

FCC TEST REPORT

Test report On Behalf of **Libitum Group** For **Tablet PC**

Model No.: RVPVK808, T801

FCC ID: 2A2J8-RVPVK808

Libitum Group Prepared for:

Ave. Tiradentes No. 40, esq. Presidente Gonzalez, Edificio La Isal, Primer Piso.

Ens. Naco. Santo Domingo, Dominican Republic

Shenzhen HUAK Testing Technology Co., Ltd. Prepared By:

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jun. 03, 2021 ~Jun. 29, 2021

Date of Report: Jun. 29, 2021

Report Number: HK2106031728-3E

TES!

Report No.: HK2106031728-3E

TEST RESULT CERTIFICATION

Applicant's name Libitum Group

Ave. Tiradentes No. 40, esq. Presidente Gonzalez, Edificio La

Address Isal, Primer Piso. Ens. Naco. Santo Domingo, Dominican

Republic

Manufacture's Name...... WEIHENG DIGITAL COMPANY LIMITED

Address UNIT 1111 DELTA HOUSE 3 ON YIU STREET SHATIN KL

Product description

Trade Mark: RVP

Product name...... Tablet PC

Model and/or type reference .: RVPVK808, T801

Standards FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Test Result : Pass

Testing Engineer

Gary Qian)

Technical Manager

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

1.	Test Result Summary	
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. TEST FACILITY	5
	1.3. MEASUREMENT UNCERTAINTY	
2.	EUT Description	7
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. OPERATION FREQUENCY EACH OF CHANNEL	
	2.3. OPERATION OF EUT DURING TESTING	
	2.4. DESCRIPTION OF TEST SETUP	9
3.	Genera Information	10
	3.1. TEST ENVIRONMENT AND MODE	
	3.2. DESCRIPTION OF SUPPORT UNITS	
4.	Test Results and Measurement Data	12
	4.1. CONDUCTED EMISSION	
	4.2. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.3. 6dB Emission Bandwidth	
	4.4. 26dB Bandwidth and 99% Occupied Bandwidth	
	4.5. POWER SPECTRAL DENSITY	
	4.6. BAND EDGE	33
	4.7. Spurious Emission	48
	4.8. FREQUENCY STABILITY MEASUREMENT	
	4.9. ANTENNA REQUIREMENT	
	4.10. PHOTOGRAPHS OF TEST SETUP	59
	DUOTOS OF THE FUT	C4

** Modified History **

		- UVV	
Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jun. 29, 2021	Jason Zhou
TING	TING	TING	G TING

1. Test Result Summary

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park,

Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±2.2dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB

2. EUT Description

2.1. GENERAL DESCRIPTION OF EUT

Equipment	Tablet PC	LAK TESTING	LAKTESTING	LAKT
Model Name	RVPVK808		O	0,,
Serial No.	T801	ESTING	WHAK.	WAY TESTING
Trade Mark	RVP		ok TESTING	
Model Difference	All model's the function same, only with a produdifferent. Test sample m	uct color, appe	arance and mo	11 / 1
FCC ID	2A2J8-RVPVK808	G	-36	
Operation Frequency:	IEEE 802.11a/n/ac(HT2 IEEE 802.11n/ac(HT40 IEEE 802.11ac(HT80) 5)5.755GHz-5.7		MINKET THE
Modulation Technology:	IEEE 802.11a/n/ac	TESTING.	HUAK TE	NAY TESTING
Modulation Type	OFDM		ESTING	0,,,
Antenna Type	Internal Antenna	TESTING MI	AR S	ING TEST
Antenna Gain	3dBi	Who.	O HUAK	O HUM
Power Source	DC 3.8V from battery o	r DC 5V from	Type-C	
Power Supply:	DC 3.8V from battery o	r DC 5V from	Type-C	HUAN.

2.2. Operation Frequency each of channel

	11a/802.11n(02.11ac(HT2	,		1n(HT40)/ 1ac(HT40)	802.11a	c(HT80)
Chan	nel Freq	uency	Channel	Frequency	Channel	Frequency
149	57	745	151	5755	155	5775
153	57	765	159	5790		HUAN
157	7 57	785	ING .		ESTING	
161	58	305	.0.	WG MH	Da	G myG
165	5 58	325	LAKTESTING	- WANTES!	LAK TEST	HUAK TES

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT during testing

IV (5725 - 5850 M	1Hz)
2.11a/ n HT20/ac ł	HT 20
Channel	Frequency (MHz)
Low	5745
Mid	5785
High	5825
02.11n HT40/ac H	T 40
Channel	Frequency (MHz)
Low	5755
High	5795
or 802.11ac HT 80	
Channel	Frequency (MHz)
<u>-</u>	5775
	Low Mid High D2.11n HT40/ac H Channel Low High or 802.11ac HT 80

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and radiation below 1GHz testing:

Operation of EUT during radiation above 1GHz testing:

Adapter information

Model: HW-059200CHQ Input: 100-240V, 50/60Hz, 0.5A

Output: 5VDC, 2A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position

ANTESTING ANTESTING

3. Genera Information

3.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 100%)

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

1100 1101010001					
Mode	Data rate				
802.11a	6 Mbps				
802.11n(HT20)	MCS0				
802.11n(HT40)	MCS0				
802.11ac(HT20)/ac(HT40)/ac(HT80)	MCS0				
Final Test Mode:					

Operation mode:	Keep the EUT in continuous transmitting
	with modulation

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	NE / HUANTES!	/ TESTING	I HUAK TES II	/ TESTING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

HUAK TESTING

4. Test Results and Measurement Data

4.1. Conducted Emission

4.1.1. Test Specification

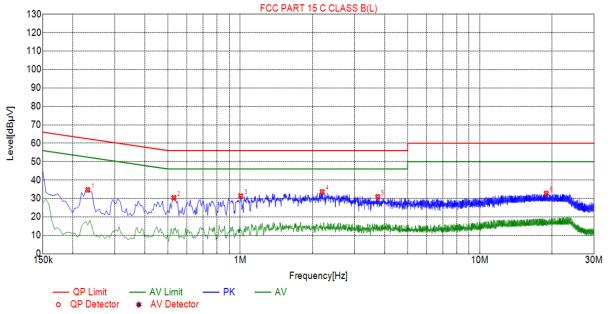
The state of the s	The state of the s	Ter	1750	
Test Requirement:	FCC Part15 C Section	15.207	O HUA	
Test Method:	ANSI C63.10:2013	* TESTING	.a	
Frequency Range:	150 kHz to 30 MHz	O HOM	HIAKTESTING	
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto	
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50	
Test Setup:	Test table/Insulation plane Remark E.U.T. Equipment Under Test	E.U.T AC power EMI Receiver		
Test Mode:	Tx Mode	mVG	mic mi	
Test Procedure:	 The E.U.T and simula through a line impedar provides a 500hm/5 measuring equipment. The peripheral devices through a LISN that impedance with 500hm diagram of the test sets. Both sides of A.C. line interference. In order relative positions of equation must be changed acconducted measurement. 	nce stabilization netwoods are also connected to provides a 500 n termination. (Pleasup and photographs are checked for more to find the maximular to find the ANSI	vork (L.I.S.N.). This pedance for the I to the main power hm/50uH coupling the refer to the block (a). aximum conducted the num emission, the he interface cables	
Test Result:	PASS	INGS	TNG TESTI	
1010	10/10/1	- 11/1/20	11/10	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.1.2. Test Instruments

(60)	Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 09, 2021	
LISN	R&S	ENV216	HKE-002	Dec. 10, 2020	Dec. 09, 2021	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 10, 2020	Dec. 09, 2021	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A	

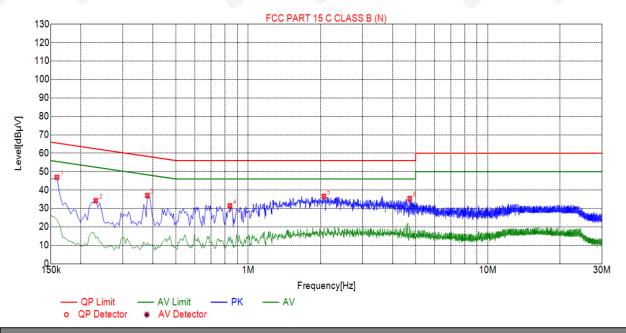

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

TEST RESULTS

PASS

All the test modes completed for test. only the worst result of (802.11a at 5745MHz) was reported as below:

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)


	Suspected List								
	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
	1	0.2310	34.66	20.03	62.41	27.75	14.63	PK	L
	2	0.5280	30.35	20.04	56.00	25.65	10.31	PK	L
ě	3	1.0050	31.34	20.06	56.00	24.66	11.28	PK	L
	4	2.1975	33.57	20.17	56.00	22.43	13.40	PK	L
	5	3.7500	30.86	20.25	56.00	25.14	10.61	PK	L
	6	18.9420	32.73	20.06	60.00	27.27	12.67	PK	L

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Sus	Suspected List							
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1590	46.91	20.01	65.52	18.61	26.90	PK	N
2	0.2310	34.24	20.03	62.41	28.17	14.21	PK	N
3	0.3795	37.03	20.05	58.29	21.26	16.98	PK	N
4	0.8385	31.46	20.06	56.00	24.54	11.40	PK	N
5	2.0715	36.59	20.15	56.00	19.41	16.44	PK	N
6	4.7220	35.36	20.26	56.00	20.64	15.10	PK	N

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Sect	ion 15.407(a)	TESTING			
Test Method:		KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E				
Limit:	Frequency Band (MHz)	Limit	HARTESTINE			
	5725-5850	1 W				
Test Setup:	Power meter		EUT			
Test Mode:	Transmitting mode	Transmitting mode with modulation				
Test Procedure:	KDB789033 D03 Rules v02r01 Se 2. The RF output of meter by RF cat compensated to 3. Set to the maxim EUT transmit co	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the 				
Test Result:	PASS	TING	TING			
Remark:	+10log(1/x) X is dut	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				
Note: The test double an module is the same.						

4.2.2. Test Instruments

	RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
Power meter	Agilent	E4419B	HKE-085	Dec. 10, 2020	Dec. 09, 2021	
Power Sensor	Agilent	E9300A	HKE-086	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

	Config	uration Band IV (5725 - 585	0 MHz)	
Mode	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result
11a	CH149	5.54	30	PASS
11a	CH157	4.91	30	PASS
11a	CH165	5.57	30	PASS
11n HT20	CH149	4.82	30	PASS
11n HT20	CH157	4.61	30	PASS
11n HT20	CH165	4.55	30	PASS
11n HT40	CH151	5.74	30	PASS
11n HT40	CH159	5.57	30	PASS
11ac HT20	CH149	4.52	30	PASS
11ac HT20	CH157	4.69	30	PASS
11ac HT20	CH165	4.43	30	PASS
11ac HT40	CH151	5.60	30	PASS
11ac HT40	CH159	5.84	30	PASS
11ac HT80	CH155	5.79	30	PASS

4.3. 6dB Emission Bandwidth

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)	ESTIN						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C							
Limit:	>500kHz							
Test Setup:	Spectrum Analysis EUT	TING						
Test Mode:	Spectrum Analyzer	Spectrum Analyzer						
Test Procedure:	 Transmitting mode with modulation KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 							
Test Result:	PASS	Una						
1000								

4.3.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

Band IV (5725	Band IV (5725 - 5850 MHz)					
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result	
11a	CH149	5745	16.440	0.5	PASS	
11a	CH157	5785	16.440	0.5	PASS	
11a	CH165	5825	16.440	0.5	PASS	
11n HT20	CH149	5745	17.600	0.5	PASS	
11n HT20	CH157	5785	17.600	0.5	PASS	
11n HT20	CH165	5825	17.640	0.5	PASS	
11n HT40	CH151	5755	36.480	0.5	PASS	
11n HT40	CH159	5795	36.560	0.5	PASS	
11ac HT20	CH149	5745	17.360	0.5	PASS	
11ac HT20	CH157	5785	17.600	0.5	PASS	
11ac HT20	CH165	5825	17.480	0.5	PASS	
11ac HT40	CH151	5755	36.480	0.5	PASS	
11ac HT40	CH159	5795	36.480	0.5	PASS	
11ac HT80	CH155	5775	76.000	0.5	PASS	

Test plots as follows:

4.4. 26dB Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Limit:	No restriction limits					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report. 					
Test Result:	N/A					

4.4.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

4.5. Power Spectral Density

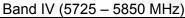
4.5.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F						
Limit:	≤11.00dBm/MHz for Band I 5150MHz-5250MHz ≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz						
Test Setup:	Spectrum Analyzer EUT						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 						
Test Result:	PASS						

4.5.2. Test Instruments

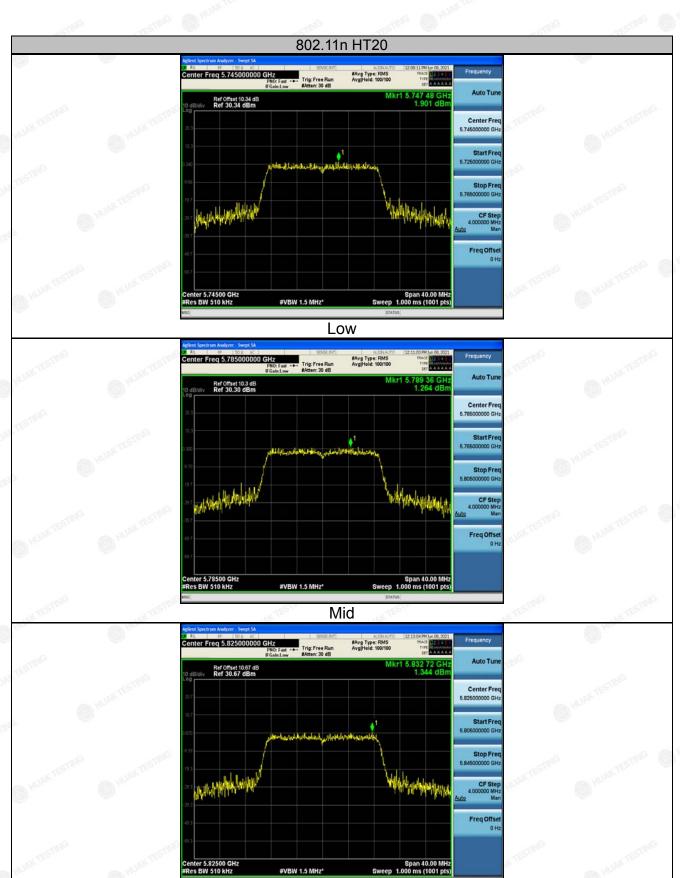
RF Test Room									
Equipment Manufacturer Model Serial Number Calibration Date Calibration Du									
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021				
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021				
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021				

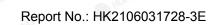
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



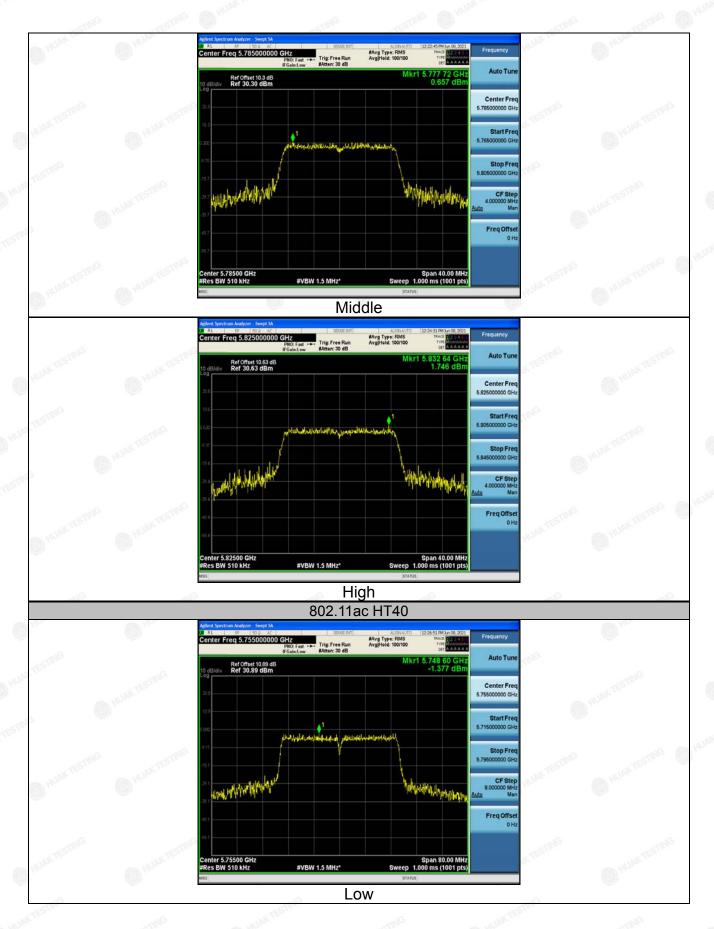
4.5.3. Test data

Configuration Band IV (5725 - 5850 MHz)								
Mode	Test channel	Level [dBm/510kHz]	10log(500/510)	Power Spectral Density	Limit (dBm/500kHz)	Result		
11a	CH149	0.79	-0.086	0.70	30	PASS		
11a	CH157	0.02	-0.086	-0.07	30	PASS		
11a	CH165	0.41	-0.086	0.32	30	PASS		
11n HT20	CH149	1.9	-0.086	1.81	30	PASS		
11n HT20	CH157	1.26	-0.086	1.17	30	PASS		
11n HT20	CH165	1.34	-0.086	1.25	30	PASS		
11n HT40	CH151	0.05	-0.086	-0.04	30	PASS		
11n HT40	CH159	-1.21	-0.086	-1.30	30	PASS		
11ac HT20	CH149	1.81	-0.086	1.72	30	PASS		
11ac HT20	CH157	0.66	-0.086	0.57	30	PASS		
11ac HT20	CH165	1.75	-0.086	1.66	30	PASS		
11ac HT40	CH151	-1.38	-0.086	-1.47	30	PASS		
11ac HT40	CH159	-1.14	-0.086	-1.23	30	PASS		
11ac HT80	CH155	-2.69	-0.086	-2.78	30	PASS		


Test plots as follows:



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


High



4.6. Band edge

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407
Test Method:	ANSI C63.10 2013
Limit:	(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.
Test Setup:	Ant. feed point 3 m Ground Plane Receiver Amp.
Test Mode:	Transmitting mode with modulation

HUAK TESTING

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged **Test Procedure:** to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. **Test Result:** PASS

4.6.2. Test Instruments

Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Receiver	R&S	ESRP3	HKE-005	Dec. 10, 2020	Dec. 09, 2021			
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021			
Preamplifier	EMCI	EMC051845S E	HKE-015	Dec. 10, 2020	Dec. 09, 2021			
Preamplifier	Agilent	83051A	HKE-016	Dec. 10, 2020	Dec. 09, 2021			
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 10, 2020	Dec. 09, 2021			
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 10, 2020	Dec. 09, 2021			
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 10, 2020	Dec. 09, 2021			
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A			
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 10, 2020	Dec. 09, 2021			
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A			
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A			
Hf antenna	Schwarzbeck	LB-180400-KF	HKE-031	Dec. 10, 2020	Dec. 09, 2021			
RF cable	Tonscend	1-18G	HKE-099	Dec. 10, 2020	Dec. 09, 2021			
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	54.64	-2.06	52.58	68.2	-15.62	peak
5700	85.29	-1.96	83.33	105.2	-21.87	peak
5720	91.4	-2.87	88.53	110.8	-22.27	peak
5725	108.54	-2.14	106.4	122.2	-15.8	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turo	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
5650	54.82	-2.06	52.76	68.2	-15.44	peak	
5700	85.33	-1.96	83.37	105.2	-21.83	peak	
5720	91.15	-2.87	88.28	110.8	-22.52	peak	
5725	108.97	-2.14	106.83	122.2	-15.37	peak	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	108.34	-1.97	106.37	122.2	-15.83	peak
5855	91.24	-2.13	89.11	110.8	-21.69	peak
5875	86.05	-2.65	83.4	105.2	-21.8	peak
5925	50.75	-2.28	48.47	68.2	-19.73	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stan Tona
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	112.38	-1.97	110.41	122.2	-11.79	peak
5855	88.93	-2.13	86.8	110.8	-24	peak
5875	88.1	-2.65	85.45	105.2	-19.75	peak
5925	51.16	-2.28	48.88	68.2	-19.32	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.56	-2.06	51.5	68.2	-16.7	peak
5700	90.34	-1.96	88.38	105.2	-16.82	peak
5720	95.68	-2.87	92.81	110.8	-17.99	peak
5725	111.68	-2.14	109.54	122.2	-12.66	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. C. C. T. C.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.48	-2.06	55.42	68.2	-12.78	peak
5700	95.42	-1.96	93.46	105.2	-11.74	peak
5720	90.78	-2.87	87.91	110.8	-22.89	peak
5725	109.96	-2.14	107.82	122.2	-14.38	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	108.81	-1.97	106.84	122.2	-15.36	peak
5855	94.51	-2.13	92.38	110.8	-18.42	peak
5875	86.7	-2.65	84.05	105.2	-21.15	peak
5925	50.69	-2.28	48.41	68.2	-19.79	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	107.85	-1.97	105.88	122.2	-16.32	peak
5855	93.25	-2.13	91.12	110.8	-19.68	peak
5875	87.92	-2.65	85.27	105.2	-19.93	peak
5925	55.14	-2.28	52.86	68.2	-15.34	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	58.27	-2.06	56.21	68.2	-11.99	peak
5700	90.83	-1.96	88.87	105.2	-16.33	peak
5720	92.35	-2.87	89.48	110.8	-21.32	peak
5725	108.81	-2.14	106.67	122.2	-15.53	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	55.41	-2.06	53.35	68.2	-14.85	peak
5700	94.02	-1.96	92.06	105.2	-13.14	peak
5720	91.96	-2.87	89.09	110.8	-21.71	peak
5725	108.6	-2.14	106.46	122.2	-15.74	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.86	-1.97	107.89	122.2	-14.31	peak
5855	94.09	-2.13	91.96	110.8	-18.84	peak
5875	89.12	-2.65	86.47	105.2	-18.73	peak
5925	54.03	-2.28	51.75	68.2	-16.45	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atan Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	106.84	-1.97	104.87	122.2	-17.33	peak
5855	91.25	-2.13	89.12	110.8	-21.68	peak
5875	86.55	-2.65	83.9	105.2	-21.3	peak
5925	52.46	-2.28	50.18	68.2	-18.02	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	54.61	-2.06	52.55	68.2	-15.65	peak
5700	87.4	-1.96	85.44	105.2	-19.76	peak
5720	90.17	-2.87	87.3	110.8	-23.5	peak
5725	108.64	-2.14	106.5	122.2	-15.7	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	55.57	-2.06	53.51	68.2	-14.69	peak
5700	90.09	-1.96	88.13	105.2	-17.07	peak
5720	93.29	-2.87	90.42	110.8	-20.38	peak
5725	108.21	-2.14	106.07	122.2	-16.13	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	107.88	-1.97	105.91	122.2	-16.29	peak
5855	91.66	-2.13	89.53	110.8	-21.27	peak
5875	87.36	-2.65	84.71	105.2	-20.49	peak
5925	54.01	-2.28	51.73	68.2	-16.47	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data dan Tana
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.33	-1.97	107.36	122.2	-14.84	peak
5855	93.04	-2.13	90.91	110.8	-19.89	peak
5875	84.3	-2.65	81.65	105.2	-23.55	peak
5925	54.81	-2.28	52.53	68.2	-15.67	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	56.61	-2.06	54.55	68.2	-13.65	peak
5700	88.65	-1.96	86.69	105.2	-18.51	peak
5720	94.37	-2.87	91.5	110.8	-19.3	peak
5725	107.95	-2.14	105.81	122.2	-16.39	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	55.32	-2.06	53.26	68.2	-14.94	peak
5700	86.42	-1.96	84.46	105.2	-20.74	peak
5720	94.58	-2.87	91.71	110.8	-19.09	peak
5725	106.87	-2.14	104.73	122.2	-17.47	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	110.36	-1.97	108.39	122.2	-13.81	peak
5855	92.19	-2.13	90.06	110.8	-20.74	peak
5875	87.17	-2.65	84.52	105.2	-20.68	peak
5925	54.82	-2.28	52.54	68.2	-15.66	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	111.42	-1.97	109.45	122.2	-12.75	peak
5855	92.02	-2.13	89.89	110.8	-20.91	peak
5875	85.71	-2.65	83.06	105.2	-22.14	peak
5925	53.3	-2.28	51.02	68.2	-17.18	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	54.85	-2.06	52.79	68.2	-15.41	peak
5700	87.06	-1.96	85.1	105.2	-20.1	peak
5720	92.25	-2.87	89.38	110.8	-21.42	peak
5725	109.38	-2.14	107.24	122.2	-14.96	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.03	-2.06	54.97	68.2	-13.23	peak
5700	89.11	-1.96	87.15	105.2	-18.05	peak
5720	90.62	-2.87	87.75	110.8	-23.05	peak
5725	110.81	-2.14	108.67	122.2	-13.53	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	107.31	-1.97	105.34	122.2	-16.86	peak
5855	92.77	-2.13	90.64	110.8	-20.16	peak
5875	84.18	-2.65	81.53	105.2	-23.67	peak
5925	51.18	-2.28	48.9	68.2	-19.3	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	O HUN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	108.58	-1.97	106.61	122.2	-15.59	peak
5855	94.05	-2.13	91.92	110.8	-18.88	peak
5875	88.49	-2.65	85.84	105.2	-19.36	peak
5925	53.98	-2.28	51.7	68.2	-16.5	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

4.7. Spurious Emission

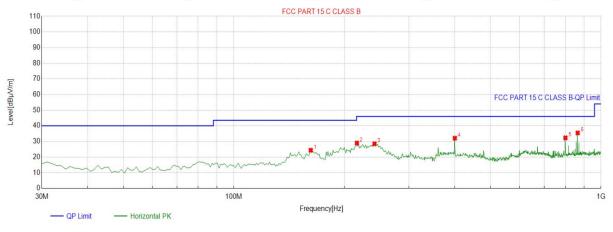
4.7.1.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ection 15	.407 & 1	5.209 & 15.205		
Test Method:	KDB 789033	D02 v02r0)1		0		
Frequency Range:	9kHz to 40G	Hz		KTESTING	G		
Measurement Distance:	3 m						
Antenna Polarization:	Horizontal &	Vertical	-61	IING			
Operation mode:	Transmitting mode with modulation						
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz	Detector Quasi-peak Quasi-peak	RBW 200Hz 9kHz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value		
	30MHz-1GHz Above 1GHz	Quasi-peak Peak Peak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value		
Limit:	emissions outs an e.i.r.p. of -2 (2) For transn emissions outs an e.i.r.p. of -2 (3) For transm emissions outs an e.i.r.p. of -2 (4) For transm (i) All emission MHz or more a to 10 dBm/MH from 25 MHz a to a level of 15 edge, and fron linearly to a lev	side of the 5 27 dBm/MHz nitters operar side of the 5 27 dBm/MHz nitters operation side of the 5 27 dBm/MHz itters operation as shall be liminated by the shall be liminated b	.15-5.35 (c. ting in the .15-5.35 (c. ting in the .47-5.725 c. ting in	GHz band e 5.25-5.3 GHz band e 5.47-5.7 GHz band 5.725-5.83 level of -2 and edge if below the band the band edge	27 dBm/MHz at 75 increasing linearly e band edge, and increasing linearly or below the band d edge increasing		

For radiated emissions below 30MHz **RX Antenna** Receiver 30MHz to 1GHz Test setup: Above 1GHz Ground Plane Receiver Amp.

VATA V	HUAK TESTING
--------	--------------

160	NED.	W. The	KED"	and the
Test Procedure:	above the groud 360 degrees to 2. The EUT was interference-real variable-heig 3. The antennal above the groud strength. Both antennal are set 4. For each sure worst case and meter to 4 meters to 360 degrees 5. The test-recand Specified 6. If the emission that by one using personal set of the strength of the set of the	andat a 3 meter candetermine the positions set 3 meters aware ceiving antenna, with antenna tower. It is a height is varied from the tomake the means and the maximum eiver system was a son level of the EUT wouldbe did not have 100 meters and the restire the EUT wouldbe did not have 10dE	rom one meter to founce maximum value of tical polarizations of asurement. the EUT was arrang was tuned to heights olewas turned from the following reading. set to Peak Detect Fiximum Hold Mode. If in peak mode was an gould be stopped reported. Otherwise a margin would berent average method as	rotated radiation. In the top of ar meters of the field the ged to its so from 1 degrees function 10dB lower and the entested one
	117100			



4.7.2. Test Data

Remark: All the test modes completed for test. The worst case of Radiated Emission is CH 149; the test data of this mode was reported.

Below 1GHz

Horizontal

QP Detector

Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	162.0521	-18.03	42.39	24.36	43.50	19.14	100	35	Horizontal
2	216.4264	-14.65	43.60	28.95	46.00	17.05	100	35	Horizontal
3	241.6717	-13.78	42.24	28.46	46.00	17.54	100	1	Horizontal
4	399.9399	-10.41	42.49	32.08	46.00	13.92	100	86	Horizontal
5	799.9800	-3.12	35.41	32.29	46.00	13.71	100	197	Horizontal
6	864.0641	-2.37	37.81	35.44	46.00	10.56	100	300	Horizontal

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Vertical

Suspe	cted List								
NIO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolovity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	41.6517	-14.25	39.58	25.33	40.00	14.67	100	116	Vertical
2	84.3744	-18.42	46.02	27.60	40.00	12.40	100	44	Vertical
3	157.1972	-18.42	44.22	25.80	43.50	17.70	100	147	Vertical
4	228.0781	-14.37	37.39	23.02	46.00	22.98	100	92	Vertical
5	479.5596	-8.44	33.68	25.24	46.00	20.76	100	64	Vertical
6	799.9800	-3.12	33.70	30.58	46.00	15.42	100	278	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
C	AKTES	"IAKTES"
WAYTES	WINK TES	WAKTES
——————————————————————————————————————		
WIE		AVTESTING

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Above 1GHz

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turns
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.16	-4.59	54.57	74	-19.43	peak
3647	46.32	-4.59	41.73	54	-12.27	AVG
11570	49.65	4.21	53.86	74	-20.14	peak
11570	39.05	4.21	43.26	54	-10.74	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.45	-4.59	54.86	74	-19.14	peak
3647	46.38	-4.59	41.79	54	-12.21	AVG
11570	51.21	4.21	55.42	74	-18.58	peak
11570	36.32	4.21	40.53	54	-13.47	AVG

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.24	-4.59	54.65	74	-19.35	peak
3647	47.44	-4.59	42.85	54	-11.15	AVG
11570	51.15	4.21	55.36	74	-18.64	peak
11570	40.11	4.21	44.32	54	-9.68	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. L. L. T
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	60.26	-4.59	55.67	74	-18.33	peak
3647	47.84	-4.59	43.25	54	-10.75	AVG
11570	48.88	4.21	53.09	74	-20.91	peak
11570	37.95	4.21	42.16	54	-11.84	AVG

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

200	25711	205	All a	2(11)	2011	200
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	57.25	-4.59	52.66	74	-21.34	peak
3647	48.15	-4.59	43.56	54	-10.44	AVG
11650	49.64	4.84	54.48	74	-19.52	peak
11650	39.94	4.84	44.78	54	-9.22	AVG
love.	100	AND HOUSE			ACOUNTY OF THE PARTY OF THE PAR	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

. 73.3.7	. 4.1/	. 73.72			. 0.3.7	. 13.12
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3647	58.22	-4.59	53.63	74	-20.37	peak
3647	46.48	-4.59	41.89	54	-12.11	AVG
11650	51.17	4.84	56.01	74	-17.99	peak
11650	35.36	4.84	40.2	54	-13.8	AVG
J. (62)		10000	(639)			(100)

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed. (7)All modes of operation were investigated and the worst-case of 802.11a are reported.

4.8. Frequency Stability Measurement

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS THE THE PASS
Remark:	N/A

Test Result as follows:

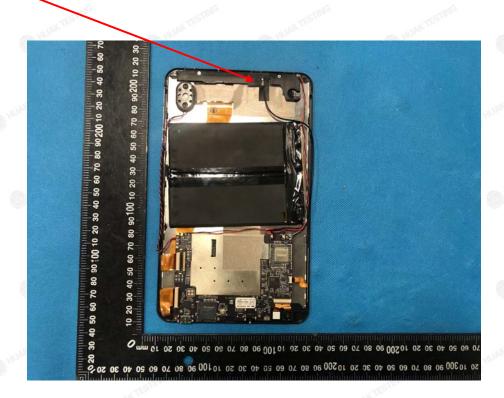
Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.25V	5744.989	-11	5824.995	-5
5.8G Band	5.0V	5745.024	24	5824.984	-16
(I) HUAN	5.75V	5745.016	16	5824.983	-17

Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.977	-23	5825.014	14
	-20	5744.989	-11	5824.976	-24
	-10	5745.006	6	5824.979	-21
	0	5744.978	-22	5824.983	-17
5.8G Band	10	5745.021	21	5825.004	4
	20	5745.006	6	5824.986	-14
	30	5744.991	-9	5824.977	-23
	40	5745.006	6	5825.023	23
	50	5744.992	-8	5825.015	15

4.9. ANTENNA REQUIREMENT

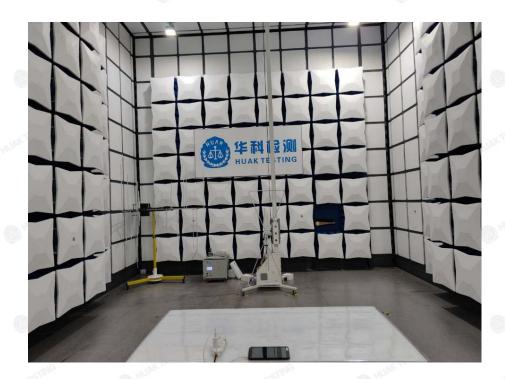
Standard Applicable

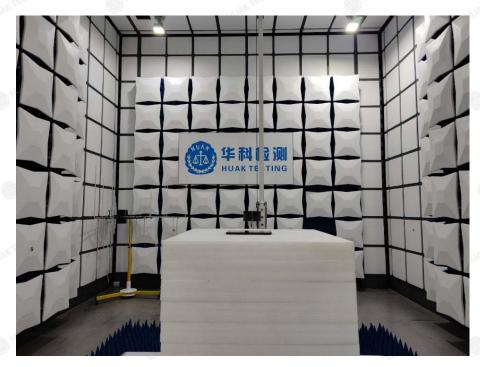
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction


The antenna used in this product is a Internal Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3dBi.


WIFI ANTENNA

4.10. Photographs of Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

5. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

-----End of test report-----