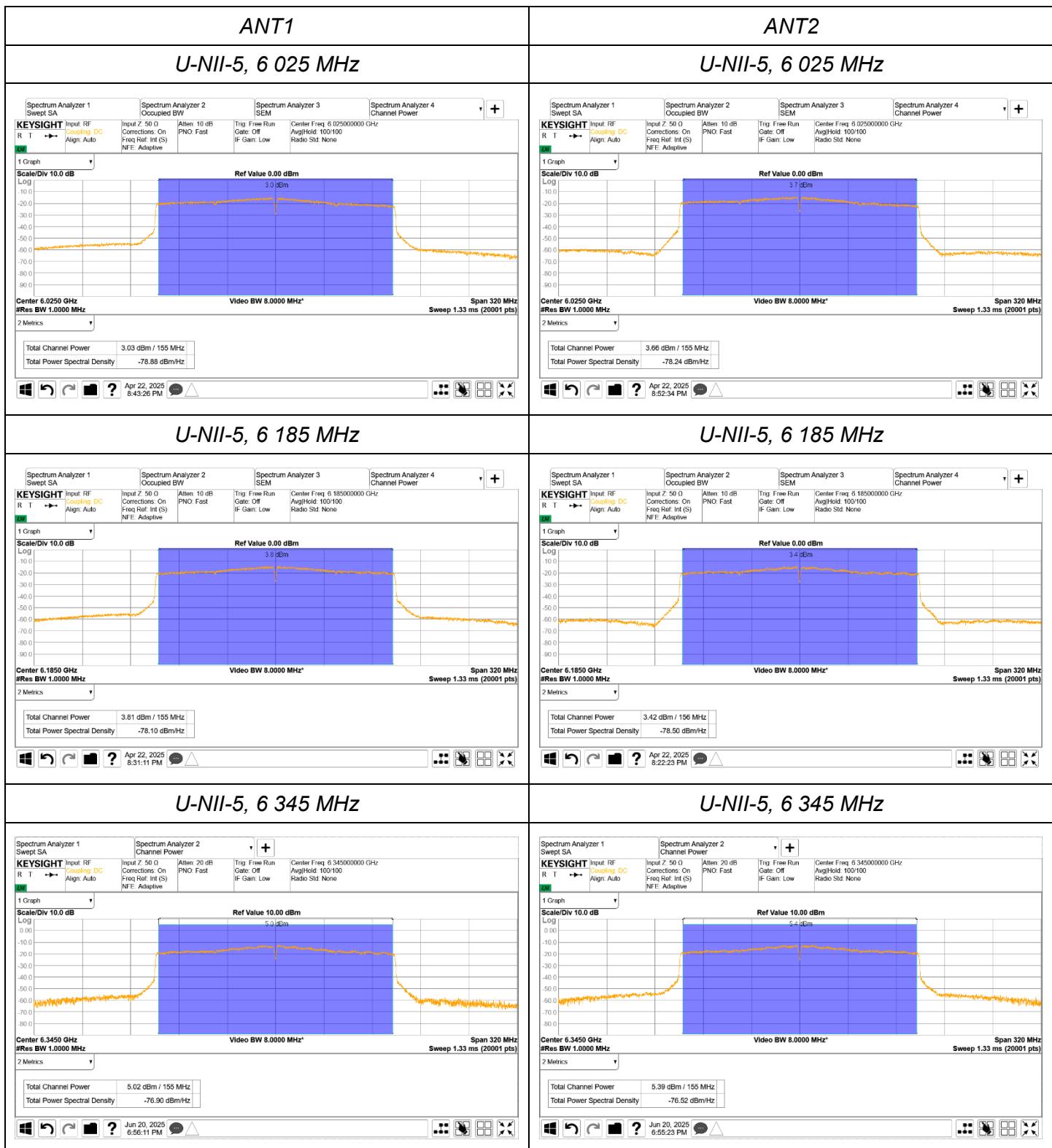
U-NII-6, 802.11ax(160 MHz)

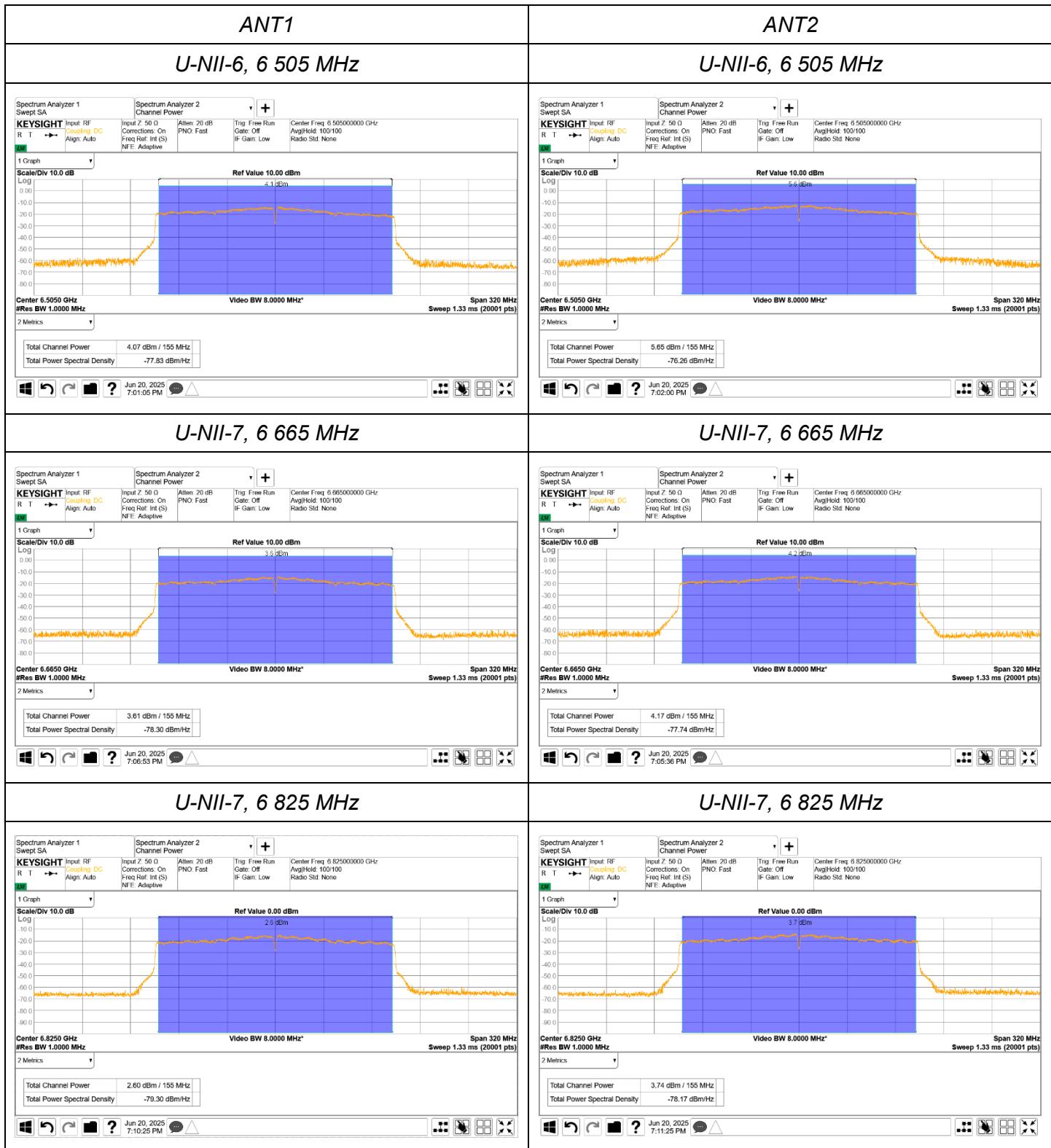
Channel	Reading Power (dBm) ANT1	Reading Power (dBm) ANT2	Measured Power (dBm)	Duty Factor (dB)	*Maximum Power (dBm)	Antenna Gain (dBi)	Maximum e.i.r.p. (dBm)	Limit (dBm)
6 505	4.07	5.65	7.94	0.03	7.97	9.87	17.84	30

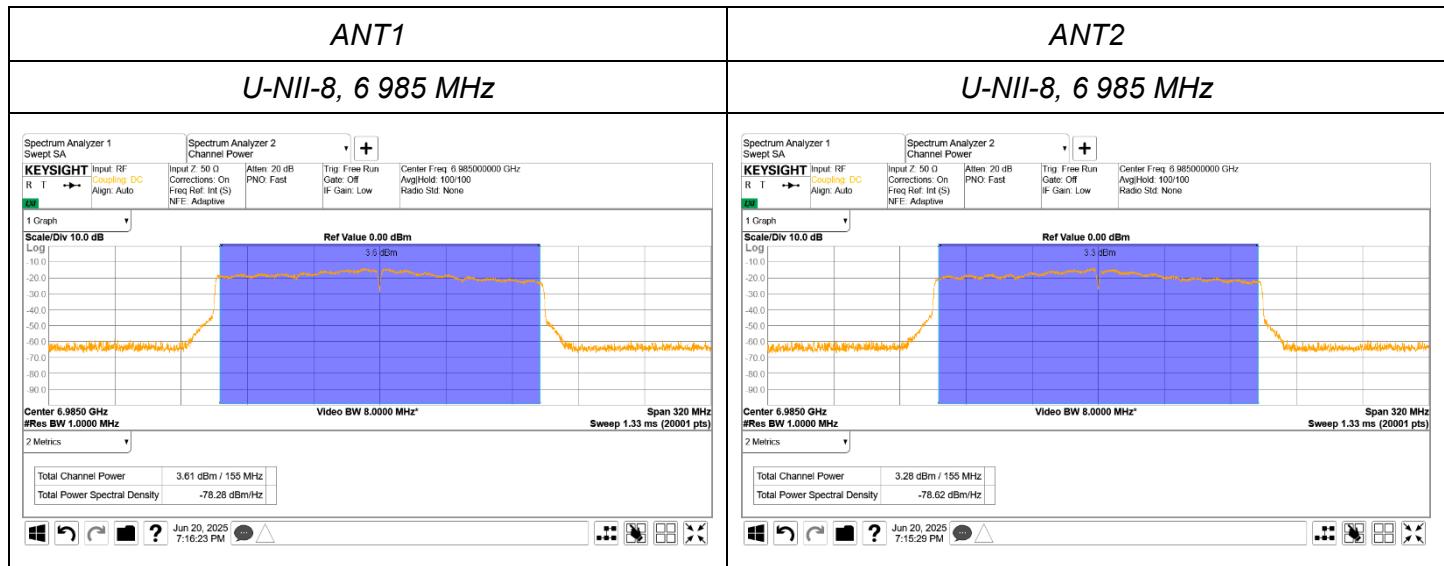
U-NII-7, 802.11ax(160 MHz)

Channel	Reading Power (dBm) ANT1	Reading Power (dBm) ANT2	Measured Power (dBm)	Duty Factor (dB)	*Maximum Power (dBm)	Antenna Gain (dBi)	Maximum e.i.r.p. (dBm)	Limit (dBm)
6 665	3.61	4.17	6.91	0.03	6.94	8.44	15.38	30
6 825	2.60	3.74	6.22	0.03	6.25	8.44	14.69	30

U-NII-8, 802.11ax(160 MHz)


Channel	Reading Power (dBm) ANT1	Reading Power (dBm) ANT2	Measured Power (dBm)	Duty Factor (dB)	*Maximum Power (dBm)	Antenna Gain (dBi)	Maximum e.i.r.p. (dBm)	Limit (dBm)
6 985	3.61	3.28	6.46	0.03	6.49	8.74	15.23	30


Notes:


1. *Maximum Power = Measured power + Duty Factor
2. The following equation was used for spectrum offset :

$$\text{Spectrum offset (dB)} = \text{Attenuator (dB)} + \text{Cable Loss (dB)} + \text{SMA Type Connector Loss (dB)}$$
3. Maximum e.i.r.p. = *Maximum Power + Antenna Gain

PLOTS OF EMISSIONS

7.3 Maximum e.i.r.p. Spectral Density

FCC §15.407(a), RSS-248(4.5)

Test Mode : Set to Lowest channel, Middle channel and Highest channel

Result

U-NII-5, 802.11ax(160 MHz)

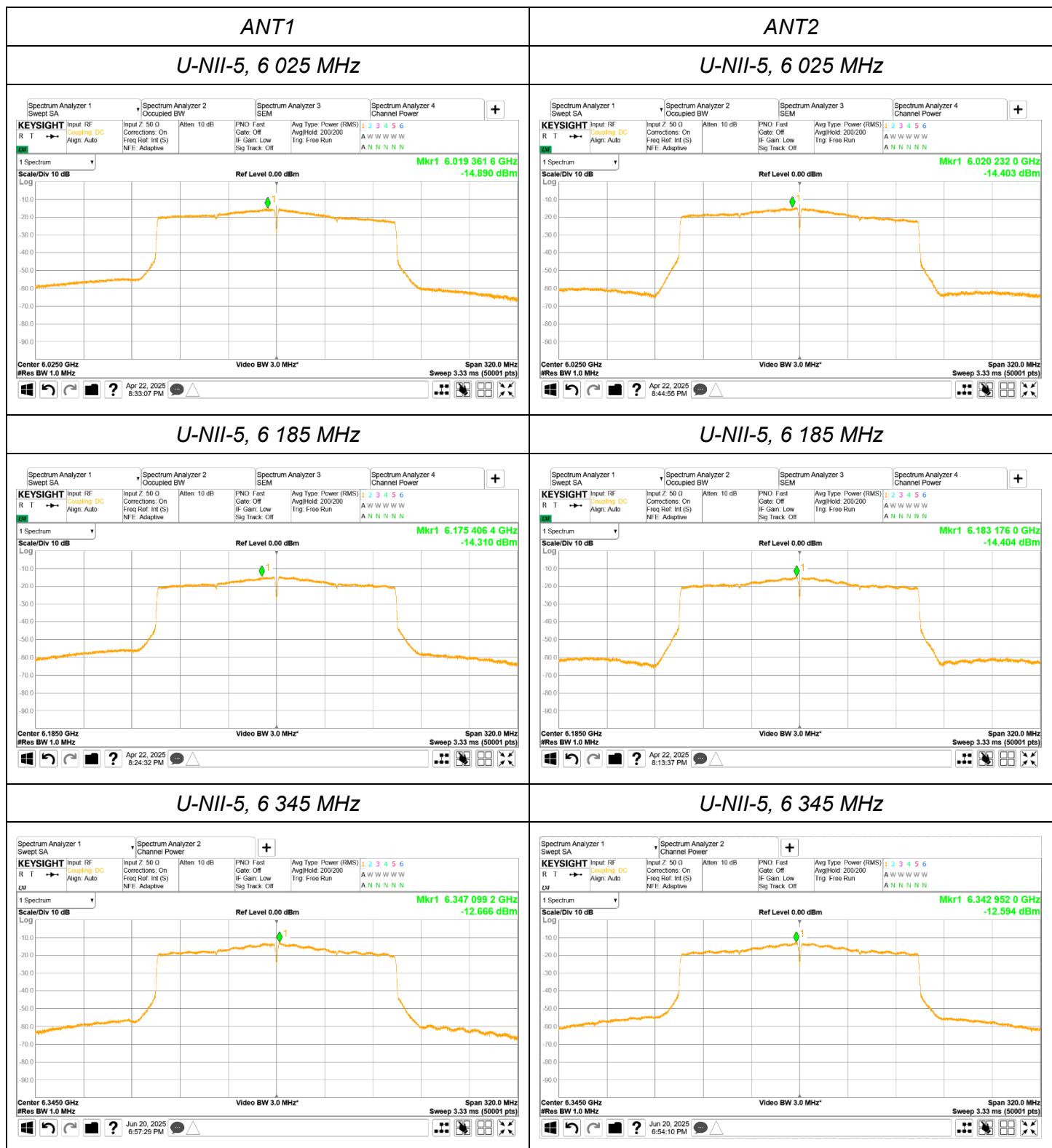
Channel	Reading PSD (dBm/MHz) ANT1	Reading PSD (dBm/MHz) ANT2	Measured PSD (dBm/MHz)	Duty Factor (dB)	*Maximum PSD (dBm/MHz)	Antenna Gain (dBi)	Maximum e.i.r.p. Spectral Density (dBm/MHz)	Limit (dBm/MHz)
6 025	-14.89	-14.40	-11.63	0.03	-11.60	9.87	-1.73	5
6 185	-14.31	-14.40	-11.35	0.03	-11.32	9.87	-1.45	5
6 345	-12.67	-12.59	-9.62	0.03	-9.59	9.87	0.28	5

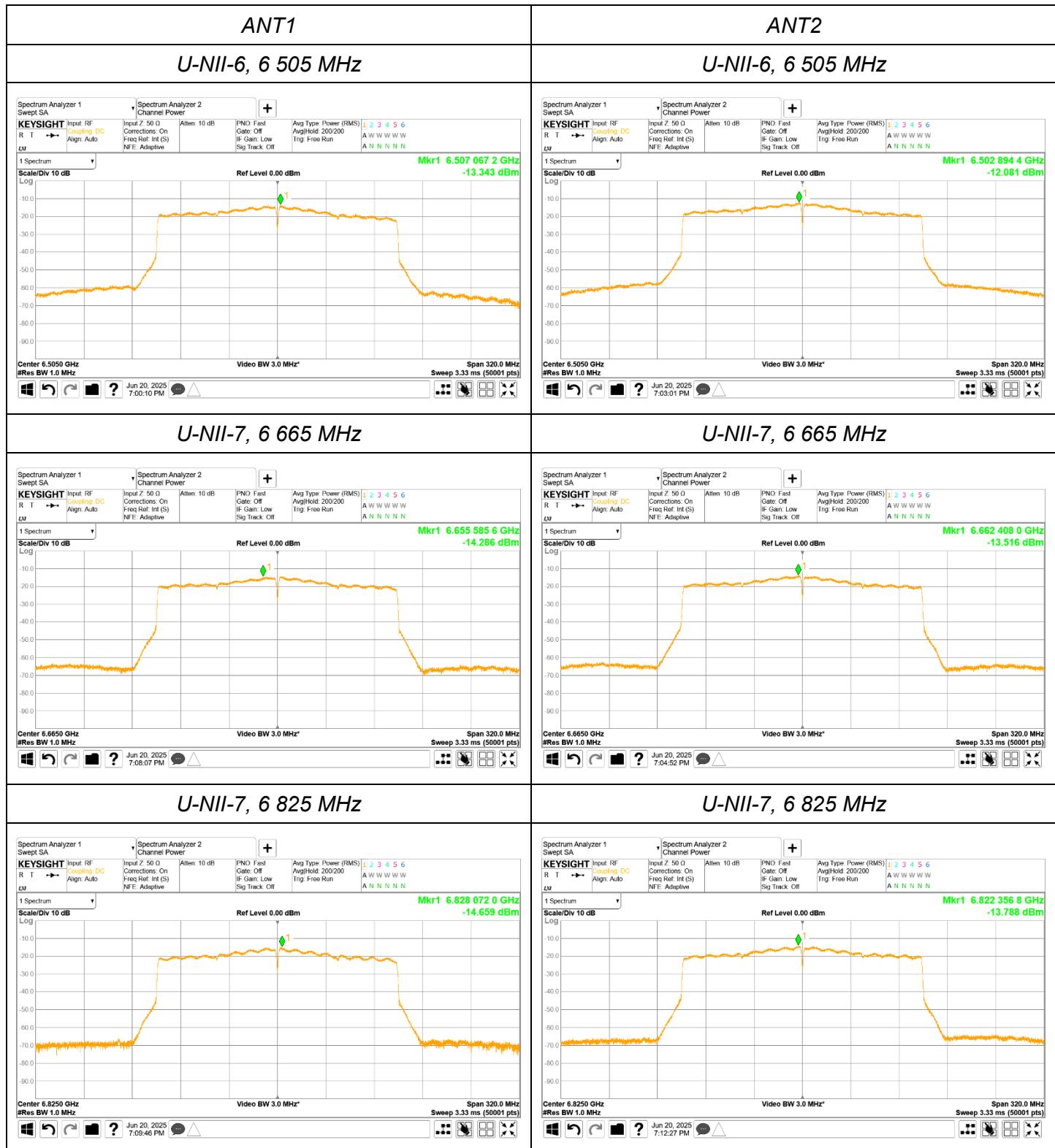
U-NII-6, 802.11ax(160 MHz)

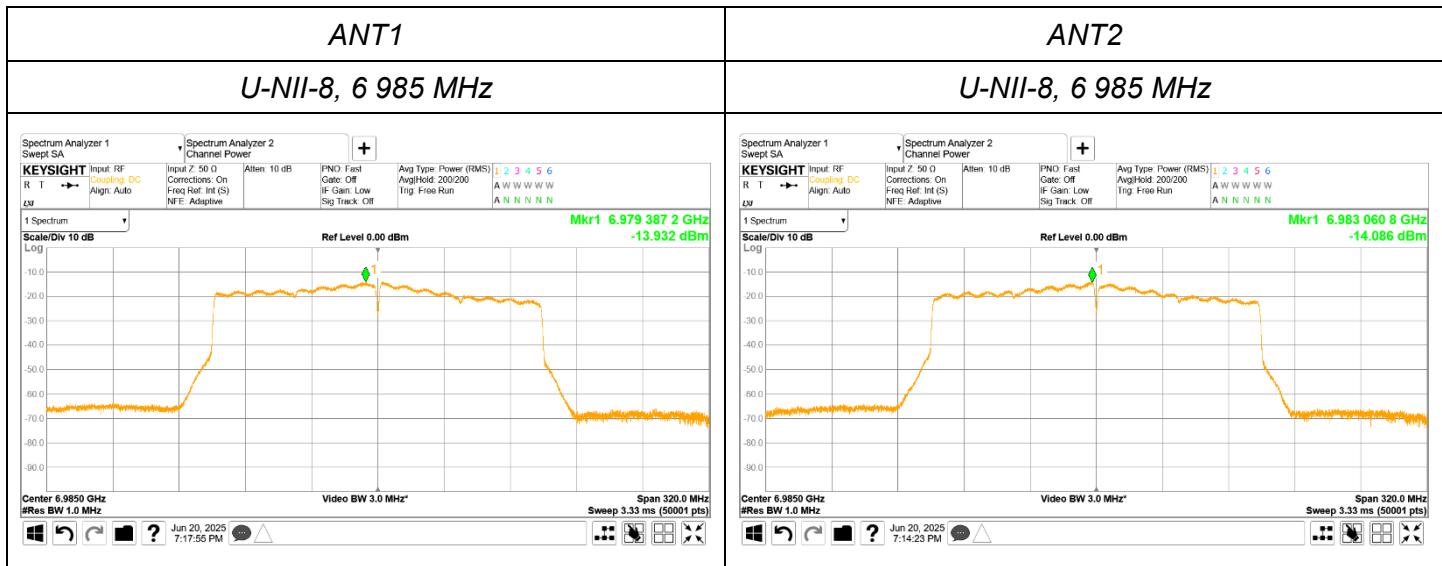
Channel	Reading PSD (dBm/MHz) ANT1	Reading PSD (dBm/MHz) ANT2	Measured PSD (dBm/MHz)	Duty Factor (dB)	*Maximum PSD (dBm/MHz)	Antenna Gain (dBi)	Maximum e.i.r.p. Spectral Density (dBm/MHz)	Limit (dBm/MHz)
6 505	-13.34	-12.08	-9.66	0.03	-9.63	9.87	0.24	5

U-NII-7, 802.11ax(160 MHz)

Channel	Reading PSD (dBm/MHz) ANT1	Reading PSD (dBm/MHz) ANT2	Measured PSD (dBm/MHz)	Duty Factor (dB)	*Maximum PSD (dBm/MHz)	Antenna Gain (dBi)	Maximum e.i.r.p. Spectral Density (dBm/MHz)	Limit (dBm/MHz)
6 665	-14.29	-13.52	-10.87	0.03	-10.84	8.44	-2.40	5
6 825	-14.66	-13.79	-11.19	0.03	-11.16	8.44	-2.72	5

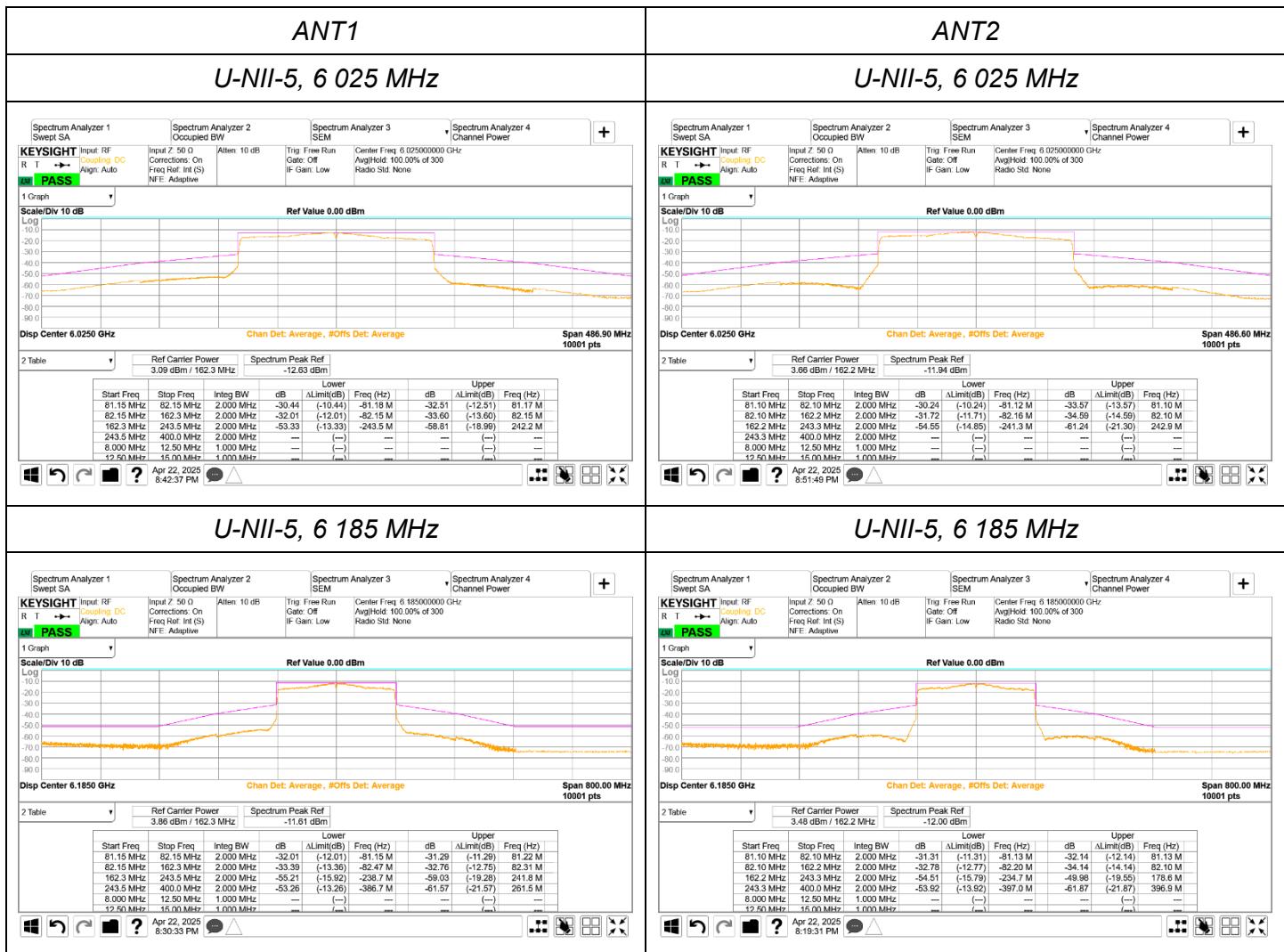

U-NII-8, 802.11ax(160 MHz)


Channel	Reading PSD (dBm/MHz) ANT1	Reading PSD (dBm/MHz) ANT2	Measured PSD (dBm/MHz)	Duty Factor (dB)	*Maximum PSD (dBm/MHz)	Antenna Gain (dBi)	Maximum e.i.r.p. Spectral Density (dBm/MHz)	Limit (dBm/MHz)
6 985	-13.93	-14.09	-11.00	0.03	-10.97	8.74	-2.23	5


Notes:

1. * Maximum PSD = Measured PSD + Duty Factor
2. The following equation was used for spectrum offset:
$$\text{Spectrum offset (dB)} = \text{Attenuator (dB)} + \text{Cable Loss (dB)} + \text{SMA Type Connector Loss (dB)}$$
3. Maximum e.i.r.p. Spectral Density = Maximum PSD + Antenna gain.

PLOTS OF EMISSIONS


7.4 In-Band Emissions

FCC §15.407(b), RSS-248(4.6)

Test Mode : Set to Lowest channel, Middle channel and Highest channel

Result

PLOTS OF EMISSIONS

ANT1				ANT2																																																																																																																																																							
U-NII-7, 6 825 MHz				U-NII-7, 6 825 MHz																																																																																																																																																							
<p>Spectrum Analyzer 1 Sweat SA</p> <p>KEYSIGHT Input RF Coupling: DC R T → Align: Auto</p> <p>Input 7.50 O Corrections: On Freq Ref. Int (S) NFE: Adaptive</p> <p>PASS</p>		<p>Spectrum Analyzer 2 Occupied BW</p> <p>Atten: 10 dB</p> <p>Trig: Free Run Gate: Off IF Gain: Low</p> <p>Center Freq: 6.82500000 GHz AvgHold: 100.00% of 300 Radio Std: None</p>		<p>Spectrum Analyzer 3 SEM</p> <p>Channel Power</p>		<p>Spectrum Analyzer 4 Channel Power</p>																																																																																																																																																					
<p>1 Graph</p> <p>Scale/Div 10 dB</p> <p>Ref Value 0.00 dBm</p> <p>Disp Center 6.8250 GHz</p> <p>Chan Det: Average, #Offs Det: Average</p> <p>Span 800.00 MHz</p> <p>10001 pts</p>				<p>1 Graph</p> <p>Scale/Div 10 dB</p> <p>Ref Value 0.00 dBm</p> <p>Disp Center 6.8250 GHz</p> <p>Chan Det: Average, #Offs Det: Average</p> <p>Span 800.00 MHz</p> <p>10001 pts</p>																																																																																																																																																							
<p>2 Table</p> <table border="1"> <thead> <tr> <th>Ref Carrier Power</th> <th>Spectrum Peak Ref</th> </tr> </thead> <tbody> <tr> <td>3.06 dBm / 162.1 MHz</td> <td>-11.96 dBm</td> </tr> </tbody> </table>		Ref Carrier Power	Spectrum Peak Ref	3.06 dBm / 162.1 MHz	-11.96 dBm	<p>2 Table</p> <table border="1"> <thead> <tr> <th>Ref Carrier Power</th> <th>Spectrum Peak Ref</th> </tr> </thead> <tbody> <tr> <td>4.08 dBm / 162.2 MHz</td> <td>-10.87 dBm</td> </tr> </tbody> </table>		Ref Carrier Power	Spectrum Peak Ref	4.08 dBm / 162.2 MHz	-10.87 dBm	<p>Start Freq</p> <table border="1"> <thead> <tr> <th>Start Freq</th> <th>Stop Freq</th> <th>Integ BW</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>Upper</th> </tr> </thead> <tbody> <tr> <td>81.00 MHz</td> <td>82.00 MHz</td> <td>2.00 MHz</td> <td>-32.08</td> <td>(-12.08)</td> <td>-81.05 M</td> <td>-32.89</td> <td>(-12.89)</td> <td>81.14 M</td> <td></td> </tr> <tr> <td>162.00 MHz</td> <td>163.00 MHz</td> <td>2.00 MHz</td> <td>-34.25</td> <td>(-14.20)</td> <td>-82.35 M</td> <td>-34.07</td> <td>(-14.07)</td> <td>82.44 M</td> <td></td> </tr> <tr> <td>162.1 MHz</td> <td>162.2 MHz</td> <td>2.00 MHz</td> <td>-56.14</td> <td>(-16.10)</td> <td>-241.8 M</td> <td>-58.49</td> <td>(-19.71)</td> <td>234.9 M</td> <td></td> </tr> <tr> <td>243.2 MHz</td> <td>243.3 MHz</td> <td>2.00 MHz</td> <td>-56.22</td> <td>(-16.22)</td> <td>-311.7 M</td> <td>-50.99</td> <td>(-20.99)</td> <td>287.1 M</td> <td></td> </tr> <tr> <td>8.000 MHz</td> <td>12.50 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> <tr> <td>12.50 MHz</td> <td>15.00 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> </tbody> </table>		Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper	81.00 MHz	82.00 MHz	2.00 MHz	-32.08	(-12.08)	-81.05 M	-32.89	(-12.89)	81.14 M		162.00 MHz	163.00 MHz	2.00 MHz	-34.25	(-14.20)	-82.35 M	-34.07	(-14.07)	82.44 M		162.1 MHz	162.2 MHz	2.00 MHz	-56.14	(-16.10)	-241.8 M	-58.49	(-19.71)	234.9 M		243.2 MHz	243.3 MHz	2.00 MHz	-56.22	(-16.22)	-311.7 M	-50.99	(-20.99)	287.1 M		8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—		12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—		<p>Start Freq</p> <table border="1"> <thead> <tr> <th>Start Freq</th> <th>Stop Freq</th> <th>Integ BW</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>Upper</th> </tr> </thead> <tbody> <tr> <td>81.10 MHz</td> <td>82.10 MHz</td> <td>2.00 MHz</td> <td>-32.05</td> <td>(-12.05)</td> <td>-81.20 M</td> <td>-32.87</td> <td>(-12.87)</td> <td>81.14 M</td> <td></td> </tr> <tr> <td>162.2 MHz</td> <td>163.2 MHz</td> <td>2.00 MHz</td> <td>-35.07</td> <td>(-13.07)</td> <td>-249.0 M</td> <td>-34.87</td> <td>(-13.87)</td> <td>249.0 M</td> <td></td> </tr> <tr> <td>162.2 MHz</td> <td>162.3 MHz</td> <td>2.00 MHz</td> <td>-56.24</td> <td>(-16.66)</td> <td>-241.0 M</td> <td>-58.17</td> <td>(-19.89)</td> <td>239.8 M</td> <td></td> </tr> <tr> <td>243.3 MHz</td> <td>243.4 MHz</td> <td>2.00 MHz</td> <td>-56.13</td> <td>(-16.13)</td> <td>-245.5 M</td> <td>-45.59</td> <td>(-21.59)</td> <td>296.7 M</td> <td></td> </tr> <tr> <td>8.000 MHz</td> <td>12.50 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> <tr> <td>12.50 MHz</td> <td>15.00 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> </tbody> </table>		Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper	81.10 MHz	82.10 MHz	2.00 MHz	-32.05	(-12.05)	-81.20 M	-32.87	(-12.87)	81.14 M		162.2 MHz	163.2 MHz	2.00 MHz	-35.07	(-13.07)	-249.0 M	-34.87	(-13.87)	249.0 M		162.2 MHz	162.3 MHz	2.00 MHz	-56.24	(-16.66)	-241.0 M	-58.17	(-19.89)	239.8 M		243.3 MHz	243.4 MHz	2.00 MHz	-56.13	(-16.13)	-245.5 M	-45.59	(-21.59)	296.7 M		8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—		12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—	
Ref Carrier Power	Spectrum Peak Ref																																																																																																																																																										
3.06 dBm / 162.1 MHz	-11.96 dBm																																																																																																																																																										
Ref Carrier Power	Spectrum Peak Ref																																																																																																																																																										
4.08 dBm / 162.2 MHz	-10.87 dBm																																																																																																																																																										
Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper																																																																																																																																																		
81.00 MHz	82.00 MHz	2.00 MHz	-32.08	(-12.08)	-81.05 M	-32.89	(-12.89)	81.14 M																																																																																																																																																			
162.00 MHz	163.00 MHz	2.00 MHz	-34.25	(-14.20)	-82.35 M	-34.07	(-14.07)	82.44 M																																																																																																																																																			
162.1 MHz	162.2 MHz	2.00 MHz	-56.14	(-16.10)	-241.8 M	-58.49	(-19.71)	234.9 M																																																																																																																																																			
243.2 MHz	243.3 MHz	2.00 MHz	-56.22	(-16.22)	-311.7 M	-50.99	(-20.99)	287.1 M																																																																																																																																																			
8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			
12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			
Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper																																																																																																																																																		
81.10 MHz	82.10 MHz	2.00 MHz	-32.05	(-12.05)	-81.20 M	-32.87	(-12.87)	81.14 M																																																																																																																																																			
162.2 MHz	163.2 MHz	2.00 MHz	-35.07	(-13.07)	-249.0 M	-34.87	(-13.87)	249.0 M																																																																																																																																																			
162.2 MHz	162.3 MHz	2.00 MHz	-56.24	(-16.66)	-241.0 M	-58.17	(-19.89)	239.8 M																																																																																																																																																			
243.3 MHz	243.4 MHz	2.00 MHz	-56.13	(-16.13)	-245.5 M	-45.59	(-21.59)	296.7 M																																																																																																																																																			
8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			
12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			
U-NII-8, 6 985 MHz				U-NII-8, 6 985 MHz																																																																																																																																																							
<p>Spectrum Analyzer 1 Sweat SA</p> <p>KEYSIGHT Input RF Coupling: DC R T → Align: Auto</p> <p>Input 7.50 O Corrections: On Freq Ref. Int (S) NFE: Adaptive</p> <p>PASS</p>		<p>Spectrum Analyzer 2 Occupied BW</p> <p>Atten: 10 dB</p> <p>Trig: Free Run Gate: Off IF Gain: Low</p> <p>Center Freq: 6.98500000 GHz AvgHold: 100.00% of 300 Radio Std: None</p>		<p>Spectrum Analyzer 3 SEM</p> <p>Channel Power</p>		<p>Spectrum Analyzer 4 Channel Power</p>																																																																																																																																																					
<p>1 Graph</p> <p>Scale/Div 10 dB</p> <p>Ref Value 0.00 dBm</p> <p>Disp Center 6.9850 GHz</p> <p>Chan Det: Average, #Offs Det: Average</p> <p>Span 800.00 MHz</p> <p>10001 pts</p>				<p>1 Graph</p> <p>Scale/Div 10 dB</p> <p>Ref Value 0.00 dBm</p> <p>Disp Center 6.9850 GHz</p> <p>Chan Det: Average, #Offs Det: Average</p> <p>Span 800.00 MHz</p> <p>10001 pts</p>																																																																																																																																																							
<p>2 Table</p> <table border="1"> <thead> <tr> <th>Ref Carrier Power</th> <th>Spectrum Peak Ref</th> </tr> </thead> <tbody> <tr> <td>3.85 dBm / 162 MHz</td> <td>-11.08 dBm</td> </tr> </tbody> </table>		Ref Carrier Power	Spectrum Peak Ref	3.85 dBm / 162 MHz	-11.08 dBm	<p>2 Table</p> <table border="1"> <thead> <tr> <th>Ref Carrier Power</th> <th>Spectrum Peak Ref</th> </tr> </thead> <tbody> <tr> <td>3.43 dBm / 162 MHz</td> <td>-11.35 dBm</td> </tr> </tbody> </table>		Ref Carrier Power	Spectrum Peak Ref	3.43 dBm / 162 MHz	-11.35 dBm	<p>Start Freq</p> <table border="1"> <thead> <tr> <th>Start Freq</th> <th>Stop Freq</th> <th>Integ BW</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>Upper</th> </tr> </thead> <tbody> <tr> <td>81.00 MHz</td> <td>82.00 MHz</td> <td>2.00 MHz</td> <td>-31.24</td> <td>(-11.27)</td> <td>-81.01 M</td> <td>-34.86</td> <td>(-14.86)</td> <td>81.03 M</td> <td></td> </tr> <tr> <td>162.00 MHz</td> <td>163.00 MHz</td> <td>2.00 MHz</td> <td>-31.25</td> <td>(-13.25)</td> <td>-82.08 M</td> <td>-38.33</td> <td>(-18.33)</td> <td>82.10 M</td> <td></td> </tr> <tr> <td>162.0 MHz</td> <td>162.0 MHz</td> <td>2.00 MHz</td> <td>-56.43</td> <td>(-17.15)</td> <td>-238.3 M</td> <td>-60.28</td> <td>(-20.39)</td> <td>242.5 M</td> <td></td> </tr> <tr> <td>243.0 MHz</td> <td>243.0 MHz</td> <td>2.00 MHz</td> <td>-56.09</td> <td>(-17.09)</td> <td>-243.5 M</td> <td>-62.54</td> <td>(-22.54)</td> <td>309.6 M</td> <td></td> </tr> <tr> <td>8.000 MHz</td> <td>12.50 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> <tr> <td>12.50 MHz</td> <td>15.00 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> </tbody> </table>		Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper	81.00 MHz	82.00 MHz	2.00 MHz	-31.24	(-11.27)	-81.01 M	-34.86	(-14.86)	81.03 M		162.00 MHz	163.00 MHz	2.00 MHz	-31.25	(-13.25)	-82.08 M	-38.33	(-18.33)	82.10 M		162.0 MHz	162.0 MHz	2.00 MHz	-56.43	(-17.15)	-238.3 M	-60.28	(-20.39)	242.5 M		243.0 MHz	243.0 MHz	2.00 MHz	-56.09	(-17.09)	-243.5 M	-62.54	(-22.54)	309.6 M		8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—		12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—		<p>Start Freq</p> <table border="1"> <thead> <tr> <th>Start Freq</th> <th>Stop Freq</th> <th>Integ BW</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>dB</th> <th>ULimit(dB)</th> <th>Freq (Hz)</th> <th>Upper</th> </tr> </thead> <tbody> <tr> <td>81.02 MHz</td> <td>82.02 MHz</td> <td>2.00 MHz</td> <td>-31.52</td> <td>(-11.52)</td> <td>-81.02 M</td> <td>-34.46</td> <td>(-14.49)</td> <td>81.05 M</td> <td></td> </tr> <tr> <td>162.0 MHz</td> <td>163.0 MHz</td> <td>2.00 MHz</td> <td>-32.07</td> <td>(-12.07)</td> <td>-240.0 M</td> <td>-36.73</td> <td>(-16.73)</td> <td>240.0 M</td> <td></td> </tr> <tr> <td>162.0 MHz</td> <td>162.0 MHz</td> <td>2.00 MHz</td> <td>-57.04</td> <td>(-17.04)</td> <td>-236.7 M</td> <td>-59.81</td> <td>(-19.89)</td> <td>241.8 M</td> <td></td> </tr> <tr> <td>243.0 MHz</td> <td>243.0 MHz</td> <td>2.00 MHz</td> <td>-56.70</td> <td>(-17.00)</td> <td>-306.8 M</td> <td>-62.74</td> <td>(-22.74)</td> <td>309.9 M</td> <td></td> </tr> <tr> <td>8.000 MHz</td> <td>12.50 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> <tr> <td>12.50 MHz</td> <td>15.00 MHz</td> <td>1.000 MHz</td> <td>—</td> <td>(—)</td> <td>—</td> <td>—</td> <td>(—)</td> <td>—</td> <td></td> </tr> </tbody> </table>		Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper	81.02 MHz	82.02 MHz	2.00 MHz	-31.52	(-11.52)	-81.02 M	-34.46	(-14.49)	81.05 M		162.0 MHz	163.0 MHz	2.00 MHz	-32.07	(-12.07)	-240.0 M	-36.73	(-16.73)	240.0 M		162.0 MHz	162.0 MHz	2.00 MHz	-57.04	(-17.04)	-236.7 M	-59.81	(-19.89)	241.8 M		243.0 MHz	243.0 MHz	2.00 MHz	-56.70	(-17.00)	-306.8 M	-62.74	(-22.74)	309.9 M		8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—		12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—	
Ref Carrier Power	Spectrum Peak Ref																																																																																																																																																										
3.85 dBm / 162 MHz	-11.08 dBm																																																																																																																																																										
Ref Carrier Power	Spectrum Peak Ref																																																																																																																																																										
3.43 dBm / 162 MHz	-11.35 dBm																																																																																																																																																										
Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper																																																																																																																																																		
81.00 MHz	82.00 MHz	2.00 MHz	-31.24	(-11.27)	-81.01 M	-34.86	(-14.86)	81.03 M																																																																																																																																																			
162.00 MHz	163.00 MHz	2.00 MHz	-31.25	(-13.25)	-82.08 M	-38.33	(-18.33)	82.10 M																																																																																																																																																			
162.0 MHz	162.0 MHz	2.00 MHz	-56.43	(-17.15)	-238.3 M	-60.28	(-20.39)	242.5 M																																																																																																																																																			
243.0 MHz	243.0 MHz	2.00 MHz	-56.09	(-17.09)	-243.5 M	-62.54	(-22.54)	309.6 M																																																																																																																																																			
8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			
12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			
Start Freq	Stop Freq	Integ BW	dB	ULimit(dB)	Freq (Hz)	dB	ULimit(dB)	Freq (Hz)	Upper																																																																																																																																																		
81.02 MHz	82.02 MHz	2.00 MHz	-31.52	(-11.52)	-81.02 M	-34.46	(-14.49)	81.05 M																																																																																																																																																			
162.0 MHz	163.0 MHz	2.00 MHz	-32.07	(-12.07)	-240.0 M	-36.73	(-16.73)	240.0 M																																																																																																																																																			
162.0 MHz	162.0 MHz	2.00 MHz	-57.04	(-17.04)	-236.7 M	-59.81	(-19.89)	241.8 M																																																																																																																																																			
243.0 MHz	243.0 MHz	2.00 MHz	-56.70	(-17.00)	-306.8 M	-62.74	(-22.74)	309.9 M																																																																																																																																																			
8.000 MHz	12.50 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			
12.50 MHz	15.00 MHz	1.000 MHz	—	(—)	—	—	(—)	—																																																																																																																																																			