Global United Technology Services Co., Ltd.

Report No.: GTSL202107000238F01

TEST REPORT

Applicant: Shenzhen Star Wisdom Technology Co., Ltd

Building 3, Binxiuhua Industrial Park, Huada Road, Longhua **Address of Applicant:**

District, Shenzhen, China

Shenzhen Star Wisdom Technology Co., Ltd Manufacturer/Factory:

Address of Building 3, Binxiuhua Industrial Park, Huada Road, Longhua

District, Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: tablet PC

Model No.: X8, X101, X102, X103, X104, X801, X802, X803, X804

FCC ID: 2A2P3-X8

Applicable standards: FCC CFR Title 47 Part 2

> FCC CFR Title 47 Part 22 Subpart H FCC CFR Title 47 Part 24 Subpart E

Date of sample receipt: July 23, 2021

Date of Test: July 26, 2021-August 11, 2021

Date of report issued: August 11, 2021

PASS * Test Result:

Authorized Signature:

Robinson **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description			
00	August 11, 2021	Original			
	2 2 2 2				

Prepared By:	Tizer Che	Date:	August 11, 2021	
	Project Engineer			10
Check By:	Lopinson lun	Date:	August 11, 2021	

3 Contents

		Page
1		1
2	2 VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 RELATED SUBMITTAL(S) / GRANT (S)	
	5.3 TEST METHODOLOGY	
	5.4 DEVIATION FROM STANDARDS	7
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6 TEST FACILITY	7
	5.7 TEST LOCATION	7
6	TEST INSTRUMENTS LIST	8
7		
	7.1 TEST MODE	
	7.2 CONFIGURATION OF TESTED SYSTEM	
	7.3 CONDUCTED PEAK OUTPUT POWER & ERP/EIRP	
	7.4 PEAK-TO-AVERAGE RATIO	
	7.5 OCCUPY BANDWIDTH	
	7.6 MODULATION CHARACTERISTIC	14
	7.7 OUT OF BAND EMISSION AT ANTENNA TERMINALS	
	7.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
	7.9 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
	7.10 FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	20
8	TEST SETUP PHOTO	20
a	ELIT CONSTRUCTIONAL DETAILS	20

4 Test Summary

Test Item	Section in CFR 47	Result
DE Eventuel	Part 1.1307	Pass
RF Exposure	Part 2.1093	(refer to SAR report)
RF Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c)	Pass
Peak-to-Average Ratio	Part 2.1046 Part 22.913(d) Part 24.232(d)	Pass
Modulation Characteristics	Part 2.1047	Pass
99% Occupied Bandwidth & 26dB Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b)	Pass
	Part 2.1051	
Spurious Emissions at Antenna Terminal	Part 22.917	Pass
	Part 24.238	
	Part 2.1053	
Field Strength of Spurious Radiation	Part 22.917	Pass
	Part 24.238	
Out of band emission, Band Edge	Part 2.1051 Part 22.917	Pass
	Part 24.238	
ERP and EIRP	Part 22.913(a) Part 24.232(b)	Pass
Frequency stability vs. temperature	Part 2.1055(a)(1)(b) Part 22.355 Part 24.235	Pass
Frequency stability vs. voltage	Part 24.235 Part 2.1055(d)(1)(2) Part 22.355 Part 24.235	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 General Description of EUT

200	Product Name:	tablet PC
	Model No.:	X8, X101, X102, X103, X104, X801, X802, X803, X804
20		
2	Test Model No:	X8
		are identical in the same PCB layout, interior structure and electrical circuits.
£	The differences are appear	rance, size and model name for commercial purpose.
d	Test sample(s) ID:	GTSL202107000238-1
2	Sample(s) Status:	Engineer sample
	S/N:	N/A
Topological Services	Hardware Version:	K1006C9 -MB-V1.31
	Software Version:	Android 5.1
65	Support Networks:	GSM, GPRS, EGPRS
87	Support Bands:	GSM850, PCS1900
_ 5	TX Frequency:	GSM850: 824.20MHz-848.80MHz
0		PCS1900: 1850.20MHz-1909.80MHz
4	GPRS Class:	10
0	EGPRS Class	12
4	Release	R99
6	Modulation type:	GSM/GPRS: GMSK
8		EGPRS: GMSK/8PSK
45	Antenna type:	FPC antenna
82	Antenna gain:	GSM850:2dBi
		PCS1900:2dBi
0	Power supply:	DC 3.7V by Rechargeable Li-ion Battery, 2900mAh
		For Adapter Input: 100-240V~, 50/60Hz
- 67		Adapter Output: 5.0V===1500mA

Operation Frequency List:

Report No.: GTSL202107000238F01

GSM	850	PCS1900		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
128	824.20	512	1850.20	
129	824.40	513	1850.40	
189	836.40	660	1879.80	
190	836.60	661	1880.00	
191	836.80	662	1880.20	
		$\mathcal{S} \cdot : \mathcal{S} = \mathcal{S}$		
250	848.60	809	1909.60	
251	848.80	810	1909.80	

Regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Final test channel:

G	SM 850	PCS1900		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
128	824.20	512	1850.20	
190	836.60	661	1880.00	
251	848.80	810	1909.80	

5.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is filing to comply with Section Part 22/24 of the FCC CFR 47 Rules.

5.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures document on ANSI C63.26:2015 and FCC CFR 47.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

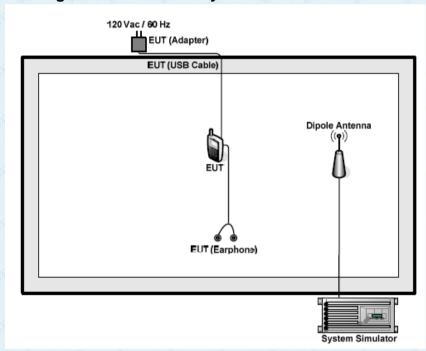
Rad	iated Emission:	6 6	6 6 6	60	60 60	6 6
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022

Gene	General used equipment:						
Item Test Equipment Manufacturer Model No.		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022	
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022	

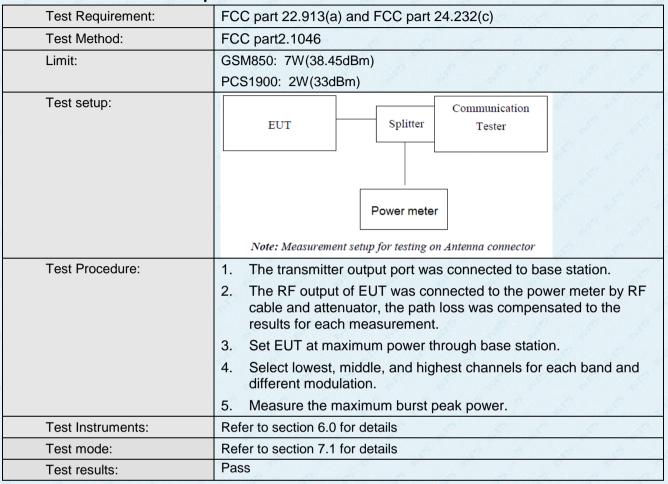
7 System test configuration

7.1 Test mode

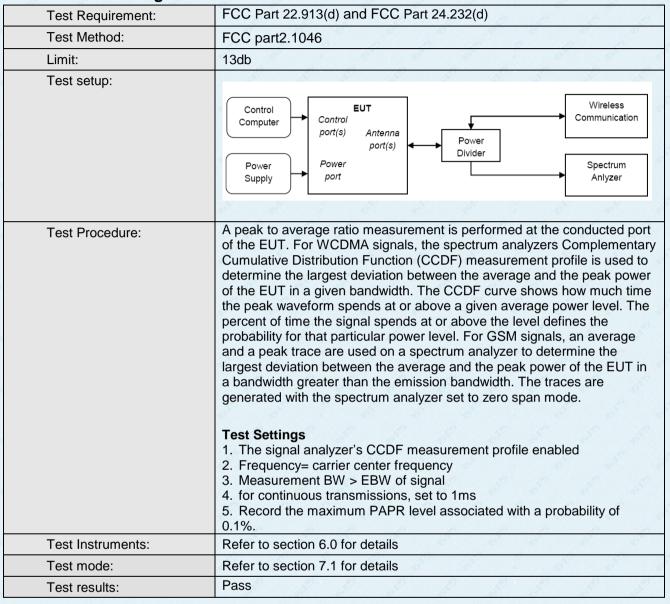

During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT

is rotated on three test planes to find out the worst emission.

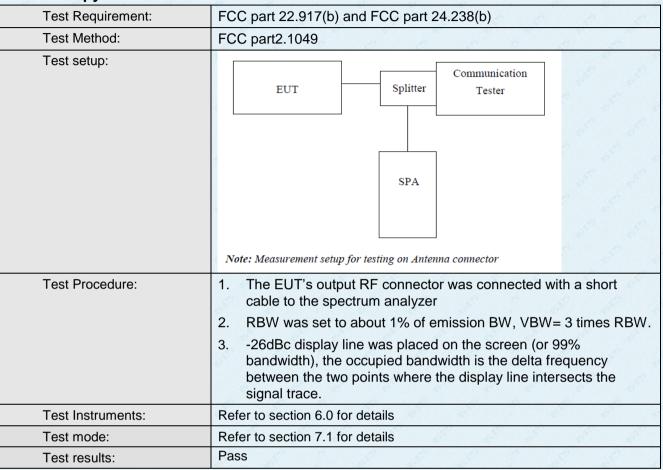
	Test modes	
Band	Radiated	Conducted
GSM 850	■ GSM link	■ GSM link
	■ GPRS 1 link	■ GPRS 1 link
	■ EPRS 1 link	■ EGPRS 1 link
PCS 1900	■ GSM link	■ GSM link
	■ GPRS 1 link	■ GPRS 1 link
	■ EGPRS 1 link	■ EGPRS 1 link


Note: The maximum power levels are GSM mode for GMSK link, GPRS multi-slot class 10 mode for GMSK link, EGPRS multi-slot class 12 mode for 8PSK link, RMC12.2Kbps mode for WCDMA Band V/II. only these modes were used for all tests.

7.2 Configuration of Tested System


7.3 Conducted Peak Output Power & ERP/EIRP

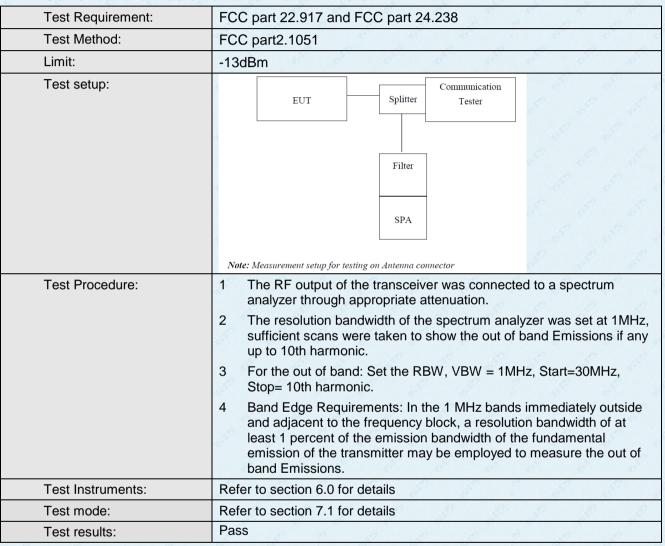
Measurement Data: The detailed test data see Appendix.


7.4 Peak-to-Average Ratio

Measurement Data: The detailed test data see Appendix.

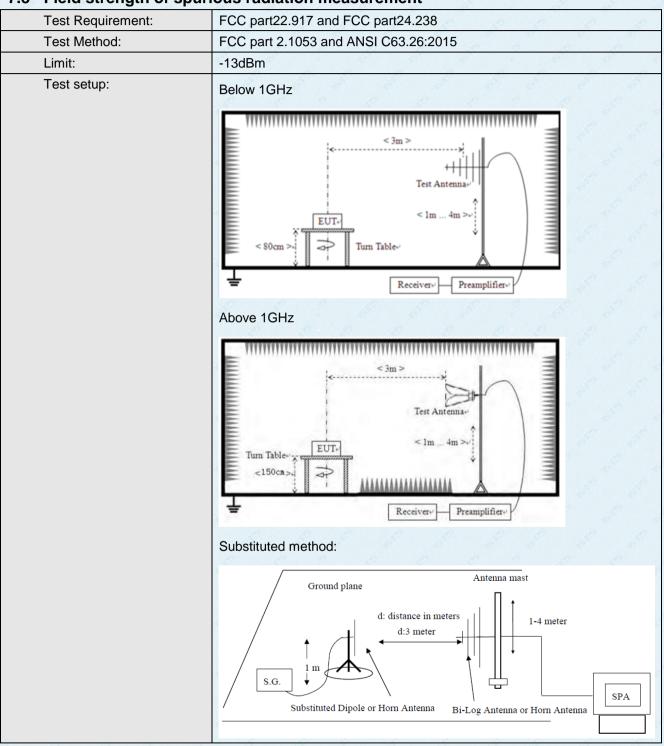
7.5 Occupy Bandwidth

Measurement Data: The detailed test data see Appendix.


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6 MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.


7.7 Out of band emission at antenna terminals

Measurement Data: The detailed test data see Appendix.

7.8 Field strength of spurious radiation measurement

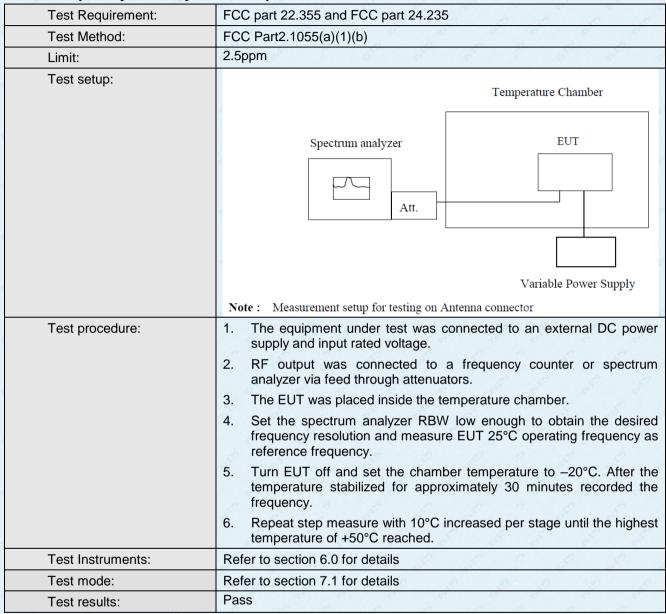
Test Procedure:	The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.
	2. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.
	3. The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission was identified, the power of the emission was determined using the substitution method.
	4. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.
	EIRP = S.G. output (dBm) + Antenna Gain(dB/dBi) -
	Cable Loss (dB)
	ERP=EIRP-2.15
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 7.1 for details
Test results:	Pass

Measurement Data

Report No.: GTSL202107000238F01

GSM 850									
Channel	Frequenc y(MHz)	Polari zation	SGP [dBm]	Substitution Gain[dBi]	Cable loss[dB]	ERP (dBm)	Limit (dBm)	Over Limit (dBm)	
Lowest	1648.40	Н	-47.86	6.74	2.37	-45.64	-13	-32.64	
	2472.60	H	-52.75	8.94	3.18	-49.14	-13	-36.14	
	3296.80	9 H &	-46.05	10.62	3.62	-41.2	-13	-28.2	
	1648.40	V	-50.1	6.74	2.37	-47.88	-13	-34.88	
	2472.60	V	-49.12	8.94	3.18	-45.51	-13	-32.51	
	3296.80	V	-48.51	10.62	3.62	-43.66	-13	-30.66	
Middle	1673.20	Ĥ	-46.24	6.74	2.39	-44.04	-13	-31.04	
	2509.80	Н 🕺	-50.84	8.94	3.03	-47.08	-13	-34.08	
	3346.40	Н	-48.31	10.62	3.63	-43.47	-13	-30.47	
	1673.20	V	-47.05	6.74	2.39	-44.85	-13	-31.85	
	2509.80	V	-51.75	8.94	3.03	-47.99	-13	-34.99	
	3346.40	٧	-48.73	10.62	3.63	-43.89	-13	-30.89	
Highest	1697.60	Н	-52.76	6.74	2.4	-50.57	-13	-37.57	
	2546.40	Ĥ	-46.35	8.94	3.06	-42.62	-13	-29.62	
	3395.20	🤊 Н 🐇	-51.37	10.62	3.64	-46.54	-13	-33.54	
	1697.60	V	-48	6.74	2.4	-45.81	-13	-32.81	
	2546.40	V	-48.72	8.94	3.06	-44.99	-13	-31.99	
	3395.20	V	-45.14	10.62	3.64	-40.31	-13	-27.31	

The emission levels of below 1 GHz are very lower than the limit so not show in test report



GSM 1900								
Channel	Frequenc y(MHz)	Polari zation	SGP [dBm]	Substitution Gain[dBi]	Cable loss[dB]	EIRP (dBm)	Limit (dBm)	Over Limit (dBm)
Lowest	3700.40	Н	-52.17	13.13	3.88	-42.92	-13	-29.92
	5550.60	Н€	-52.88	11.62	5.27	-46.53	-13	-33.53
	7400.80	Н	-46.08	10.22	6.73	-42.59	-13	-29.59
	3700.40	V	-54.78	13.13	3.88	-45.53	-13	-32.53
	5550.60	V	-52.65	11.62	5.27	-46.3	-13	-33.3
	7400.80	V	-52.39	10.22	6.73	-48.9	-13	-35.9
Middle	3760.00	H	-51.11	13.13	3.9	-41.88	-13	-28.88
	5640.00	Н	-47.92	11.62	5.33	-41.63	-13	-28.63
	7520.00	Н	-54.39	10.22	6.82	-50.99	-13	-37.99
	3760.00	V	-47.95	13.13	3.9	-38.72	-13	-25.72
	5640.00	V	-52.05	11.62	5.33	-45.76	-13	-32.76
	7520.00	V	-46.23	10.22	6.82	-42.83	-13	-29.83
Highest	3819.60	Н	-46.4	13.13	3.92	-37.19	-13	-24.19
	5729.40	Н€	-50	11.62	5.4	-43.78	-13	-30.78
	7639.20	H	-46.68	10.22	6.8	-43.26	-13	-30.26
	3819.60	V	-45.48	13.13	3.92	-36.27	-13	-23.27
	5729.40	V	-50.38	11.62	5.4	-44.16	-13	-31.16
	7639.20	V	-50.05	10.22	6.8	-46.63	-13	-33.63

The emission levels of below 1 GHz are very lower than the limit so not show in test report

7.9 Frequency stability V.S. Temperature measurement

Measurement Data: The detailed test data see Appendix.

7.10 Frequency stability V.S. Voltage measurement

FCC part 22.355 and FCC part 24.235					
FCC Part2.1055(d)(1)(2)					
Chamber					
EUT					
e Power Supply					
a variable DC power age to rated voltage. enough to obtain the					
I the frequency. treme voltage variation					
um frequency change.					
X					

Measurement Data: The detailed test data see Appendix.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the $\mbox{\bf appendix}\ \mbox{\bf II}$ for details.

-----End-----