

FCC Test Report

Product Name	BIKE POWER TRAINER
Model No.	NOZA V
FCC ID.	2A2P5NOZAV

Applicant	Acer Gadget Inc.
Address	6th Floor, No. 68 Ruiguang Road, Neihu District, Taipei City

Date of Receipt	Jan. 25, 2022
Issued Date	Apr. 28, 2022
Report No.	2210755R-RFUSOTHV13-A
Report Version	V0.1-Draft

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Report

Issued Date: Apr. 28, 2022

Report No.: 2210755R-RFUSOTHV13-A

	1	
Product Name	BIKE POWER TRAINER	
Applicant	Acer Gadget Inc.	
Address	6th Floor, No. 68 Ruiguang Road, Neihu District, Taipei City	
Manufacturer	Acer Gadget Inc.	
Model No.	NOZA V	
FCC ID.	2A2P5NOZAV	
EUT Rated Voltage	AC 100-240V, 50/60Hz	
EUT Test Voltage	AC 120V/60Hz	
Trade Name	XPLOVA	
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C	
	ANSI C63.4: 2014, ANSI C63.10: 2013	
Test Result	Complied	

Documented By	:	Ida Tung
		(Project Specialist / Ida Tung)
Tested By	:	Ivan Chuang
		(Senior Engineer / Ivan Chuang)
Approved By	:	Jack Usu
		(Senior Engineer / Jack Hsu)

TABLE OF CONTENTS

Des	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
1.2.	Tested System Details	
1.3.	Configuration of Tested System	
1.4.	EUT Exercise Software	
1.5.	Test Facility	
1.6.	List of Test Equipment	
1.7.	Uncertainty	
2.	CONDUCTED EMISSION	10
2.1.	Test Setup	10
2.2.	Limits	
2.3.	Test Procedure	
2.4.	Test Result of Conducted Emission	
3.	PEAK POWER OUTPUT	
3.1.	Test Setup	
3.2.	Limit	
3.3.	Test Procedure	
3.4.	Test Result of Peak Power Output	
4.	RADIATED EMISSION	
4.1.	Test Setup	
4.2.	Limits	
4.3.	Test Procedure	
4.4.	Test Result of Radiated Emission	
5.	RF ANTENNA CONDUCTED TEST	
5.1.	Test Setup	
5.2.	Limits	
5.3.	Test Procedure	
5.4.	Test Result of RF Antenna Conducted Test	
6.	BAND EDGE	
6.1.	Test Setup	
6.2.	Limit	
6.3.	Test Procedure	
6.4.	Test Result of Band Edge	
7.	6DB BANDWIDTH	27
7.1.	Test Setup	
7.2.	Limits	27
7.3.	Test Procedure	
7.4.	Test Result of 6dB Bandwidth	28
8.	POWER DENSITY	
8.1.	Test Setup	
8.2.	Limits	
8.3.	Test Procedure	
8.4.	Test Result of Power Density	30
9.	DUTY CYCLE	31
9.1.	Test Setup	
9.2.	Test Procedure	
9.3.	Test Result of Duty Cycle	32
10.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	
	ndix 1: EUT Test Photographs	
- PPCI		

Appendix 2: Product Photos-Please refer to the file: 2210755R-Product Photos

Revision History

Report No.	Version	Description	Issued Date
2210755R-RFUSOTHV13-A	V0.1-Draft	Initial issue of report.	Apr. 28, 2022

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	BIKE POWER TRAINER	
Trade Name	XPLOVA	
Model No.	NOZA V	
FCC ID.	2A2P5NOZAV	
Frequency Range	2457MHz	
Channel Number	1CH	
Type of Modulation	GFSK	
Antenna Type	PCB Antenna	
Channel Control	Auto	
Antenna Gain	Refer to the table "Antenna List"	
Power Cable	Trade Name: DSS, M/N: DSS100-2400400, Non-shielded, 1.8m	
Power Adapter	Trade Name: DSS, M/N: DSS100-2400400	
	Input: AC 100-240V ~2.5A, 50/60Hz	
	Output: DC 24.0V, 4.0A	
	Cable Out: Non-shielded, 1.8m	

Antenna List

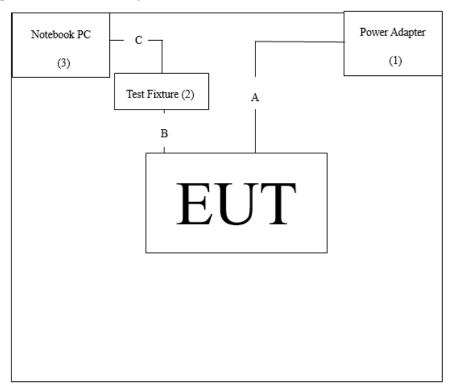
No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Darfon Electronics Corp.	NOZA V	PCB Antenna	-13.8dBi for 2.4GHz

Note: The antenna of EUT is conforming to FCC 15.203.

Note:

- 1. The EUT is a BIKE POWER TRAINER with a built-in ANT+ and Bluetooth V5.0 transceiver, this report is for ANT+.
- 2. The EUT has two different appearances.
- 3. These tests were conducted on a sample for the purpose of demonstrating compliance of 2.4GHz transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.

Test Mode	Mode 1: Transmit	
-----------	------------------	--


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Power Adapter	DSS	DSS100-2400400	N/A	N/A
2	Test Fixture	Acer Gadget	TRIVIA_SA	N/A	N/A
3	Notebook PC	DELL	Inspiron 15 3000	GT5JPJ2	N/A

Signal Cable Type		Signal cable Description	
A	Power Cable	Non-shielded, 1.8m	
В	Signal Cable	Non-shielded, 0.1m	
C	USB Cable	Shielded, 2m, with two ferrite cores bonded.	

1.3. Configuration of Tested System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.3.
- (2) Execute software "Tera Term Version 4.105" on the notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
Conducted Facinities	Temperature (°C)	10~40 °C	23.9 °C
Conducted Emission	Humidity (%RH)	10~90 %	59.6 %
D 11 4 1 E 1 1	Temperature (°C)	10~40 °C	25.0 °C
Radiated Emission	Humidity (%RH)	10~90 %	63.7 %
Canalantina	Temperature (°C)	10~40 °C	22.0 °C
Conductive	Humidity (%RH)	10~90 %	55.0 %

USA : FCC Registration Number: TW0033

Canada : CAB Identifier Number: TW3023 / Company Number: 26930

Site Description : Accredited by TAF

Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd

Address : No. 5-22, Ruishukeng Linkou District, New Taipei City,

24451, Taiwan

Performed Location : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City

333411, Taiwan, R.O.C.

Phone number : +886-3-275-7255

Fax number : +866-3-327-8031

Email address : info.tw@dekra.com

Website : http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction measurements /SH1

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	EMI Test Receiver	R&S	ESR7	101601	2021.06.19	2022.06.18
X	Two-Line V-Network	R&S	ENV216	102202	2021.06.16	2022.06.15
X	Two-Line V-Network	R&S	ENV216	101307	2021.05.04	2022.05.03
X	Coaxial Cable	SUHNER	RG400_BNC	RF001	2021.05.24	2022.05.23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: AUDIX e3 V9

For Conducted measurements /SH2

		Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
3	X	Spectrum Analyzer	R&S	FSV30	103466	2021.12.27	2022.12.26
3	X	Peak Power Analyzer	KEYSIGHT	8900B	MY51000539	2021.06.07	2022.06.06
	X	Power Sensor	KEYSIGHT	N1923A	MY59240002	2021.05.17	2022.05.16
2	X	Power Sensor	KEYSIGHT	N1923A	MY59240003	2021.05.17	2022.05.16

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: DEKRA Conduction Test System V9.0.5

For Radiated measurements /966-1

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
	Loop Antenna	AMETEK	HLA6121	49611	2022.03.18	2023.03.17
X	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021.08.10	2022.08.09
X	Horn Antenna	ETS-Lindgren	3117	00201259	2021.11.09	2022.11.08
	Horn Antenna	Com-Power	AH-840	101087	2021.06.18	2022.06.17
	Pre-Amplifier	SGH	EM330	60736	2021.08.11	2022.08.10
X	Pre-Amplifier	EMCI	EMC051835SE	980312	2022.02.22	2023.02.21
	Pre-Amplifier	EMCI	EMC05820SE	980362	2021.08.24	2022.08.23
	Pre-Amplifier	EMCI	EMC184045SE	980369		
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2021.04.27	2022.04.26
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242		
X	Filter	MICRO TRONICS	BRM50702	G251	2021.09.16	
	Filter	MICRO TRONICS	BRM50716	G188	2021.09.16	2022.09.15
X	EMI Test Receiver	R&S	ESR	102792	2021.12.15	2022.12.14
X	Spectrum Analyzer	R&S	FSV3044	101113	2022.01.25	2023.02.24
	Coaxial Cable	SUHNER	SUCOFLEX 106	25450/6		
X	Coaxial Cable	SGH	HA800	GD20110222-8 2021003-8	2022 03 05	2023 03 04
Λ	Coaxial Cable	SGH	SGH18	2021003-8	2022.03.03	2023.03.04
	Coaxial Cable	EMCI	EMC106	151113		

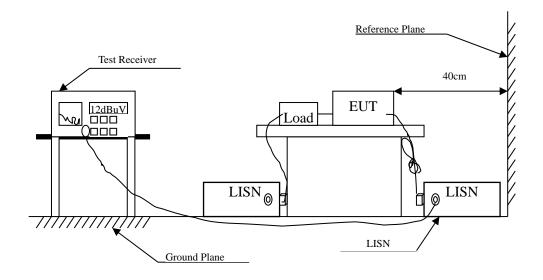
Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: AUDIX e3 V9

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty	
Conducted Emission	±3.42 dB	
Peak Power Output	±0.91	dB
Dedicated Englander	Under 1GHz	Above 1GHz
Radiated Emission	±4.06 dB	±3.73 dB
RF Antenna Conducted Test	±2.53 dB	
D 151	Under 1GHz	Above 1GHz
Band Edge	±4.06 dB	±3.73 dB
6dB Bandwidth	±682.83 Hz	
Power Density	±2.53 dB	
Duty Cycle	±2.31 ms	

2. Conducted Emission

2.1. Test Setup

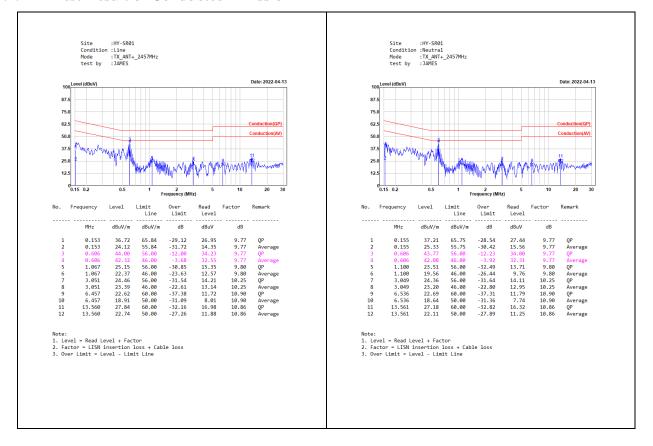
2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AV				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

Remarks: In the above table, the tighter limit applies at the band edges.

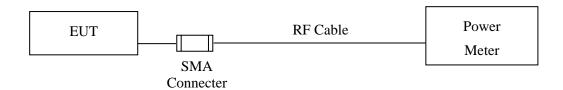
2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)


Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2014; tested to DTS test procedure of FCC KDB-558074 for compliance to FCC 47CFR Subpart C requirements.


2.4. Test Result of Conducted Emission

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

3.3. Test Procedure

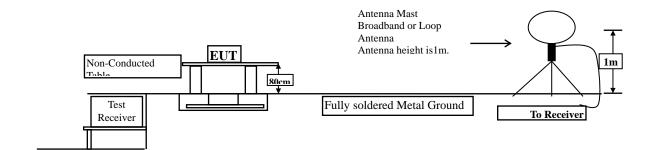
The EUT was tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method.

3.4. Test Result of Peak Power Output

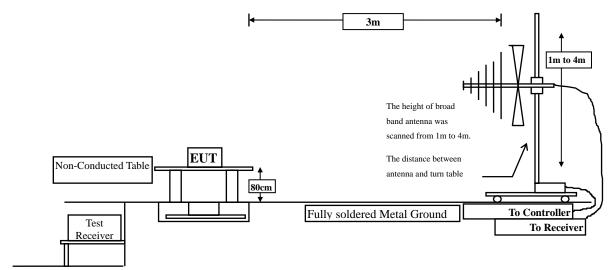
Product : BIKE POWER TRAINER

Test Item : Peak Power Output Test Mode : Mode 1: Transmit

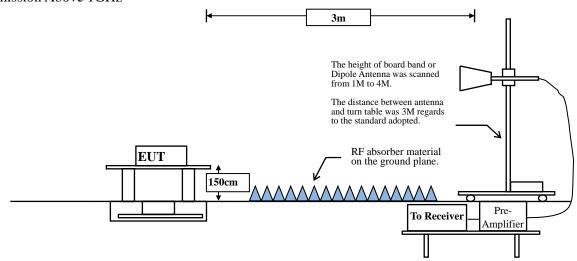
Test Date : 2022/03/07


Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
01	2457	1.57	1 Watt= 30 dBm	Pass

4. Radiated Emission


4.1. Test Setup

Radiated Emission Under 30MHz



3m

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

Page: 15 of 33

4.2. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	Field strength	Measurement distance				
IVIIIZ	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks:

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

Page: 17 of 33

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 —RBW as a function of frequency

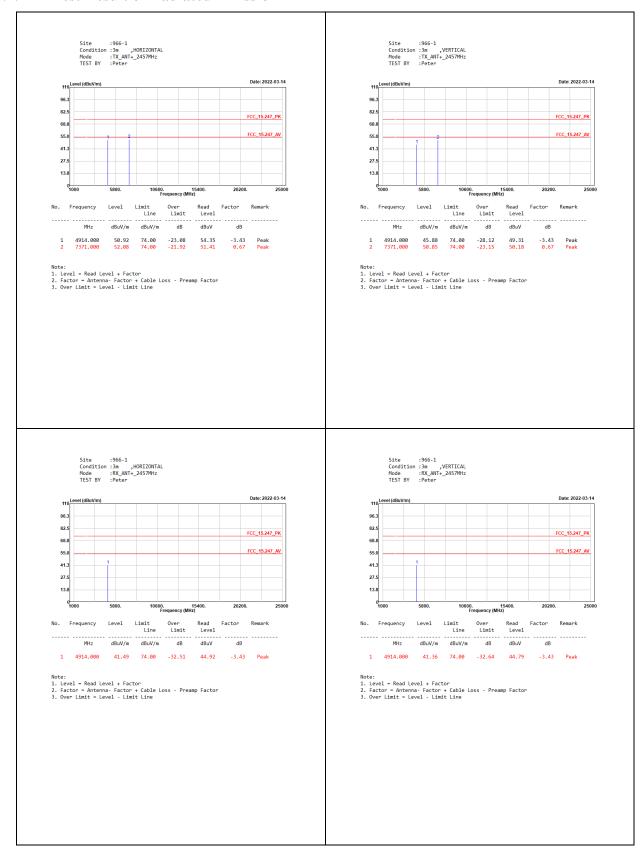
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \geq 98 %

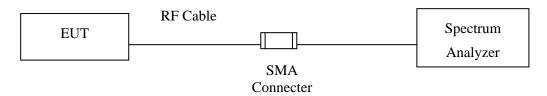
 $VBW \ge 1/T$, when duty cycle < 98 %


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
ANT+	100.00	-		10

Note: Duty Cycle Refer to Section 9.

4.4. Test Result of Radiated Emission



5. RF Antenna Conducted Test

5.1. Test Setup

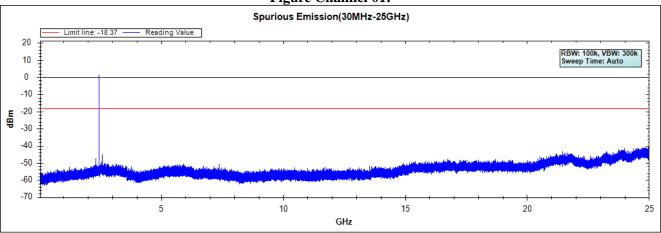
5.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.3. Test Procedure

The EUT was tested according to C63.10:2013 Section 11.11 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

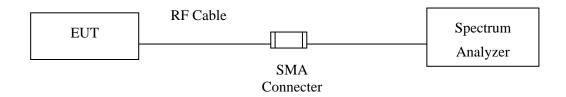

5.4. Test Result of RF Antenna Conducted Test

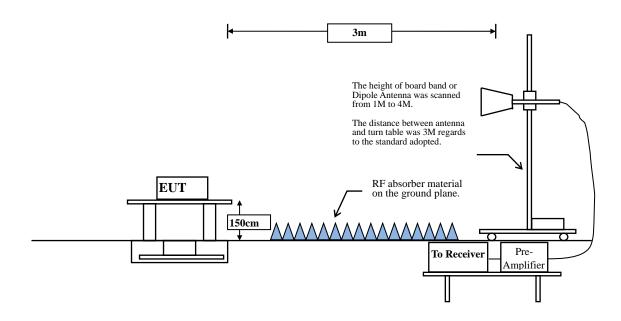
Product : BIKE POWER TRAINER
Test Item : RF Antenna Conducted Test

Test Mode : Mode 1: Transmit

Test Date : 2022/03/07

Figure Channel 01:


Note: The above test pattern is synthesized by multiple of the frequency range.


6. Band Edge

6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.2. Limit

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 —RBW as a function of frequency

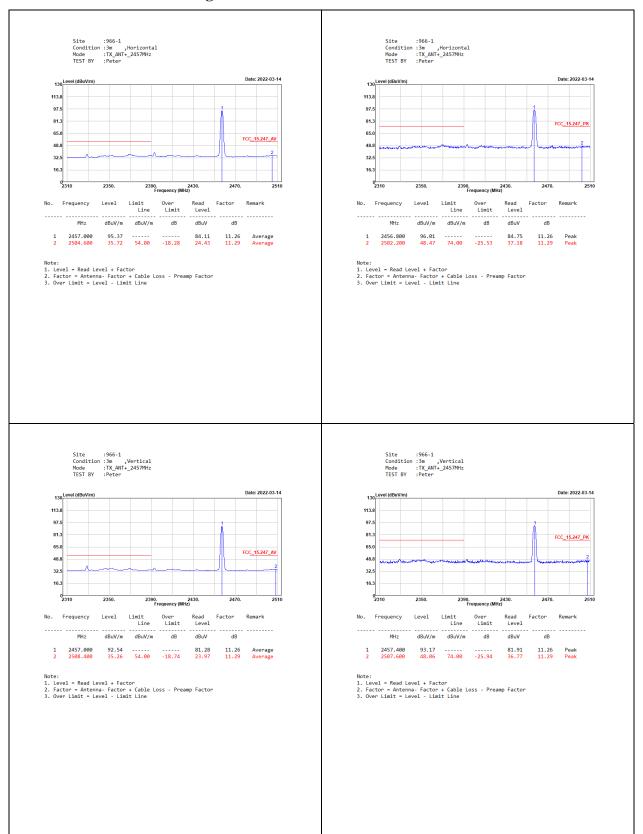
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

RBW = 1MHz.

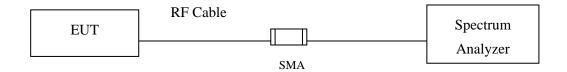
VBW = 10Hz, when duty cycle \geq 98 %

 $VBW \ge 1/T$, when duty cycle < 98 %


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
ANT+	100.00			10

Note: Duty Cycle Refer to Section 9


6.4. Test Result of Band Edge

7. 6dB Bandwidth

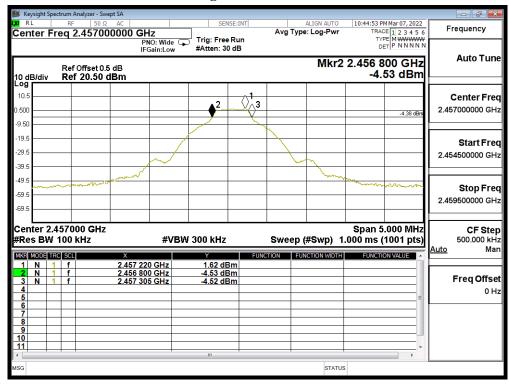
7.1. Test Setup

7.2. Limits

The minimum bandwidth shall be at least 500 kHz.

7.3. Test Procedure

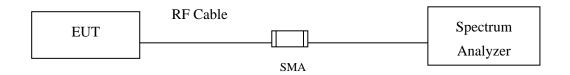
The EUT was setup according to ANSI C63.4, 2014; tested according to ANSI C63.10 Section 11.8 for compliance to FCC 47CFR 15.247 requirements.



7.4. Test Result of 6dB Bandwidth

Product : BIKE POWER TRAINER
Test Item : 6dB Bandwidth Data
Test Mode : Mode 1: Transmit

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
01	2457	505	>500	Pass


Figure Channel 01:

8. Power Density

8.1. Test Setup

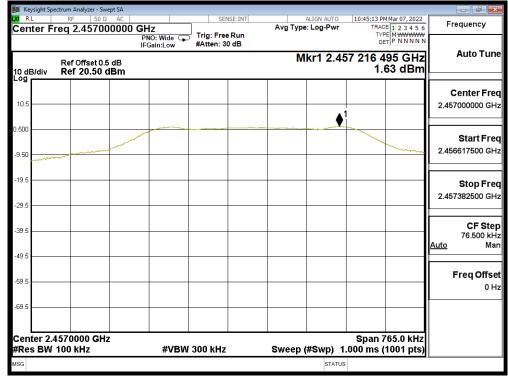
8.2. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

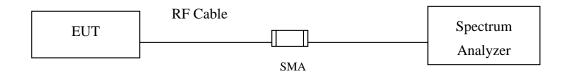
The maximum power spectral density using C63.10 Section 11.10.2 Method PKPSD (peak PSD)


8.4. Test Result of Power Density

Product : BIKE POWER TRAINER

Test Item : Power Density Data
Test Mode : Mode 1: Transmit

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
01	2457	1.63	≦8dBm	Pass



9. Duty Cycle

9.1. Test Setup

9.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

9.3. Test Result of Duty Cycle

Product : BIKE POWER TRAINER

Test Item : Duty Cycle

Test Mode : Mode 1: Transmit

Duty Cycle Formula:

 $Duty \ Cycle = Ton \ / \ (Ton + Toff)$

Duty Factor = 10 Log (1/Duty Cycle)

Results:

2.4GHz band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
ANT+	1.0000	1.0000	100.00	0.00

ANT+

10. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Page: 33 of 33