

Choose Scandinavian trust

RADIO TEST REPORT – 446158-1R2TRFWL

Type of assessment:

Final product testing

Applicant:

Leako Systems Inc.

Model:

AKW-WDDS-01A

Product:

Water Leakage Sensor

Model variant(s):

AKW-TDS-01A

AKW-WDST-01A

AKW-WDDS-01A

AKW-WDS-01A

AKW-WDS-02A

FCC ID:

2A2LHAKW-WD

IC Registration number:

27520-AKWW

Specifications:

- ◆ FCC 47 CFR Part 15, Subpart C, §15.231
- ◆ RSS-210 Annex A.1, Issue 10, December 2019

Date of issue: **December 3, 2021**

Abdoulaye Ndiaye

Tested by

Signature

Yong Huang, EMC/RF Specialist

Reviewed by

Signature

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada.

The tests included in this report are within the scope of this accreditation.

The SCC Accreditation Symbol is an official symbol of the Standards Council of Canada, used under licence.

SCC File Number: 15064 (Ottawa/Almonte); 151100 (Montreal); 151097 (Cambridge)

Company name	Nemko Canada Inc.			
Facilities	<p><i>Ottawa site:</i> 303 River Road Ottawa, Ontario Canada K1V 1H2</p> <p>Tel: +1 613 737 9680 Fax: +1 613 737 9691</p>	<p><i>Montréal site:</i> 292 Labrosse Avenue Pointe-Claire, Québec Canada H9R 5L8</p> <p>Tel: +1 514 694 2684 Fax: +1 514 694 3528</p>	<p><i>Cambridge site:</i> 1-130 Saltsman Drive Cambridge, Ontario Canada N3E 0B2</p> <p>Tel: +1 519 650 4811</p>	<p><i>Almonte site:</i> 1500 Peter Robinson Road West Carleton, Ontario Canada K0A 1L0</p> <p>Tel: +1 613 256-9117 Fax: +1 613 256-8848</p>
Test site registration	Organization	Recognition numbers and location		
	FCC/ISED	FCC: CA2040; IC: 2040A-4 (Ottawa/Almonte); FCC: CA2041; IC: 2040G-5 (Montreal); CA0101 (Cambridge)		
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of contents	3
Section 1. Report summary	4
1.1 Test specifications	4
1.2 Test methods	4
1.3 Exclusions	4
1.4 Statement of compliance	4
1.5 Test report revision history	4
Section 2. Engineering considerations.....	5
2.1 Modifications incorporated in the EUT for compliance	5
2.2 Technical judgment	5
2.3 Deviations from laboratory tests procedures	5
Section 3. Test conditions.....	6
3.1 Atmospheric conditions	6
3.2 Power supply range	6
Section 4. Measurement uncertainty.....	7
4.1 Uncertainty of measurement	7
Section 5. Information provided by the applicant	8
5.1 Disclaimer	8
5.2 Applicant/Manufacture	8
5.3 EUT information	8
5.4 Radio technical information	9
5.5 EUT setup details	9
Section 6. Summary of test results.....	12
6.1 Testing location	12
6.2 Testing period	12
6.3 Sample information	12
6.4 FCC Part 15 Subpart A and C, general requirements test results	12
6.5 FCC Part 15 Subpart C, intentional radiators test results	12
6.6 ISED RSS-Gen, Issue 5, test results	13
6.7 ISED RSS-210, Issue 10, test results	13
Section 7. Test equipment	14
7.1 Test equipment list	14
Section 8. Testing data	15
8.1 Variation of power source	15
8.2 Number of frequencies	16
8.3 Antenna requirement	17
8.4 Conditions for intentional radiators to comply with periodic operation	18
8.5 Field strength of emissions	20
8.6 Emission bandwidth of momentary signals	27
Section 9. EUT photos.....	29
9.1 External photos	29

Section 1. Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.231 RSS-210 Annex A.1, Issue 10, December 2019	Periodic operation in the band 40.66–40.70 MHz and above 70 MHz Licence-Exempt Radio Apparatus: Category I Equipment. Momentarily operated devices
--	---

1.2 Test methods

ANSI C63.10 v2013 RSS-Gen, Issue 5, March 2019 RSS-102, Issue 5, March 19, 2015	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices General Requirements for Compliance of Radio Apparatus Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
---	--

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	August 25, 2021	Original report issued
R1TRF	October 20, 2021	P19 Figure 8.4-1 number of packets updated. P23 Figure 8.5-1, number of bits updated P24 the emission level at 1735.750 MHz updated P24 Average at 1301.875 MHz updated
R2TRF	December 3, 2021	ISED number, Model name updated on page 1 & 10. Limits updated on table 8.5-6, page 24. 99% Bandwidth updated on page 28

Section 2. Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

As declared by the applicant, the EUT model AKW-WDDS-01A has been chosen to be representative for all other models in the model family. The model family, and the description of the variations, are as follows:

AKW-WD is the family model. Therefore, the temperature sensor is installed in all variants, and have the same PCB in an electrical point of view. Only sensors or connector are installed only if required

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3. Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 4. Measurement uncertainty

4.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of $K = 2$ with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

Test name	Measurement uncertainty, \pm dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 5. Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Leako System Inc.
Applicant address	680 Boulevard des Laurentides, Piedmont, Quebec, J0R 1K0, Canada
Manufacture name	Same as applicant
Manufacture address	Same as applicant

5.3 EUT information

Product	Water Leakage Sensor
Model	AKW-WDDS-01A
Model variant(s)	AKW-TDS-01 AKW-WDST-01 AKW-WDDS-01A AKW-WDS-01A AKW-WDS-02A
Serial number	210001
Part number	Lek0123
Power supply requirements	Battery: 1.5 V _{DC}
Product description and theory of operation	AKW-WD is a Water Alarm system designed to prevent and detect water leaks. AKW-WD's main components include a Stainless fitting / Quick connect, a motorized valve (Master valve), a Water Alarm controller, Wireless leak sensors, Flow sensor, Vacancy sensor and other components such as a Remote control.

5.4 Radio technical information

Operation type	<input checked="" type="checkbox"/> Periodic <input type="checkbox"/> Non-periodic
Frequency band	260-470 MHz
Frequency (MHz)	434
RF power Max (W), Conducted	N/A
Field strength, dB μ V/m @ 3 m	84.68
Measured BW (kHz), 99% OBW	233.97
Type of modulation	ASK
Emission classification	K1D
Transmitter spurious, dB μ V/m @ 3 m	Peak: 53.59
Fundamental Field strength, dB μ V/m @ 3 m	Peak: 84.68
Antenna information	Type: Helicoidal antenna, Manufacturer: Flycore, Model: WL-433-01, Gain: 2dBi

5.5 EUT setup details

5.5.1 Radio exercise details

Operating conditions	The unit uses 1.5Vdc batteries. Therefore, when the switch button is pressed, the EUT start emitting in continuous mode automatically and a red led will flash continuously as well to confirm the transmission.
Transmitter state	Transmitter (Tx) was set into continuous mode.
Receiver state	N/A

5.5.2 EUT setup configuration**Table 5.5-1: EUT sub assemblies**

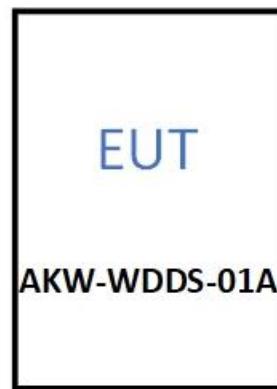

Description	Brand name	Model, Part number, Serial number, Revision level
Water Leakage Sensor	Leako Systems Inc.	MN: AKW-WDDS-01A, PN: Lek0123, SN: 210001, Rev. 05

Table 5.5-2: EUT interface ports

Description	Qty.
Jack port	1

EUT setup configuration, continued

Inside Anechoic
Chamber

Figure 5.5-1: Block diagram

Section 6. Summary of test results

6.1 Testing location

Test location (s)	Montreal
-------------------	----------

6.2 Testing period

Test start date	July 7, 2021	Test end date	August 24, 2021
-----------------	--------------	---------------	-----------------

6.3 Sample information

Receipt date	July 7, 2021	Nemko sample ID number(s)	Item #2
--------------	--------------	---------------------------	---------

6.4 FCC Part 15 Subpart A and C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable ¹
§15.31(e)	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes: ¹EUT is a battery-operated device, the testing was performed using fresh batteries.

6.5 FCC Part 15 Subpart C, intentional radiators test results

Table 6.5-1: FCC requirements results

Part	Test description	Verdict
§15.231(a)	Conditions for intentional radiators to comply with periodic operation	Pass
§15.231(b)	Field strength of emissions	Pass
§15.231(c)	Emission bandwidth	Pass
§15.231(d)	Frequency tolerance for devices operating within 40.66–40.70 MHz band	Not applicable ¹
§15.231(e)	Conditions for intentional radiators to comply with periodic operation	Not applicable ²

Notes: ¹EUT does not operate in 40.66–40.70 MHz band

²EUT using periodic transmissions at regular intervals (heartbeat each 4hours) and the total duration of transmission is less than 2s per hour

6.6 ISED RSS-Gen, Issue 5, test results

Table 6.6-1: RSS-Gen requirements results

Part	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Not applicable ²

Notes: ¹According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

²EUT is a battery-operated device, the testing was performed using fresh batteries.

6.7 ISED RSS-210, Issue 10, test results

Table 6.7-1: ISED requirements results

Section	Test description	Verdict
A.1.1	Technical requirements	Pass
A.1.2	Field strengths	Pass
A.1.3	Bandwidth of momentary signals	Pass
A.1.4	Reduced field strengths	Not applicable ¹

Notes: The unit uses a periodic transmission

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber (Emissions)	TDK	SAC-3	FA002532e	2 years	February 25, 2022
Flush mount turntable	Sunol	FM2022	FA002550	—	NCR
Controller	Sunol	SC104V	FA002551	—	NCR
Antenna mast	Sunol	TLT2	FA002552	—	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 40	FA002071	1 year	March 16, 2022
Bilog antenna (20–2000 MHz)	Sunol	JB1	FA002517	1 year	March 3, 2022
Horn antenna (1–18 GHz)	EMCO	3115	FA001451	1 year	February 16, 2022
Pre-amplifier (0.5–18 GHz)	Com-Power	PAM-118A	FA002561	1 year	September 22, 2021

Note: NCR - no calibration required,

Section 8. Testing data

8.1 Variation of power source

8.1.1 References, definitions and limits

FCC §15.31:

(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test summary

Verdict	Pass
Tested by	Abdoulaye Ndiaye

Test date July 8, 2021

8.1.3 Observations, settings and special notes

None

8.1.4 Test data

EUT Power requirements:

If EUT is an AC or a DC powered, was the noticeable output power variation observed?

AC DC Battery

YES NO N/A

If EUT is battery operated, was the testing performed using fresh batteries?

YES NO N/A

If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?

YES NO N/A

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

RSS-Gen, Clause 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass		
Tested by	Abdoulaye Ndiaye	Test date	July 8, 2021

8.2.3 Observations, settings and special notes

None

8.2.4 Test data

Table 8.2-2: Test channels selection

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Tx channel, MHz
260	470	210	434

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

Verdict	Pass
Tested by	Abdoulaye Ndiaye

Test date

July 8, 2021

8.3.3 Observations, settings and special notes

None

8.3.4 Test data

Must the EUT be professionally installed? YES NO

Does the EUT have detachable antenna(s)? YES NO

If detachable, is the antenna connector(s) non-standard? YES NO N/A

Table 8.3-1: Antenna information

Antenna type	Manufacturer	Model number	Maximum gain	Connector type
Helicoidal Coil	Flycore	WL-433-01	2 dBi	N/A

8.4 Conditions for intentional radiators to comply with periodic operation

8.4.1 References, definitions and limits

FCC §15.231:

- (a) The provisions of this section are restricted to periodic operation within the band 40.66–40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:
 - (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
 - (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
 - (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
 - (4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety-of-life, when activated to signal an alarm, may operate during the pendency of the alarm condition.
 - (5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

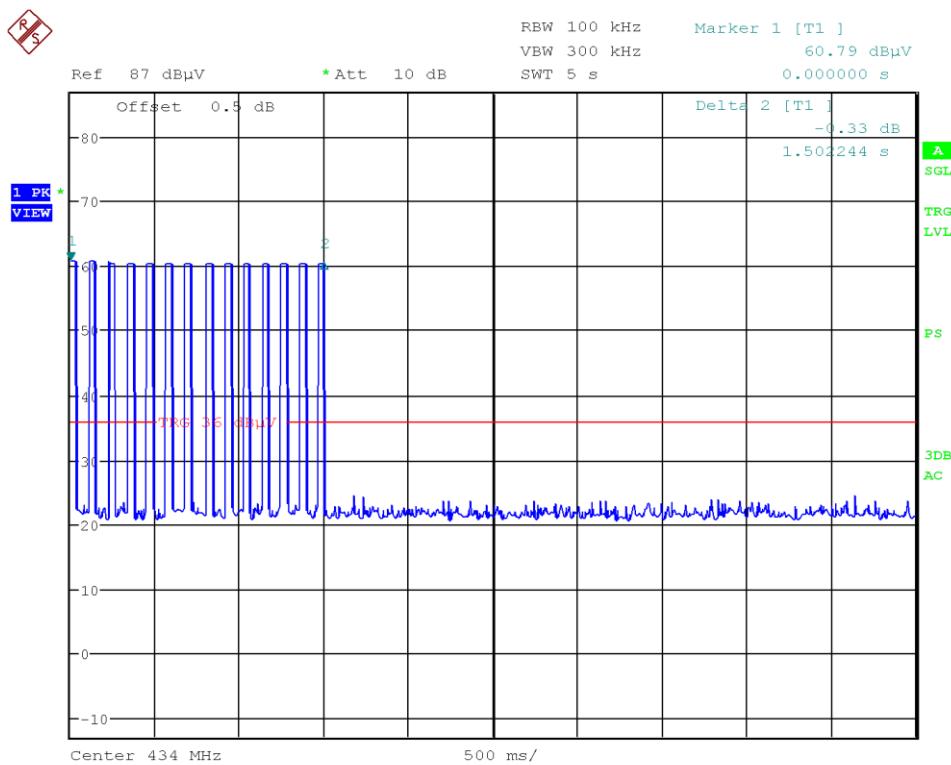
RSS-210 A.1.1:

Devices shall comply with the following for momentary operation:

- a. A manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all times during transmission. When released, the transmitter shall cease transmission within no more than 5 seconds of being released.
- b. A transmitter that has been activated automatically shall cease transmission within 5 seconds of activation.
- c. Periodic transmissions at regular, predetermined intervals are not permitted, except as specified in Section A.1.4. However, polling or supervision transmissions that determine system integrity of transmitters used in security or safety applications are permitted, provided the total duration of transmission does not exceed 2 seconds per hour for each transmitter.
- d. Intentional radiators used for radio control during emergencies involving fire, security of goods (e.g. burglar alarms), and safety-of-life, when activated to signal an alarm, may operate during the interval of the alarm condition.

8.4.2 Test summary

Verdict	Pass		
Tested by	Abdoulaye Ndiaye	Test date	August 24, 2021


8.4.3 Observations, settings and special notes

None

8.4.4 Test data

- EUT is a manually triggered transmitter
- EUT is an automatically triggered transmitter
- EUT is not a periodic transmitter
- The EUT usage is for radio control purposes during emergencies
- The EUT usage is not for radio control purposes during emergencies
- The EUT transmits set-up information
- The EUT does not transmit set-up information

Date: 24.AUG.2021 15:33:33

Figure 8.4-1: Transmission duration

Note: As per customer, the sensor sends messages only when a condition changes (see data bits details) in addition the sensor will send a health check message which is the same as a regular message every 4.5 hours to validate it is still operating properly and in range of the receiver.

The transmitted message is repeated 14 times for a total transmission duration of between 680ms and 840ms depending of payload

Each message is composed of :

- Header : 2ms ON
- 23 bits each: value 1 = 630us ON & 430us OFF or value 0 = 630us ON & 1.37ms OFF
- A pause of 72ms between repeats

The message contains 16 sensor address bits and 8 data bits which in turn is 2 message parity bits, 1 alarm bit, 1 low battery bit, 1 low temperature bit, 1 tamper bit, 2 sensor type bits

8.5 Field strength of emissions

8.5.1 References, definitions and limits

FCC §15.231:

- (b) In addition to the provisions of §15.205 the field strength of emissions from intentional radiators operated under this section shall not exceed the following table.
- (1) The field strength limits in the table below are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the table below are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

RSS-210 A.1.2:

Following are the requirements for field strength of emissions:

- a. The field strength of emissions from momentarily operated intentional radiators shall not exceed the limits in table below, based on the average value of the measured emissions. The requirements of the "Pulsed operation" section of RSS-Gen apply for averaging pulsed emissions and limiting peak emissions. Alternatively, compliance with the limits in the table below may be demonstrated using an International Special Committee on Radio Interference (CISPR) quasi-peak detector.
- b. Unwanted emissions shall be 10 times below the fundamental emissions field strength limits in the table below or comply with the limits specified in RSS-Gen, whichever is less stringent.

Table 8.5-1: Field strength limits

Fundamental frequency, MHz	Field strength of fundamental, µV/m	Field strength of fundamental, dBµV/m	Field strength of spurious emissions, µV/m	Field strength of spurious emissions, dBµV/m
40.66–40.70 ¹	2,250	67.0	225	47.0
70–130	1,250	61.9	125	41.9
130–174	1,250 to 3,750*	61.9 to 71.5*	125 to 375*	41.9 to 51.5*
174–260 ²	3,750	71.5	375	51.5
260–470 ²	3,750 to 12,500*	71.5 to 81.9*	375 to 1,250*	51.5 to 61.9*
Above 470	12,500	81.9	1,250	61.9

* Linear interpolation with frequency F in MHz:

For 130–174 MHz: Field Strength (µV/m) = (56.82 × F) – 6136

For 260–470 MHz: Field Strength (µV/m) = (41.67 × F) – 7083

Notes: ¹The levels applicable to FCC only.

²Frequency bands 225–328.6 MHz and 335.4–399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

References, definitions and limits, continued

Table 8.5-2: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency, MHz	Field strength of emissions µV/m	Field strength of emissions dB μ V/m	Measurement distance, m
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490–1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.
 For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.5-3: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	12.57675–12.57725	399.9–410	7.25–7.75
0.495–0.505	13.36–13.41	608–614	8.025–8.5
2.1735–2.1905	16.42–16.423	960–1427	9.0–9.2
3.020–3.026	16.69475–16.69525	1435–1626.5	9.3–9.5
4.125–4.128	16.80425–16.80475	1645.5–1646.5	10.6–12.7
4.17725–4.17775	25.5–25.67	1660–1710	13.25–13.4
4.20725–4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677–5.683	73–74.6	2200–2300	15.35–16.2
6.215–6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775–6.26825	108–138	2483.5–2500	22.01–23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291–8.294	156.52475–156.52525	3260–3267	31.2–31.8
8.362–8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625–8.38675	162.0125–167.17	3345.8–3358	
8.41425–8.41475	167.72–173.2	3500–4400	Above 38.6
12.29–12.293	240–285	4500–5150	
12.51975–12.52025	322–335.4	5350–5460	

Note: Certain frequency bands listed in this table and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.5-4: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.5.2 Test summary

Verdict	Pass
Tested by	Abdoulaye Ndiaye
Test date	July 8, 2021 & August 24, 2021

8.5.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to the 10th harmonic.

Radiated measurements were performed at a distance of 3 m.

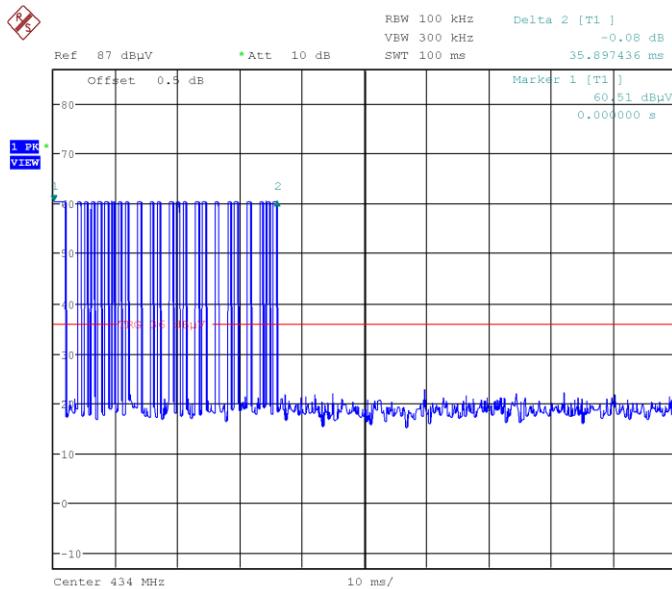
Average radiated emissions were obtained by subtracting duty cycle correction factor from the peak measurement results.

Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally, where less than 6 measurements per detector have been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

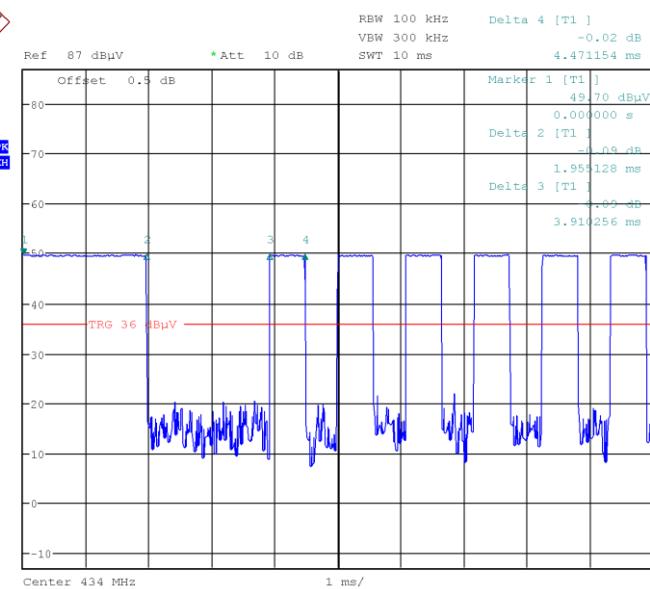
Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:


Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold

8.5.4 Test data

Duty cycle/average factor calculations


§15.35(c) When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed; the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

$$\text{Duty cycle or average factor} = 20 \times \log_{10} \left(\frac{T_{x100ms}}{100ms} \right)$$

Date: 24.AUG.2021 15:31:50

Figure 8.5-1: Transmission within 100 ms

Date: 24.AUG.2021 14:12:12

Figure 8.5-2: pulses durations within 100 ms

Duty cycle calculations are as below:

As shown on figure 8.5-1 & 8.5.2 the number of pulses = 24 and the ON time = T_{x100ms} is calculated as following: $1.955 + 0.561 \times 23 = 14.86$ ms.

As per ANSI C63.10 since the device is periodic, the pulse train $T = 35.90$ ms + OFF time, then $T = 100$ ms will be considered

$$\text{Then Duty cycle or average factor} = 20 \times \log_{10} \left(\frac{T_{x100ms}}{100ms} \right) = -16.56 \text{ dB}$$

Test data, continued

Table 8.5-5: Radiated field strength of Fundamental measurement results

Frequency, MHz	Peak field strength, dB μ V/m	Peak limit, dB μ V/m	Margin, dB	Duty cycle factor, dB	Average field strength, dB μ V/m	Average limit, dB μ V/m	Margin, dB
434.000	84.68	100.83	7.33	-16.56	68.12	80.83	12.71

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Calculated Average Field Strength (dB μ V/m) = Peak field strength (dB μ V/m) + Duty cycle factor (dB)

Tabular data is the summation of both Vertical and Horizontal antenna polarization.

Table 8.5-6: Radiated field strength of Spurious Outside of restricted bands measurement results

Frequency, MHz	Peak field strength, dB μ V/m	Peak limit, dB μ V/m	Margin, dB	Duty cycle factor, dB	Average field strength, dB μ V/m	Average limit, dB μ V/m	Margin, dB
904.697	53.59	80.83	27.24	-16.56	37.03	60.83	23.80
1735.750	51.32	80.83	29.51	-16.56	34.76	60.83	26.07

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Calculated Average Field Strength (dB μ V/m) = Peak field strength (dB μ V/m) + Duty cycle factor (dB)

Tabular data is the summation of both Vertical and Horizontal antenna polarization.

Table 8.5-7: Radiated field strength of Spurious in restricted bands measurement results below 1 GHz

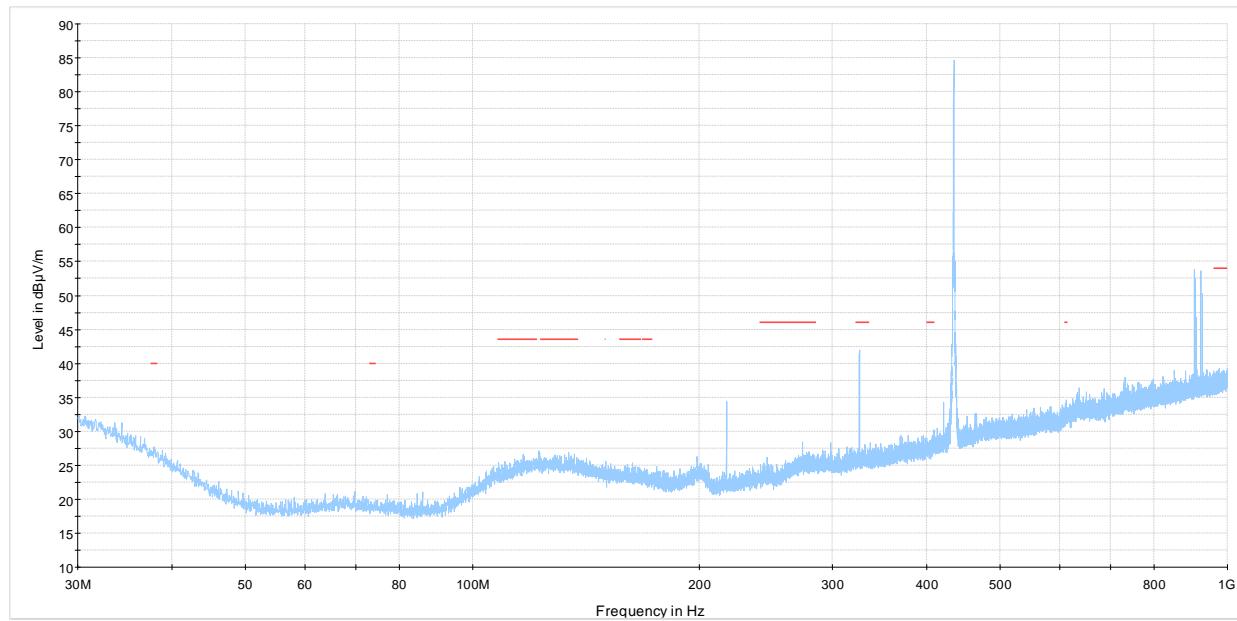
Frequency, MHz	Quasi-Peak field strength, dB μ V/m	Quasi-Peak limit, dB μ V/m	Margin, dB
325.486	40.97	46.00	5.03

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Tabular data is the summation of both Vertical and Horizontal antenna polarization.

Table 8.5-8: Radiated field strength of Spurious in restricted bands measurement results above 1 GHz

Frequency, MHz	Peak field strength, dB μ V/m	Peak limit, dB μ V/m	Margin, dB	Duty cycle factor, dB	Average field strength, dB μ V/m	Average limit, dB μ V/m	Margin, dB
1301.875	51.93	74.00	22.07	-16.56	35.37	54.00	18.63


Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Tabular data is the summation of both Vertical and Horizontal antenna polarization.

Calculated Average Field Strength (dB μ V/m) = Peak field strength (dB μ V/m) + Duty cycle factor (dB)

Test data, continued

NEX 446158, July 8, 2021
Preview Result 1-PK+
FCC 15.209 and RSS-210 limit line RstrB

Figure 8.5-3: Spurious emissions below 1 GHz

Test data, continued

Figure 8.5-4: Spurious emissions above 1 GHz

8.6 Emission bandwidth of momentary signals

8.6.1 References, definitions and limits

FCC §15.231:

(c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

RSS-210 A.1.3:

The occupied bandwidth of momentarily operated devices shall be less than or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the occupied bandwidth shall be less than or equal to 0.5% of the centre frequency.

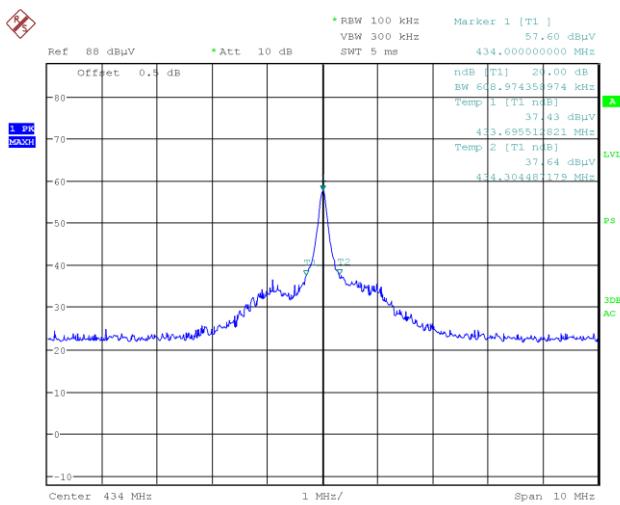
8.6.2 Test summary

Verdict	Pass		
Tested by	Abdoulaye Ndiaye	Test date	August 24, 2021 & December 3, 2021

8.6.3 Observations, settings and special notes

20dB BW Limit: 0.25 % of 434 MHz is 1085 kHz

Spectrum analyser settings:


Resolution bandwidth	100 kHz
Video bandwidth	$\geq 3 \times$ RBW
Frequency span	Wider than emission bandwidth
Detector mode	Peak

8.6.4 Test data

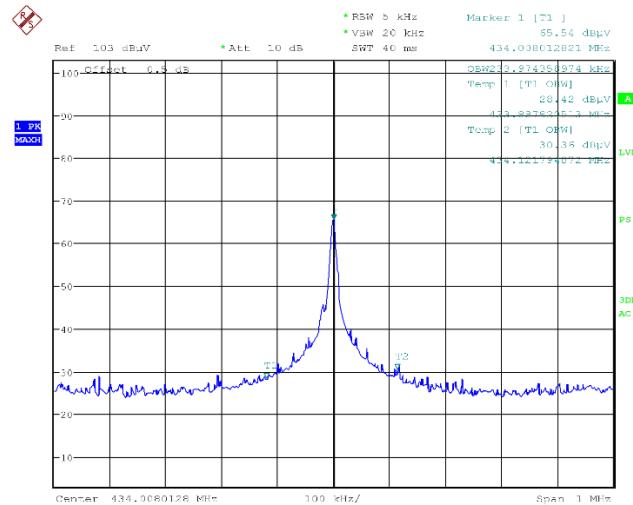


Table 8.6-1: 20 dB bandwidth measurement result

20 dB bandwidth, kHz	Limit, kHz	Margin, kHz
608.974	1085	476.026

Test data; continued

Date: 24.AUG.2021 14:01:34

Figure 8.6-1: 20 dB occupied bandwidth

Date: 3.DEC.2021 16:15:17

Figure 8.6-2: 99 % occupied bandwidth

Section 9. EUT photos

9.1 External photos

Figure 9.1-1: Front view photo

Figure 9.1-2: Rear view photo

Figure 9.1-3: Side view photo

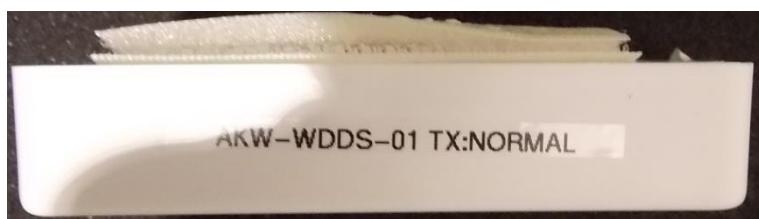


Figure 9.1-4: Side view photo

External photos continued

Figure 9.1-5: Top view photo

Figure 9.1-6: Bottom view photo

End of the test report