

### FCC PART 15 SUBPART C TEST REPORT

### **FCC PART 15 SUBPART E 15.407**

Report Reference No...... MAX250425011P02-R01

FCC ID.....: 2A2F4-AX3000-U21

Compiled by

Engineer/ Cindy Zheng

Cindy theng

( position+printed name+signature)..:
Supervised by

( position+printed name+signature)..:

Manager/Haley Wen

Haley wen

Approved by

( position+printed name+signature)..:

RF Manager/ Vivian Jiang

vivan frank

Date of issue...... May 6, 2025

Testing Laboratory Name...... MAXLAB Testing Co.,Ltd.

Address : 1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District,

Shenzhen, Guangdong, 518052, People's Republic of China

Applicant's name...... Shenzhen Urant Technology Co., Ltd

Address . 4th Floor, Building 63, Fumin Industrial Zone, Pinghu Community,

Pinghu Street, Longgang District, Shenzhen

Test specification....:

FCC CFR Title 47 Part 15 Subpart C Section 15.407

ANSI C63.10:2020

Standard..... KDB 789033 D02 v02r01

KDB353028 D01v01r01

KDB662911 D01 v02r01

#### MAXLAB Testing Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the MAXLAB Testing Co.,Ltd.is acknowledged as copyright owner and source of the material. MAXLAB Testing Co.,Ltd.takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: repeater

Trade Mark..... N/A

Manufacturer...... Shenzhen Urant Technology Co., Ltd

Model/Type reference..... AX3000-U21

Listed Models .....: N/A

Modulation Type.....: OFDM with BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM for

802.11a/n/ac

Operation Frequency.....: From 5180MHz-5240MHz

Rating...... AC 110~240V 50/60z 0.01~0.05A 6W

Result..... PASS





### TEST REPORT

Equipment under Test : repeater

Model /Type : AX3000-U21

Series Model No. N/A

Model Declaration : N/A

Applicant : Shenzhen Urant Technology Co., Ltd

Address : 4th Floor, Building 63, Fumin Industrial Zone, Pinghu Community,

Pinghu Street, Longgang District, Shenzhen

Manufacturer : Shenzhen Urant Technology Co., Ltd

Address 4th Floor, Building 63, Fumin Industrial Zone, Pinghu Community,

Pinghu Street, Longgang District, Shenzhen

| Took Doould  | 13. 13. |
|--------------|---------|
| Test Result: | PASS    |

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.



## **Contents**

| 1 TEST STANDARDS                                        |        |        | 4          |
|---------------------------------------------------------|--------|--------|------------|
| 2 SUMMARY                                               | P.:    | 100    | 5          |
| 2 00 III III A IV I                                     | ,      | •      |            |
| 2.1 General Remarks                                     |        |        |            |
|                                                         |        |        |            |
| 2.2 Product Description                                 |        |        |            |
| 2.3 Equipment Under Test                                | •••••  | •••••  |            |
| 2.4 Short description of the Equipment under Test (EUT) |        |        |            |
| 2.5 Channel List                                        |        |        |            |
| 2.6 Test Mode                                           |        |        |            |
| 2.7 Block Diagram of Test Setup                         |        |        |            |
| 2.8 Related Submittal(s) / Grant (s)                    |        |        | 7          |
| 2.9 Modifications                                       | •••••  | •••••  |            |
|                                                         |        |        |            |
| 3 TEST ENVIRONMENT                                      |        |        | Miles      |
| 3 1E31 ENVIRONMENT                                      | •••••  | •••••  | o          |
|                                                         |        |        |            |
| 3.1 Address of the test laboratory                      |        |        | 8          |
| 3.2 Test Facility                                       |        |        |            |
| 3.3 Environmental conditions                            |        |        |            |
| 3.4 Test Description                                    |        |        |            |
| 3.5 Statement of the measurement uncertainty            |        |        |            |
| 3.6 Equipments Used during the Test                     |        |        |            |
| olo Equipmento occa daring the rectimination            | •••••• | •••••  |            |
|                                                         |        |        |            |
| 4 TEST CONDITIONS AND RESULTS                           | •••••  | •••••  | 1 2        |
|                                                         |        |        |            |
| 4.1 AC Power Conducted Emission                         |        |        |            |
|                                                         |        |        |            |
| 4.2 Radiated Emission                                   |        |        |            |
| 4.3 Maximum Peak Conducted Output Power                 |        |        |            |
| 4.4 Power Spectral Density                              | •••••• | •••••• | 23         |
| 4.5 Emission Bandwidth (26dBm Bandwidth)                |        |        |            |
| 4.6 Minimum Emission Bandwidth (6dBm Bandwidth)         |        |        |            |
| 4.7 Out of Band Emissions                               |        |        |            |
| 4.8 SPURIOUS RF CONDUCTED EMISSIONS                     |        |        |            |
| 4.9 Frequency Stability                                 |        |        |            |
| 4.10 Antenna Requirement                                | •••••  | •••••  | 49         |
| -                                                       |        |        |            |
| 5 TEST SETUP PHOTOS OF THE EUT                          |        |        |            |
| DIEDI DETUP PHUTUS UF THE EUT                           | •••••• | •••••  | 5 0        |
|                                                         |        |        |            |
| C DUOTOS OF THE EUT                                     |        |        | A /A / E 1 |



### TEST STANDARDS

The tests were performed according to following standards:

<u>CC Rules Part 15 Subpart E</u>—Unlicensed National Information Infrastructure Devices <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices

KDB789033 D02: General UNII Test Procedures New Rules v02r01

KDB353028 D01v01r01: BASIC EQUIPMENT AUTHORIZATION GUIDANCE FOR ANTENNAS USED WITH

PART 15 INTENTIONAL RADIATORS

KDB662911 D01v02r01: Multiple Transmitter Output v02r01



# 2 SUMMARY

### 2.1 General Remarks

| Date of receipt of test sample | :   | April 21, 2025 |
|--------------------------------|-----|----------------|
| Testing commenced on           |     | April 21, 2025 |
| resung commenced on            |     | Αριίι 21, 2023 |
| Testing concluded on           | : , | May 6, 2025    |

# 2.2 Product Description

| Product Name:                                                                         | repeater                                                                                    | in lan                                              | la.                                       | la.                      |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|--------------------------|
| Model/Type reference:                                                                 | AX3000-U21                                                                                  | i a con                                             |                                           | To the                   |
| Power supply:                                                                         | AC110~240V 50/60z                                                                           | 0.01~0.05A 6W                                       | 130                                       | 30                       |
| Adapter information                                                                   | N/A                                                                                         | 12 12 12 12 12 12 12 12 12 12 12 12 12 1            | 127                                       | 127                      |
| Testing sample ID:                                                                    |                                                                                             | R01-1# (Engineer sam                                |                                           | la.                      |
| Hardware version:                                                                     | V1.0                                                                                        | -10                                                 | 10.                                       | 0 1                      |
| Software version:                                                                     | V1.0                                                                                        | 7/3, 7/3                                            | y. Vs                                     | 1/3                      |
| Operation Frequency:                                                                  | 5180-5240MHz for 80<br>5190-5230MHz for 80<br>5210MHz for 802.11                            | 02.11n/ac(HT40);                                    | Mar                                       | Mar                      |
| Data Rate                                                                             | 802.11a: 6,9,12,18,24<br>802.11n(HT20/HT40)<br>802.11ac(VHT20): NS<br>802.11ac(VHT40/VH     | :MCS0-MCS15;                                        | S                                         | lap Wax                  |
|                                                                                       |                                                                                             |                                                     |                                           |                          |
| WIFI:                                                                                 |                                                                                             |                                                     |                                           |                          |
| WIFI:                                                                                 | 20MHz system                                                                                | 40MHz system                                        | 80MHz system                              | 160MHz system            |
| Supported type:                                                                       | 20MHz system<br>802.11a<br>802.11n<br>802.11ac                                              | 40MHz system<br>802.11n<br>802.11ac                 | 80MHz system<br>802.11ac                  | 160MHz system<br>N/A     |
| Supported type:                                                                       | 802.11a<br>802.11n                                                                          | 802.11n                                             | (3)                                       | 30                       |
| de de                                                                                 | 802.11a<br>802.11n<br>802.11ac                                                              | 802.11n<br>802.11ac                                 | 802.11ac                                  | N/A                      |
| Supported type:  Modulation:                                                          | 802.11a<br>802.11n<br>802.11ac<br>5180MHz-5240MHz                                           | 802.11n<br>802.11ac<br>5190MHz-5230MHz              | 802.11ac<br>5210MHz                       | N/A<br>N/A               |
| Supported type:  Modulation: Operation frequency: Channel number:                     | 802.11a<br>802.11n<br>802.11ac<br>5180MHz-5240MHz<br>OFDM                                   | 802.11n<br>802.11ac<br>5190MHz-5230MHz<br>OFDM      | 802.11ac<br>5210MHz<br>OFDM               | N/A<br>N/A<br>N/A        |
| Supported type:  Modulation:  Operation frequency:                                    | 802.11a<br>802.11n<br>802.11ac<br>5180MHz-5240MHz<br>OFDM<br>4                              | 802.11n<br>802.11ac<br>5190MHz-5230MHz<br>OFDM<br>2 | 802.11ac<br>5210MHz<br>OFDM<br>1          | N/A<br>N/A<br>N/A<br>N/A |
| Supported type:  Modulation: Operation frequency: Channel number: Channel separation: | 802.11a<br>802.11n<br>802.11ac<br>5180MHz-5240MHz<br>OFDM<br>4<br>20MHz<br>External antenna | 802.11n<br>802.11ac<br>5190MHz-5230MHz<br>OFDM<br>2 | 802.11ac<br>5210MHz<br>OFDM<br>1<br>80MHz | N/A<br>N/A<br>N/A<br>N/A |

# 2.3 Equipment Under Test

# Power supply system utilised

| Power supply voltage | 7.9. | 0 | 230V / 50 Hz                 | •   | 120V / 60Hz |
|----------------------|------|---|------------------------------|-----|-------------|
| , at                 | al.  | 0 | 12 V DC                      | 0   | 24 V DC     |
| 01100 0              | 110  | 0 | Other (specified in blank be | low | ) VII. VII. |

Report No.: MAX250425011P02-R01

### 2.4 Short description of the Equipment under Test (EUT)

This is AX3000-U21 repeater.

For more details, refer to the user's manual of the EUT.

This EUT support 2.4 GHz WLAN, 5 GHz WLAN, this report only for 5 GHz WLAN.

For more details, refer to the user's manual of the EUT.

#### 2.5 Channel List

The Applicant provides communication tools software (AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

All test performed at the low, middle and high of operational frequency range of each mode.

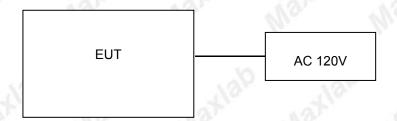
Operation Frequency List WIFI on 5G Band:

| NA I              | 20      | 20MHz              |                               | MHz                | 80MHz   |                    |  |
|-------------------|---------|--------------------|-------------------------------|--------------------|---------|--------------------|--|
| Operating band    | Channel | Frequency<br>(MHz) | Channel                       | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |
| . 4.9.            | 36      | 5180               | 38     5190       46     5230 | 5400               | 42      | 5040               |  |
| U-NII 1           | 40      | 5200               |                               | 5190               |         |                    |  |
| (5150MHz-5250MHz) | 44      | 5220               |                               | 5000               | 42      | 5210               |  |
|                   | 48      | 5240               |                               | 46 5230            |         |                    |  |

Note: The line display in grey is those Channels/Frequencies select to test in this report for each operation mode.

#### 2.6 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.


| Pretest Mode | Description                                       |
|--------------|---------------------------------------------------|
| Mode 1       | 802.11a / n/ ac 20 CH36/ CH40/ CH 48              |
| Mode 2       | 802.11n/ac40 CH38/ CH 46                          |
| Mode 3       | 802.11 ac80 CH 42                                 |
| Mode 4       | Link mode (Conducted emission &Radiated emission) |

#### Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We're testing antenna 3 data.



### 2.7 Block Diagram of Test Setup



### 2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

### 2.9 Modifications

No modifications were implemented to meet testing criteria.



## 3 TEST ENVIRONMENT

### 3.1 Address of the test laboratory

#### MAXLAB Testing Co.,Ltd.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

### 3.2 Test Facility

#### FCC-Registration No.: 562200 Designation Number: CN1338

MAX Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

#### A2LA-Lab Cert. No.: 4707.01

MAX Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

| Temperature:          | 25 ° C       |
|-----------------------|--------------|
| 425                   | 0.25         |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

#### Conducted testing:

| Temperature:          | 25 ° C       |
|-----------------------|--------------|
| 11.0.                 | " U.S.       |
| Humidity:             | 44 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

### AC Power Conducted Emission

| Temperature:          | 24 ° C       |
|-----------------------|--------------|
| all all               | W. Caller    |
| Humidity:             | 44 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |



#### 3.4 Test Description

| FCC Requirement                                          |                                            |                       |
|----------------------------------------------------------|--------------------------------------------|-----------------------|
| FCC Part 15.207                                          | AC Power Conducted Emission                | PASS                  |
| FCC Part 15.407(a)                                       | Emission Bandwidth(26dBm Bandwidth)        | PASS <sub>Note1</sub> |
| FCC Part 15.407(e)                                       | Minimum Emission Bandwidth(6dBm Bandwidth) | PASS <sub>Note2</sub> |
| FCC Part 15.407(a)                                       | Maximum Conducted Output Power             | PASS                  |
| FCC Part 15.407(a)                                       | Peak Power Spectral Density                | PASS                  |
| FCC Part 15.407(g)                                       | Frequency Stability                        | PASS                  |
| FCC Part 15.407(b)                                       | Undesirable emission                       | PASS                  |
| FCC Part 15.407(b)/15.205/15.209                         | Radiated Emissions                         | PASS                  |
| 15.407(b)(1)/ 15.407(b)(2)<br>15.407(b)(3)/ 15.407(b)(4) | Band Edge                                  | PASS                  |
| 15.407(b)                                                | Spurious Emissions at Antenna Terminals    | PASS                  |
| FCC Part 15.407(h)                                       | Dynamic Frequency Selection                | N/A Note 3            |
| FCC Part 15.203/15.247(b)                                | Antenna Requirement                        | PASS                  |
| FCC Part 15.407(c)                                       | Automatically discontinue transmission     | PASS <sub>Note4</sub> |

Note 1: Apply to U-NII 1, U-NII 2A, and U-NII 2C band.

Note 2: Apply to U-NII 3 band only.

Note 3: This device not work in DFS band.

Note 4: While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (Manufacturer declare)

#### **Data Rate Used:**

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items                                                                                                                                                                     | Mode                        | Data Rate |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|
| MMaximum Conducted Output Power Power Spectral Density Emission Bandwidth(26dBm Bandwidth) Minimum Emission Bandwidth(6dBm Bandwidth) Undesirable emission Frequency Stability | 11a/OFDM                    | 6 Mbps    |
|                                                                                                                                                                                | 11n(20MHz),11ac(20MHz)/OFDM | 7.2 Mbps  |
|                                                                                                                                                                                | 11n(40MHz),11ac(40MHz)/OFDM | 15.0Mbps  |
|                                                                                                                                                                                | 11ac(80MHz)/OFDM            | 65.0Mbps  |

### 3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the MAXLAB Testing Co.,Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for MAXLAB Testing Co.,Ltd.



| Test item                                                 | Uncertainty                        |  |  |  |  |
|-----------------------------------------------------------|------------------------------------|--|--|--|--|
| Bandwidth                                                 | 1.1%                               |  |  |  |  |
| Peak Output Power (Conducted) (Spectrum                   | 0.86 dB(10 MHz ≤f<3.6 GHz);        |  |  |  |  |
| analyzer)                                                 | 1.38 dB(3.6 GHz ≤f<8 GHz)          |  |  |  |  |
| Peak Output Power (Conducted)(Power Sensor)               | 0.74 dB                            |  |  |  |  |
| Dower Chestral Density                                    | 0.74 dB(10 MHz ≤f< 3.6 GHz);       |  |  |  |  |
| Power Spectral Density                                    | 1.38 dB(3.6 GHz ≤f<8 GHz)          |  |  |  |  |
|                                                           | 6.7 x 10-8 (Antenna couple method) |  |  |  |  |
| Frequencies Stability                                     | 5.5x 10-8(Conducted method)        |  |  |  |  |
| and and and                                               | 0.86 dB(10 MHz ≤f<3.6 GHz);        |  |  |  |  |
| Conducted spurious emissions                              | 1.40 dB(3.6 GHz ≤f<8 GHz)          |  |  |  |  |
| 7. /. /.                                                  | 1.66 dB (8 GHz ≤f < 26.5 GHz)      |  |  |  |  |
| Uncertainty for radio frequency (RBW <20 kHz)             | 3x10 <sup>-8</sup>                 |  |  |  |  |
| Temperature                                               | 0.4℃                               |  |  |  |  |
| Humidity                                                  | 2%                                 |  |  |  |  |
| Uncertainty for Radiation Emission test<br>(9 kHz-30 MHz) | 3.44 dB                            |  |  |  |  |
| Uncertainty for Radiation Emission test                   | 4.70 dB (Antenna Polarize:V)       |  |  |  |  |
| (30 MHz-1GHz)                                             | 4.84 dB(Antenna Polarize:H)        |  |  |  |  |
|                                                           | 4.10 dB(1-6 GHz)                   |  |  |  |  |
| Uncertainty for Radiation Emission test                   | 4.40 dB(6 GHz- 18 GHz)             |  |  |  |  |
| (1GHz-40GHz)                                              | 3.54 dB(18 GHz- 26 GHz)            |  |  |  |  |
| ta. ta.                                                   | 4.30 dB(26 GHz-40 GHz)             |  |  |  |  |
| Uncertainty for Power line conduction emission test       | 3.34dB(150KHz-30MHz)               |  |  |  |  |
| oncertainty for Fower line conduction emission test       | 3.72dB(9KHz-150KHz)                |  |  |  |  |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

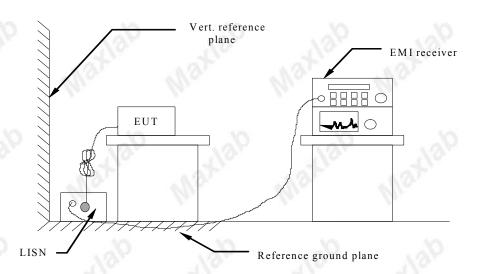
# 3.6 Equipments Used during the Test

| Conducted Emissi              | Conducted Emission          |                      |            |              |            |  |  |  |  |
|-------------------------------|-----------------------------|----------------------|------------|--------------|------------|--|--|--|--|
| Test Equipment                | Manufacturer                | Model                | Serial No. | Date of Cal. | Due Date   |  |  |  |  |
| Shielding Room                | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | MAX252     | 2024-10-27   | 2025-10-26 |  |  |  |  |
| EMI Test Receiver             | R&S                         | ESCI 7               | MAX552     | 2024-10-27   | 2025-10-26 |  |  |  |  |
| Coaxial Switch                | ANRITSU CORP                | MP59B                | MAX225     | 2024-10-27   | 2025-10-26 |  |  |  |  |
| ENV216 2-L-V-<br>NETZNACHB.DE | ROHDE&SCHWARZ               | ENV216               | MAX226     | 2024-10-27   | 2025-10-26 |  |  |  |  |
| Coaxial Cable                 | MAX                         | N/A                  | MAX227     | N/A          | N/A        |  |  |  |  |
| EMI Test Software             | AUDIX                       | E3                   | N/A        | N/A          | N/A        |  |  |  |  |
| Thermo meter                  | KTJ                         | TA328                | MAX233     | 2024-10-27   | 2025-10-26 |  |  |  |  |
| Absorbing clamp               | Elektronik-<br>Feinmechanik | MDS21                | MAX229     | 2024-10-27   | 2025-10-26 |  |  |  |  |
| LISN                          | R&S                         | ENV216               | 308        | 2024-10-27   | 2025-10-26 |  |  |  |  |
| LISN                          | R&S                         | ENV216               | 314        | 2024-10-27   | 2025-10-26 |  |  |  |  |

| Radiation Test equ           | ipment           | Mo                    | Olice      | Me           | Mo         |
|------------------------------|------------------|-----------------------|------------|--------------|------------|
| Test Equipment               | Manufacturer     | Model                 | Serial No. | Date of Cal. | Due Date   |
| 3m Semi- Anechoic<br>Chamber | ZhongYu Electron | 9.2(L)*6.2(W)* 6.4(H) | MAX250     | 2024-10-27   | 2025-10-26 |
| Control Room                 | ZhongYu Electron | 6.2(L)*2.5(W)* 2.4(H) | MAX251     | N/A          | N/A        |
| EMI Test Receiver            | Rohde & Schwarz  | ESU26                 | MAX203     | 2024-10-27   | 2025-10-26 |



| BiConiLog Antenna                         | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163    | MAX214    | 2024-10-27 | 2025-10-26 |
|-------------------------------------------|--------------------------------|-------------|-----------|------------|------------|
| Double -ridged waveguide horn             | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D | MAX208    | 2024-10-27 | 2025-10-26 |
| Horn Antenna                              | ETS-LINDGREN                   | 3160        | MAX217    | 2024-10-27 | 2025-10-26 |
| EMI Test Software                         | AUDIX                          | E3          | N/A       | N/A        | N/A        |
| Amplifier<br>(100kHz-1GHz)                | HP                             | 8347A       | MAX204    | 2024-10-27 | 2025-10-26 |
| Amplifier<br>(1GHz-40GHz)                 | HP                             | 84722A      | MAX206    | 2024-10-27 | 2025-10-26 |
| RF cables1<br>(9kHz-30MHz)                | MAX                            | 9kHz-30MHz  | MAX213    | 2024-10-27 | 2025-10-26 |
| RF cables2<br>(30MHz-1GHz)                | MAX                            | 30MHz-1GHz  | MAX211    | 2024-10-27 | 2025-10-26 |
| RF cables3<br>(1GHz-40GHz)                | MAX                            | 1GHz-40GHz  | MAX210    | 2024-10-27 | 2025-10-26 |
| Band filter                               | Amindeon                       | 82346       | MAX219    | 2024-10-27 | 2025-10-26 |
| Power Meter                               | Anritsu                        | ML2495A     | MAX540    | 2024-10-27 | 2025-10-26 |
| Power Sensor                              | Anritsu                        | MA2411B     | MAX541    | 2024-10-27 | 2025-10-26 |
| Wideband Radio<br>Communication<br>Tester | Rohde & Schwarz                | CMW500      | MAX575    | 2024-10-27 | 2025-10-26 |
| Splitter                                  | Agilent                        | 11636B      | MAX237    | 2024-10-27 | 2025-10-26 |
| Loop Antenna                              | ZHINAN                         | ZN30900A    | MAX534    | 2024-10-27 | 2025-10-26 |
| Breitband<br>hornantenne                  | SCHWARZBECK                    | BBHA 9170   | MAX579    | 2024-10-27 | 2025-10-26 |
| Amplifier                                 | TDK                            | PA-02-02    | MAX574    | 2024-10-27 | 2025-10-26 |
| Amplifier                                 | TDK                            | PA-02-03    | MAX576    | 2024-10-27 | 2025-10-26 |
| Spectrum Analyzer (9kHz-40GHz)            | Rohde & Schwarz                | FSP         | MAX-CE013 | 2024-10-27 | 2025-10-26 |
| Antenna tower                             | SKET                           | BK-4AT      | MAX589    | 2024-10-27 | 2025-10-26 |


| RF Conducted Test:                                   |              |                  |            |              |            |
|------------------------------------------------------|--------------|------------------|------------|--------------|------------|
| Test Equipment                                       | Manufacturer | Model            | Serial No. | Date of Cal. | Due Date   |
| MXA Signal Analyzer                                  | Agilent      | N9020A           | MAX566     | 2024-10-27   | 2025-10-26 |
| Spectrum Analyzer                                    | Agilent      | E4440A           | MAX533     | 2024-10-27   | 2025-10-26 |
| MXG vector Signal<br>Generator                       | Agilent      | N5182A           | MAX567     | 2024-10-27   | 2025-10-26 |
| ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | MAX568     | 2024-10-27   | 2025-10-26 |
| USB RF Power<br>Sensor                               | DARE         | RPR3006W         | MAX569     | 2024-10-27   | 2025-10-26 |
| RF Switch Box                                        | Shongyi      | RFSW3003328      | MAX571     | 2024-10-27   | 2025-10-26 |
| Programmable<br>Constant Temp &<br>Humi Test Chamber | WEWON        | WHTH-150L-40-880 | MAX572     | 2024-10-27   | 2025-10-26 |



### 4 TEST CONDITIONS AND RESULTS

#### 4.1 AC Power Conducted Emission

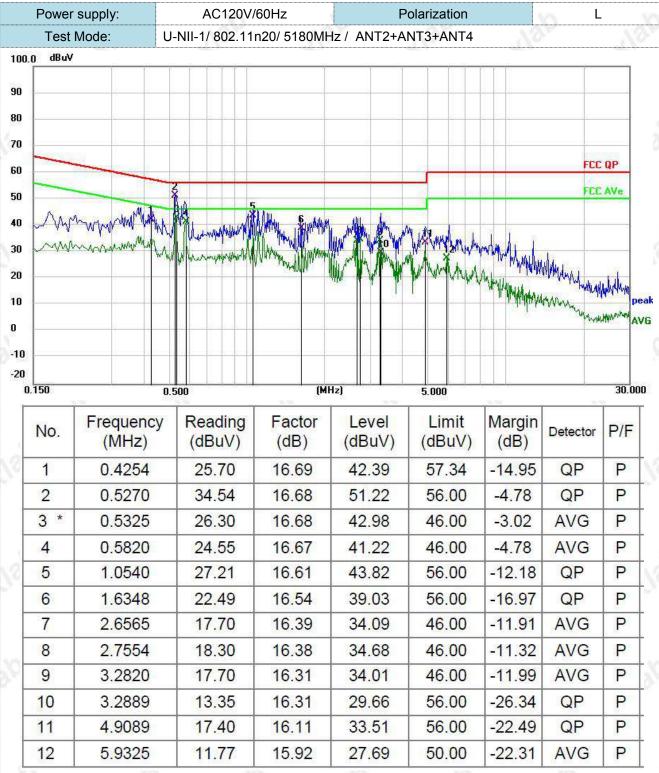
#### **TEST CONFIGURATION**



### **TEST PROCEDURE**

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

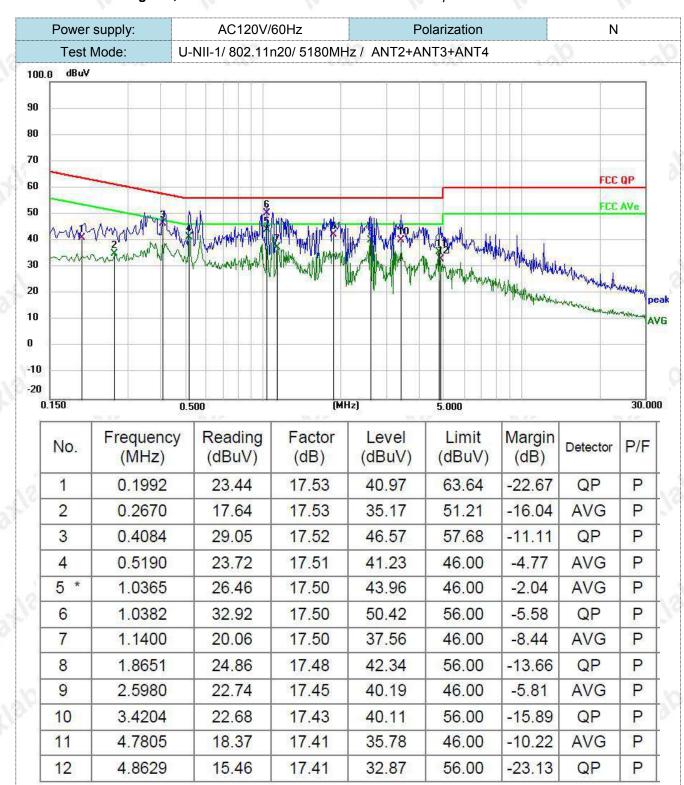
#### **AC Power Conducted Emission Limit**


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Fraguency range (MHz) | Limit (c   | lBuV)     |
|-----------------------|------------|-----------|
| Frequency range (MHz) | Quasi-peak | Average   |
| 0.15-0.5              | 66 to 56*  | 56 to 46* |
| 0.5-5                 | 56         | 46        |
| 5-30                  | 60         | 50        |

#### **TEST RESULTS**

Note: Pre-scan all mode and recorded worst case at IEEE 802.11n HT20 MIMO modes (ANT2+ANT3+ANT4).






Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V) Level (dB $\mu$ V)





Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V) Level (dB $\mu$ V)

Report No.:MAX250425011P02-R01

#### 4.2 Radiated Emission

#### <u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

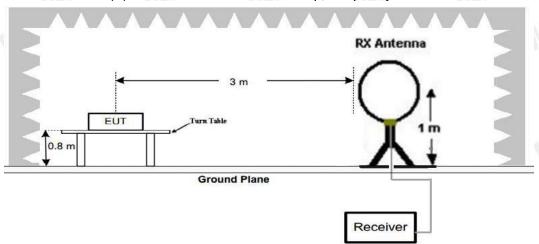
#### **Undesirable emission limits**

| Requirement  | Limit(EIRP)     | Limit (Field strength at 3m) Note1 |
|--------------|-----------------|------------------------------------|
| 15.407(b)(1) |                 |                                    |
| 15.407(b)(2) | DV: 27(dDm/MU=) | DK:69.2(dBu\//m)                   |
| 15.407(b)(3) | PK:-27(dBm/MHz) | PK:68.2(dBμV/m)                    |
| 15.407(b)(4) |                 | and and                            |

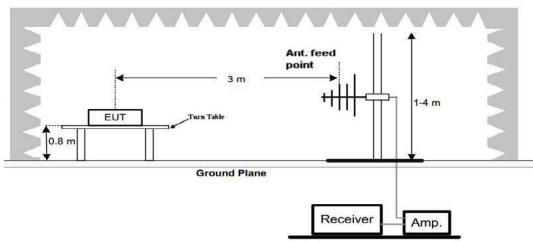
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \, \mu \text{V/m}, \, \text{where P is the eirp (Watts)}$$

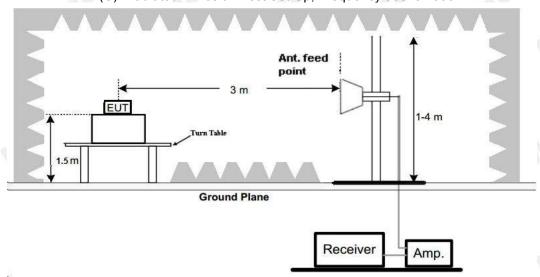
(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


#### Radiated emission limits

| Frequency (MF | Hz) Distance (Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|---------------|-----------------------|----------------------------------|-----------------|
| 0.009-0.49    | 3                     | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705    | 3                     | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30      | 3                     | 20log(30)+ 40log(30/3)           | 30              |
| 30-88         | 3                     | 40.0                             | 100             |
| 88-216        | 3                     | 43.5                             | 150             |
| 216-960       | 3                     | 46.0                             | 200             |
| Above 960     | 3                     | 54.0                             | 500             |




#### **TEST CONFIGURATION**


### (A) Radiated Emission Test Set-Up, Frequency Below 30MHz



#### (B) Radiated Emission Test Set-Up, Frequency below 1000MHz



### (C) Radiated Emission Test Set-Up, Frequency above 1000MHz



#### Report No.:MAX250425011P02-R01

#### **TEST PROCEDURE**

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0℃ to 360℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 40GHz.
- 6. The distance between test antenna and EUT as following table states:

| Test Frequency range | Test Antenna Type   | Test Distance |
|----------------------|---------------------|---------------|
| 9KHz-30MHz           | Active Loop Antenna | 3             |
| 30MHz-1GHz           | Bilog Antenna       | 3             |
| 1GHz-18GHz           | Horn Antenna        | 3             |
| 18GHz-25GHz          | Horn Anternna       | . 101 . 107   |

7. Setting test receiver/spectrum as following table states:

| Test Frequency range | Test Receiver/Spectrum Setting                                                                            | Detector |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------|----------|--|--|
| 9KHz-150KHz          | RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                                        | QP       |  |  |
| 150KHz-30MHz         | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                                       | QP       |  |  |
| 30MHz-1GHz           | z RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                                  |          |  |  |
| 1GHz-40GHz           | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak     |  |  |

### **TEST RESULTS**

Between 9KHz - 30MHz

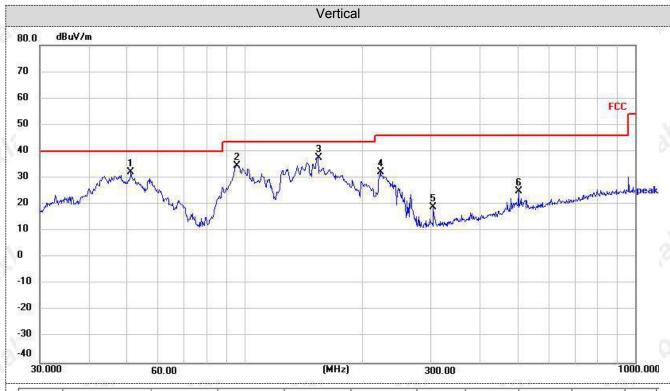
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



#### For 30MHz-1GHz

| Temperature: | 26℃                          | Relative Humidity: | 54%          |
|--------------|------------------------------|--------------------|--------------|
| Pressure:    | 101 kPa                      | Test Voltage:      | AC 120V/60Hz |
| Test Mode:   | TX(5.2G) 802.11n/5180MHz/ AN | "//s, "//s,        |              |

Note: Pre-scan all mode and recorded worst case at IEEE 802.11n HT20 MIMO modes (ANT2+ANT3+ANT4).




| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor (dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height (cm)  | Azimuth (deg.) | P/F |
|-----|--------------------|----------------|---------------|-------------------|-------------------|----------------|----------|--------------|----------------|-----|
| 1   | 57.9993            | 34.41          | -16.95        | 17.46             | 40.00             | -22.54         | peak     | 100          | 0              | Р   |
| 2   | 96.0986            | 42.92          | -20.19        | 22.73             | 43.50             | -20.77         | peak     | 100          | 0              | Р   |
| 3   | 161.4742           | 47.39          | -15.98        | 31.41             | 43.50             | -12.09         | peak     | 100          | 0              | Р   |
| 4 * | 189.0743           | 50.50          | -18.65        | 31.85             | 43.50             | -11.65         | peak     | 100          | 0              | Р   |
| 5   | 234.9909           | 44.04          | -18.15        | 25.89             | 46.00             | -20.11         | peak     | 100          | 0              | Р   |
| 6   | 305.6800           | 39.39          | -15.43        | 23.96             | 46.00             | -22.04         | peak     | 100          | 0              | Р   |
|     |                    | -A             | 0.7.70.7      | 20.000            | -                 |                |          | 30. F 470. T |                | _   |

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)





| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor (dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height (cm) | Azimuth (deg.) | P/F |
|-----|--------------------|----------------|---------------|-------------------|-------------------|----------------|----------|-------------|----------------|-----|
| 1   | 51.3005            | 48.75          | -16.51        | 32.24             | 40.00             | -7.76          | peak     | 100         | 360            | Р   |
| 2   | 95.4270            | 54.92          | -20.23        | 34.69             | 43.50             | -8.81          | peak     | 100         | 360            | Р   |
| 3 * | 154.2786           | 53.51          | -15.92        | 37.59             | 43.50             | -5.91          | peak     | 100         | 360            | Р   |
| 4   | 222.9502           | 51.18          | -19.11        | 32.07             | 46.00             | -13.93         | peak     | 100         | 360            | Р   |
| 5   | 304.6099           | 34.38          | -15.45        | 18.93             | 46.00             | -27.07         | peak     | 100         | 360            | Р   |
| 6   | 502.9395           | 35.46          | -10.60        | 24.86             | 46.00             | -21.14         | peak     | 100         | 360            | Р   |

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

Report No.: MAX250425011P02-R01

### For 1GHz to 40GHz

Note: Note: Pre-scan all mode and recorded worst case at IEEE 802.11ac20 MIMO modes (ANT2+ANT3+ANT4).

U-NII 1 & 802.11 ac20 Mode (above 1GHz)

|                   |                    |                               | O-IVII I | Q 002.           | II aczo IV        | oue (abo       | VE I GIIZ              | ,                           |      |                           |                                |
|-------------------|--------------------|-------------------------------|----------|------------------|-------------------|----------------|------------------------|-----------------------------|------|---------------------------|--------------------------------|
| Tested<br>Channel | Frequency<br>(MHz) | Emission<br>Limit<br>(dBuV/m) | Mode     | ANT<br>Pol       | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) |      | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
|                   | 5150.00            | 59.40                         | PK       | Н                | 68.20             | 8.80           | 56.41                  | 32.40                       | 5.11 | 34.52                     | 2.99                           |
| 36                | 5150.00            | 48.31                         | AV       | VαH              | 54.00             | 5.69           | 45.32                  | 32.40                       | 5.11 | 34.52                     | 2.99                           |
| 5158MHz           | 10360.00           | 48.45                         | PK       | Н                | 68.20             | 19.75          | 41.29                  | 36.51                       | 5.86 | 35.21                     | 7.16                           |
| 4                 |                    | ·                             | - N      |                  | 4/                |                | 74 N.                  |                             | 212  |                           | 3//-                           |
| 40                | 10400.00           | 42.55                         | PK       | Н                | 68.20             | 25.65          | 35.26                  | 36.58                       | 5.96 | 35.25                     | 7.29                           |
| 5200MHz           | 10.                |                               | ·        |                  | /a                | 1/4            |                        | //4.                        |      | Ja.                       |                                |
| 40                | 5350.50            | 43.55                         | PK       | Н                | 68.20             | 24.65          | 40.51                  | 32.45                       | 5.22 | 34.63                     | 3.04                           |
| 48<br>5240MHz     | 10480.00           | 42.63                         | PK       | Н                | 68.20             | 25.57          | 35.28                  | 36.68                       | 6.21 | 35.54                     | 7.35                           |
| 324UNITZ          |                    | 70                            |          | '/O <del>-</del> |                   | W              | 🔊                      | 0                           | 20   | 0                         | /O                             |

| Tested<br>Channel | Frequency<br>(MHz) | Emission<br>Limit<br>(dBuV/m) | Detector<br>Mode  | ANT<br>Pol | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) |      | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
|-------------------|--------------------|-------------------------------|-------------------|------------|-------------------|----------------|------------------------|-----------------------------|------|---------------------------|--------------------------------|
|                   | 5150.00            | 53.62                         | PK                | V          | 68.20             | 14.58          | 50.63                  | 32.40                       | 5.11 | 34.52                     | 2.99                           |
| 36                | 5150.00            | 48.62                         | AV                | V          | 54.00             | 5.38           | 45.63                  | 32.40                       | 5.11 | 34.52                     | 2.99                           |
| 5158MHz           | 10360.00           | 47.41                         | PK                | V          | 68.20             | 20.79          | 40.25                  | 36.51                       | 5.86 | 35.21                     | 7.16                           |
| 312               | 35                 |                               | * <del>T</del> >. |            | - 4-V             |                | 3/2                    | 3                           | 10-  |                           | \$7.c                          |
| 40                | 10400.00           | 37.54                         | PK                | V          | 68.20             | 30.66          | 30.25                  | 36.58                       | 5.96 | 35.25                     | 7.29                           |
| 5200MHz           | 10.                | //                            |                   | //         | B                 | J.a.           |                        | 70.                         |      | 70.                       |                                |
| 40                | 5350.50            | 37.67                         | PK                | V          | 68.20             | 30.53          | 34.63                  | 32.45                       | 5.22 | 34.63                     | 3.04                           |
| 48<br>5240MHz     | 10480.00           | 38.19                         | PK                | V          | 68.20             | 30.01          | 30.84                  | 36.68                       | 6.21 | 35.54                     | 7.35                           |
| 3240WII IZ        |                    | V/6                           | 24                | 7/0-       | 12                | <i>[0</i>      | 7.0                    | )                           | 70   | )                         | $Q_{C_{1}}$                    |

#### **REMARKS**:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the other emission levels were very low against the limit.
- 5. The worst case is MIMO (ANT2+ANT3+ANT4)

Report No.:MAX250425011P02-R01

### 4.3 Maximum Peak Conducted Output Power

#### **Limit**

#### For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1W

#### **Test Procedure**

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

#### **Test Configuration**





### **Test Results**

### U-NII 1

| _                  |         |       | Limit |       |           |       |        |
|--------------------|---------|-------|-------|-------|-----------|-------|--------|
| Туре               | Channel | ANT 2 | ANT 3 | ANT 4 | ANT 2+3+4 | (dBm) | Result |
| 802.11a            | 36      | 9.586 | 6.956 | 4.622 | 1         |       |        |
|                    | 40      | 9.854 | 6.845 | 4.265 |           | 30.00 | Pass   |
|                    | 48      | 9.421 | 6.856 | 4.241 | 1         |       | 4/1    |
| 1                  | 36      | 8.635 | 5.652 | 3.654 | 10.405    |       | Mo.    |
| 802.11n<br>(HT20)  | 40      | 8.421 | 5.562 | 3.254 | 10.233    |       |        |
| (1112)             | 48      | 8.241 | 5.241 | 3.415 | 10.005    |       |        |
| 802.11n            | 38      | 6.521 | 3.865 | 2.564 | 8.403     |       | 1/2    |
| (HT40)             | 46      | 6.241 | 3.635 | 2.421 | 8.141     |       | 135    |
|                    | 36      | 7.562 | 4.254 | 3.141 | 9.226     | 27.53 | Pass   |
| 802.11ac<br>(HT20) | 40      | 7.234 | 4.635 | 3.021 | 9.136     |       |        |
| (11120)            | 48      | 7.635 | 4.425 | 3.085 | 9.330     |       | 7.3    |
| 802.11ac<br>(HT40) | 38      | 5.654 | 2.652 | 1.021 | 7.418     |       | 137    |
|                    | 46      | 5.652 | 2.542 | 1.125 | 7.380     |       | Mr.    |
| 802.11ac<br>(HT80) | 42      | 4.986 | 1.865 | 0.241 | 6.710     | 4.0   |        |

#### Note:

- Measured output power at difference data rate for each mode and recorded worst case for each mode.
   Test results including cable loss.
- 3. Antenna Directional gain = G<sub>ANT</sub> + 10 log(N<sub>ANT</sub>) dBi =3.70+10log(3) dBi=8.47dBi>6dBi Limit=30-(8.47-6)=27.53 dBi

Report No.:MAX250425011P02-R01

### 4.4 Power Spectral Density

#### <u>Limit</u>

- (1) For the band 5.15 5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.<sup>note1</sup>
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.<sup>note1</sup>
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. <sup>note1</sup>
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. note1, note2

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

transmission.

#### **Test Procedure**

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 510KHz for U-NII 3 band.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to encompass the entire EBW.
- Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

#### **Test Configuration**

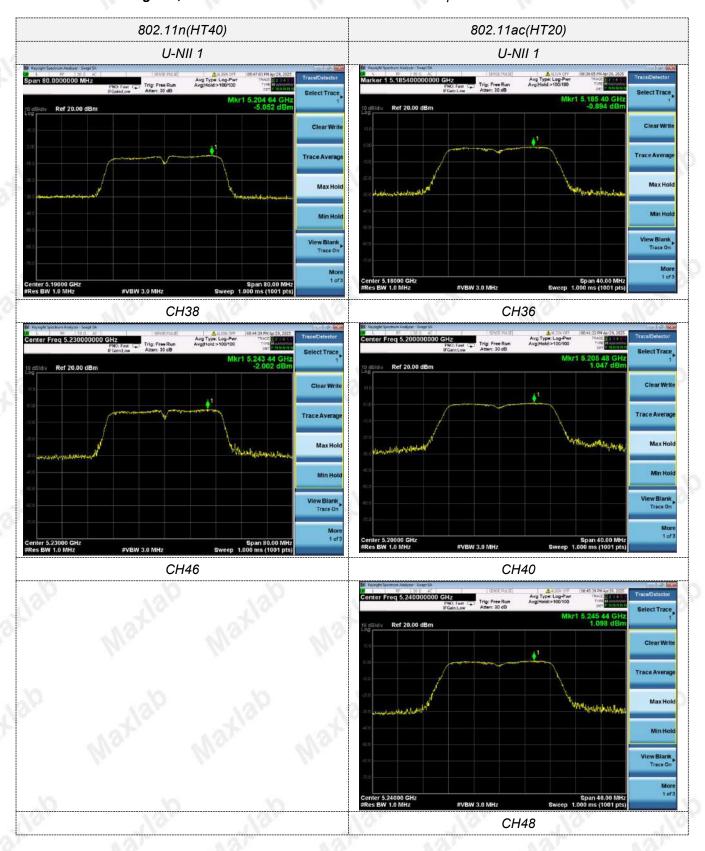




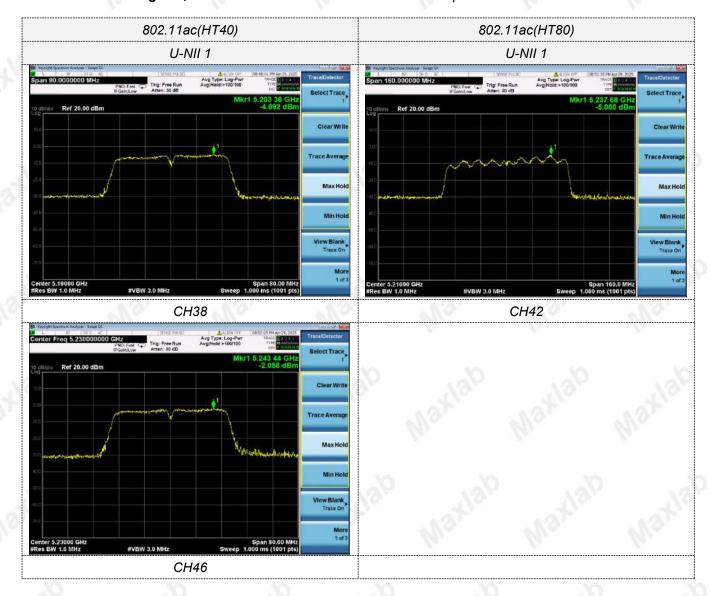
### **Test Results**

|                            | Bands      |         | Pow    | er Spectral [ | Limit   |                    |                    |        |
|----------------------------|------------|---------|--------|---------------|---------|--------------------|--------------------|--------|
| Туре                       |            | Channel | ANT 2  | ANT 3         | ANT 4   | Total ANT<br>2+3+4 | Limit<br>(dBm/MHz) | Result |
|                            | la.        | 36      | 0.370  | -3.366        | -4.627  | 1                  | Ja.                |        |
| 802.11a                    | U-NII 1    | 40      | 1.365  | -2.641        | -4.215  | 1                  | 17                 |        |
|                            |            | 48      | 1.093  | -1.259        | -3.610  | 1                  | 120                | 12     |
| 7                          | 100        | 36      | -0.477 | -4.766        | -5.789  | 1.742              | 27-7               | 125    |
| 802.11n<br>(HT20) U-N      | U-NII 1    | 40      | 1.205  | -2.863        | -4.627  | 3.388              |                    | Mr.    |
|                            |            | 48      | 0.654  | -2.852        | -4.571  | 3.075              |                    |        |
| 802.11n                    | 11 11 11 4 | 38      | -5.052 | -9.308        | -10.175 | -2.792             | 90                 |        |
| (HT40)                     | U-NII 1    | 46      | -2.002 | -6.289        | -7.462  | 0.191              | Ala                | Pass   |
|                            | Mo         | 36      | -0.884 | -4.852        | -5.911  | 1.459              | 14.53              | N.a.   |
| 802.11ac<br>(HT20)         | U-NII 1    | 40      | 1.047  | -3.005        | -4.507  | 3.279              | -                  |        |
| (1120)                     |            | 48      | 1.098  | -3.629        | -4.314  | 3.205              | 30                 | - 30   |
| 802.11ac<br>(HT40) U-NII 1 | 38         | -4.692  | -9.188 | -11.229       | -2.713  | 730                | 1/3-               |        |
|                            | U-NII 1    | 46      | -2.058 | -5.715        | -7.249  | 0.331              | 1.                 | 3.F    |
| 802.11ac<br>(HT80)         | U-NII 1    | 42      | -5.000 | -10.236       | -12.441 | -3.298             | 100                |        |

#### Note:

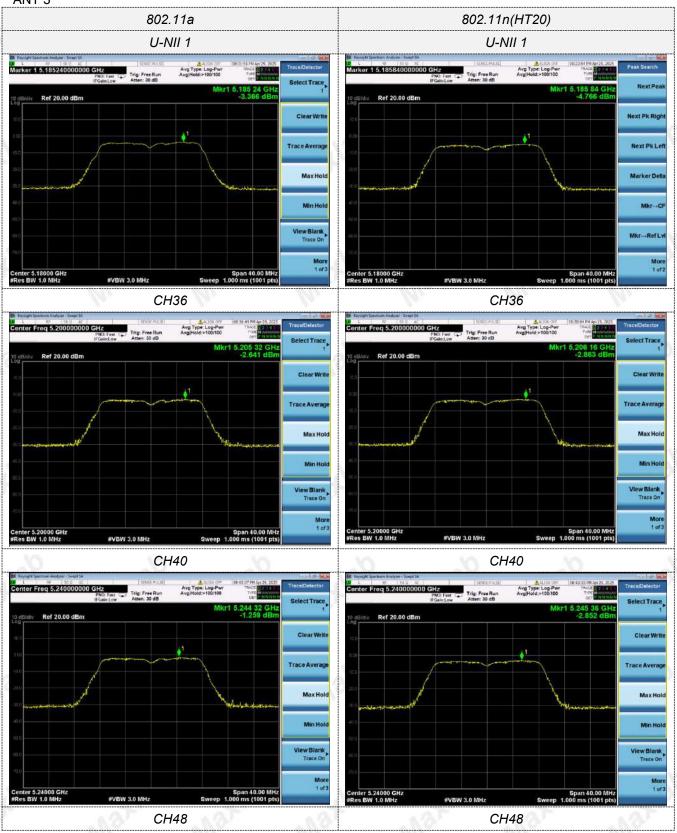

- 1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss.
- 3. Antenna Directional gain =  $G_{ANT}$  + 10 log( $N_{ANT}$ ) dBi =3.70+10log(3) dBi=8.47dBi>6dBi Limit=17-(8.47-6)=14.53 dBi






Test plot as follows: ANT 2 802.11a 802.11n(HT20) U-NII 1 U-NII 1 Avg Type: Log-P Avg Type Log-F Avg Hold : 100-F Ref 20.00 dBm Ref 20.00 dBm **CH36 CH36** Avg Type: Log-Pw Avg/Hold > 100/100 Avg Type: Log-Pwr AvgiHold:>100/100 #VBW 3.0 MHz CH40 CH40 Avg Type: Log-Pwr Avg Hold:>100/100 Avg Type: Log-Pv AvgiHold: 150 •1 CH48 CH48



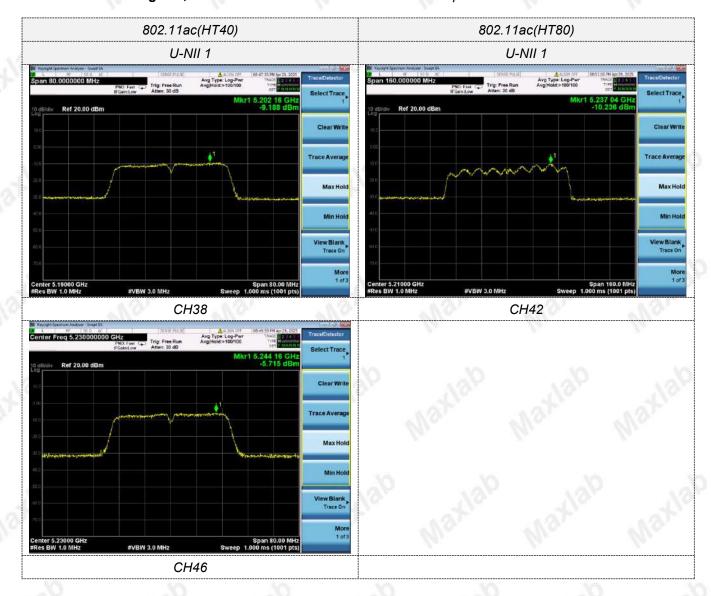








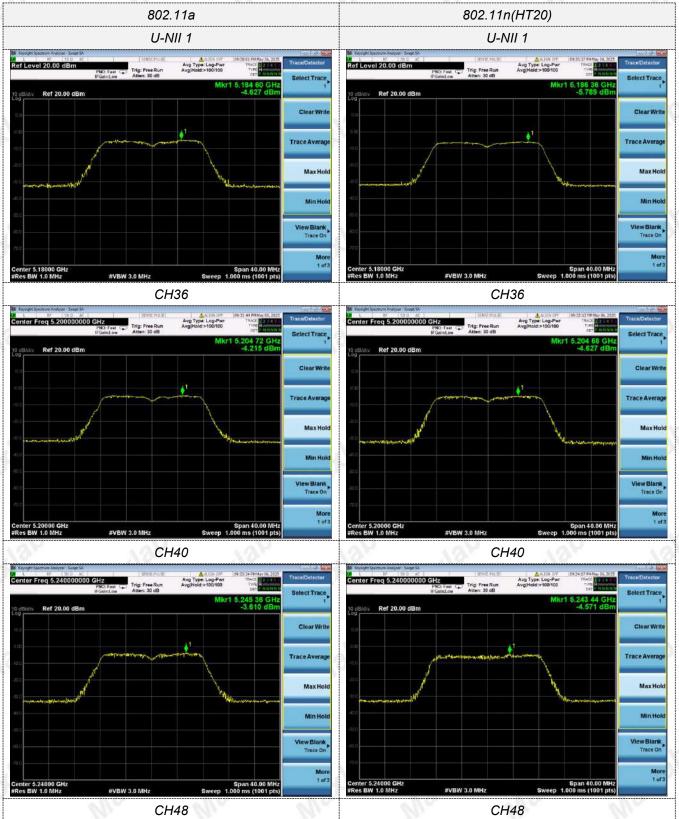



ANT 3

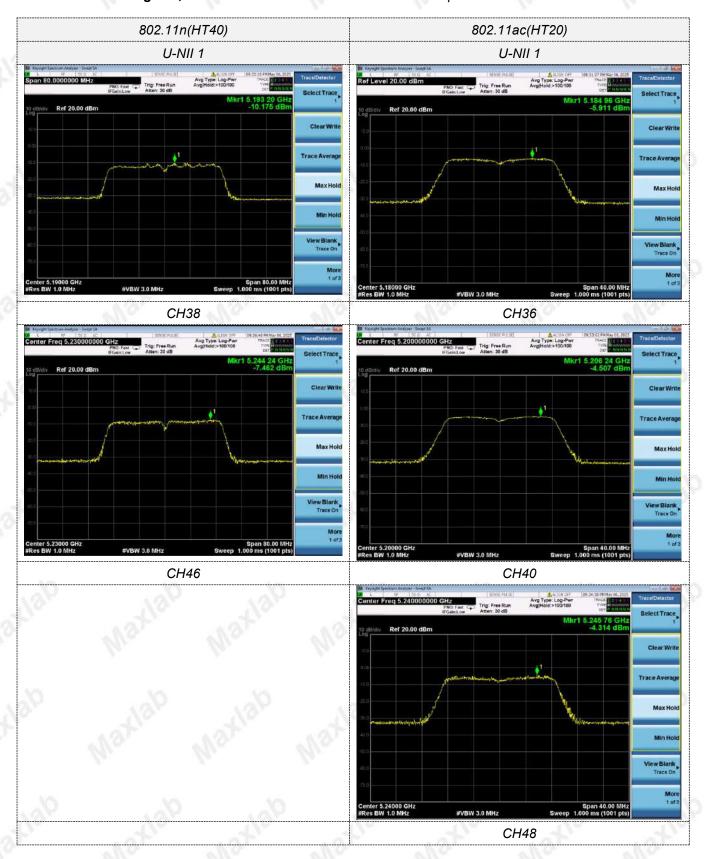











#### ANT 4













### 4.5 Emission Bandwidth (26dBm Bandwidth)

#### <u>Limit</u>

N/A

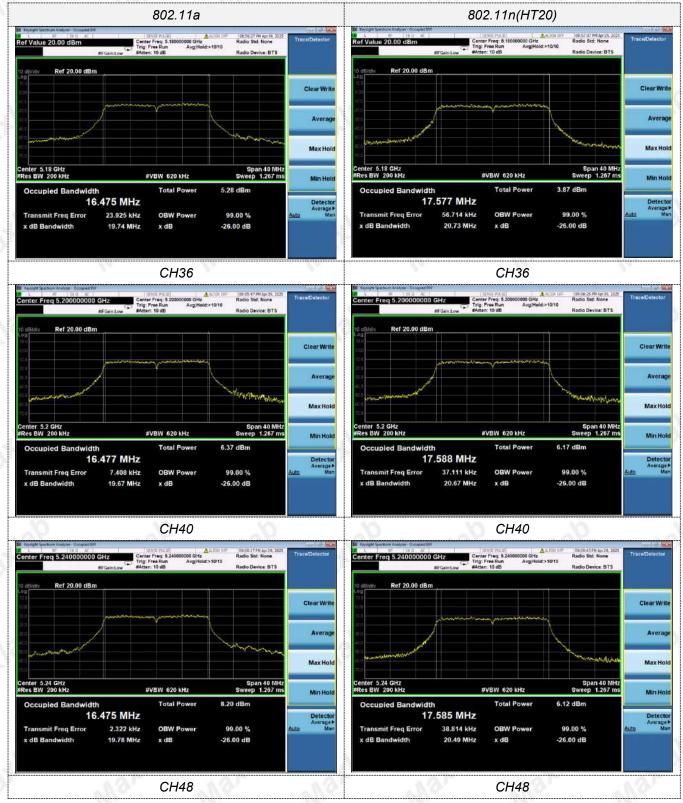
### **Test Procedure**

- 1. Set resolution bandwidth (RBW) = approximately 1% of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- Detector = Peak.
- 4. Trace mode = Max hold.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare
  this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the
  RBW / EBW ratio is approximately 1%.

### **Test Configuration**



#### **Test Results**


| T               | Danda   | Channal | 26dB  | Bandwidth | Limit (BALL) | Danuli      |        |
|-----------------|---------|---------|-------|-----------|--------------|-------------|--------|
| Туре            | Bands   | Channel | ANT 2 | ANT 3     | ANT 4        | Limit (MHz) | Result |
|                 | 200     | 36      | 19.74 | 19.68     | 19.59        |             |        |
| 802.11a         | U-NII 1 | 40      | 19.67 | 19.59     | 19.51        | 120         |        |
|                 |         | 48      | 19.78 | 19.72     | 19.68        | 2           |        |
| Me              | U.      | 36      | 20.73 | 20.68     | 20.62        | N/A         |        |
| 802.11n(HT20)   | U-NII 1 | 40      | 20.67 | 20.64     | 20.57        |             |        |
|                 |         | 48      | 20.49 | 20.43     | 20.37        |             |        |
| 222 44 (117.42) | U-NII 1 | 38      | 39.75 | 39.68     | 39.62        |             | Pass   |
| 802.11n(HT40)   |         | 46      | 39.80 | 39.75     | 39.68        |             |        |
|                 | U-NII 1 | 36      | 20.60 | 20.54     | 20.48        |             |        |
| 802.11ac(HT20)  |         | 40      | 20.68 | 20.59     | 20.52        |             |        |
|                 |         | 48      | 20.59 | 20.51     | 20.43        | 134         |        |
| 802.11ac(HT40)  | 100     | 38      | 39.49 | 39.42     | 39.37        | 10.         |        |
|                 | U-NII 1 | 46      | 39.89 | 39.82     | 39.76        |             |        |
| 802.11ac(HT80)  | U-NII 1 | 42      | 78.58 | 78.52     | 78.46        |             |        |



Report No.: MAX250425011P02-R01

Test plot as follows: Note: Both ANT 2/3/4 have been test, The worst data is Antenna 2, only shown Antenna 2 Plot.

U-NII 1 /5.2G









## Report No.:MAX250425011P02-R01



Report No.: MAX250425011P02-R01

## 4.6 Minimum Emission Bandwidth (6dBm Bandwidth)

### **Limit**

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

#### **Test Procedure**

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### **Test Configuration**



#### **Test Results**

N/A

#### 4.7 Out of Band Emissions

#### 4.7.1 Applicable Standard

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

#### 4.7.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

#### 4.7.3 DEVIATION FROM STANDARD

No deviation.

#### 4.7.4 TEST SETUP

| EUT          | SPECTRUM |
|--------------|----------|
| 573626, 1931 | ANALYZER |

## 4.7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

#### 4.7.6 **TEST RESULTS**

| Temperature: | 26 ℃     | Relative Humidity: | 54%     |
|--------------|----------|--------------------|---------|
| Pressure:    | 1012 hPa | Test Voltage :     | AC 120V |

Note: Both ANT 2/3/4 have been test, Only show the worst data of ANT 2

#### 5.180~5.240 GHz

(802.11a) Band Edge, Left Side

(802.11n20) Band Edge, Left Side



(802.11a) Band Edge, Right Side



(802.11n20) Band Edge, Right Side

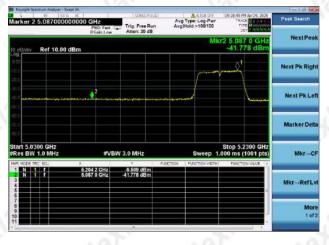


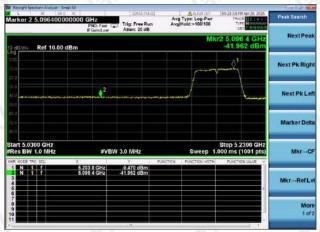



#### 5.180~5.240 GHz

(802.11ac20) Band Edge, Left Side

(802.11ac20) Band Edge, Right Side

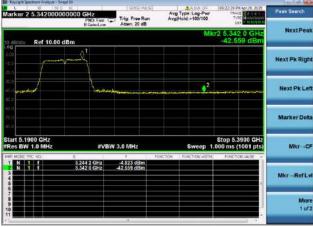



5.180~5.240 GHz

(802.11n40) Band Edge, Left Side

(802.11ac40) Band Edge, Left Side






(802.11n40) Band Edge, Right Side

(802.11ac40) Band Edge, Right Side







## 5.180~5.240 GHz

(802.11ac80) Band Edge, Left Side

(802.11ac80) Band Edge, Right Side







#### 4.8 SPURIOUS RF CONDUCTED EMISSIONS

#### 4.8.1 Conformance Limit

| Frequency Band<br>(MHz) | Limit                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5150 - 5250             | Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm                                                                                                                                                                                                                                                                                                                                                                                |
| 5250 - 5350             | Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm                                                                                                                                                                                                                                                                                                                                                                                |
| 5470 - 5725             | Outside of the 5.47-5.725 GHz band: e.i.r.p27 dBm                                                                                                                                                                                                                                                                                                                                                                               |
| 5725 - 5850             | All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. |

#### 4.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 4.8.3 Test Setup



#### 4.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2020 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=1MHz and VBW= 3MHz to measure the peak field strength, and measure frequency range from 30MHz to 40GHz.

#### 4.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and band edge measurement data.

At 26.5GHz to 40GHz, the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.2G

#### Test Plot

802.11a on channel 36

802.11n20 on channel 36





802.11a on channel 40

802.11n20 on channel 40





802.11a on channel 48

802.11n20 on channel 48







### **Test Plot**

### 802.11ac20 on channel 36



802.11ac20 on channel 40



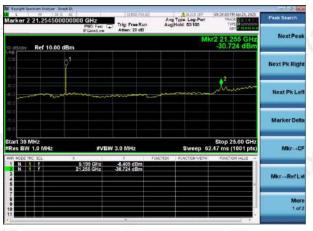
802.11ac20 on channel 48





### Test Plot

#### 802.11n40 on channel 38


802.11n40 on channel 46





802.11 ac40 on channel 38

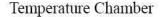
802.11 ac40 on channel 46

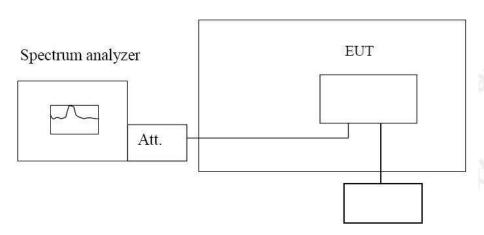




802.11ac80 on channel 42







## 4.9 Frequency Stability

#### Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

#### **TEST CONFIGURATION**





Variable Power Supply

#### **TEST PROCEDURE**

## **Frequency Stability under Temperature Variations:**

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT  $25^{\circ}$ C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with  $10^{\circ}$ C increased per stage until the highest temperature of +50°C reached.

### Frequency Stability under Voltage Variations:

Set chamber temperature to 25°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ( $\pm$ 15%) and endpoint, record the maximum frequency change.



#### Report No.:MAX250425011P02-R01

|               | F               | Reference Frequency: | 802.11ac chann  | el=36 frequency | r=5180MHz   |        |
|---------------|-----------------|----------------------|-----------------|-----------------|-------------|--------|
|               | Voltage ( V )   | Temperature (°C)     | Frequency error |                 | Limit (ppm) | Result |
| Voltage ( V ) | remperature (C) | Hz                   | ppm             |                 |             |        |
| 12            |                 | -30                  | 67.71           | 0.013           | 127         |        |
| Die Me        | -20             | 81.35                | 0.016           | Min             |             |        |
|               |                 | -10                  | 104.13          | 0.020           |             |        |
| 100           |                 | 0                    | 82.95           | 0.016           | - 1         |        |
| 120           | 120             | 10                   | 93.44           | 0.018           | Within the  |        |
|               |                 | 20                   | 48.27           | 0.009           | band of     | Pass   |
| W.S.          |                 | 30                   | 71.92           | 0.014           | operation   |        |
| In In         |                 | 40                   | 77.52           | 0.015           | 10          | 1/2    |
|               |                 | 50                   | 82.22           | 0.016           |             |        |
| 0'~           | 138             | 25                   | 97.84           | 0.019           | 0           |        |
| 10.           | 102             | 25                   | 54.38           | 0.010           | 1/0         |        |

## 4.10 Antenna Requirement

## **Standard Applicable**

## For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

#### **Test Result:**

The EUT has three 5G WIFI external antenna (Antenna 2/3/4 gain: 3.70dBi) and R-SMA antenna connector. It comply with the standard requirement.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, MAXLAB Testing Co., Ltd. does not assume any responsibility.



## 5 Test Setup Photos of the EUT

Reference to the appendix I for details.





# 6 Photos of the EUT

| received to | the appendix II for detai | 10.                  |         |
|-------------|---------------------------|----------------------|---------|
|             | *******                   | <b>End of Report</b> | ******* |