

Report No.: SUCR250600055003

Rev.: 01 Page: 1 of 94

TEST REPORT

Application No.: SUCR2506000550WM

Applicant: COOSEA GROUP (HK) COMPANY LIMITED

Address of Applicant: UNIT 5-6 16/F MULTIFIELD PLAZA 3-7A PRAT AVENUE TSIMSHATSUI KL

COOSEA GROUP (HK) COMPANY LIMITED Manufacturer:

UNIT 5-6 16/F MULTIFIELD PLAZA 3-7A PRAT AVENUE TSIMSHATSUI KL Address of Manufacturer:

EUT Description: Smart Phone MC8B654B Model No.: FCC ID: 2A28USL005

FCC 47 CFR Part 2. Subpart J Standards:

FCC 47 CFR Part 15, Subpart C

Date of Receipt: 2025/06/16

Date of Test: 2025/06/17 to 2025/06/28

Date of Issue: 2025/07/04

Test Result: PASS *

In the configuration tested, the EUT detailed in this report complied with the standards specified

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at cument. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing / inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sqs.com

Wireless Laboratory

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd. South of No. 6 Plant, No. 1, RunSheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 215000

t (86-512) 6229 2980 www.sgsgroup.com.cn

Report No.: SUCR250600055003

Rev.: 01 Page: 2 of 94

Version

Revision Record							
Version	Version Description Date Remark						
01	Original	July 4, 2025	/				

Authorized for issue by:		
Tested By	Nature Shen	
	Nature Shen / Project Manager	
Approved By	Cloud Peng	
	Cloud Peng/Technical Manager	

Report No.: SUCR250600055003

Rev.: 01 Page: 3 of 94

Contents

Ver	sion		2
1	Te	est Summary	4
2	Ge	eneral Information	5
	2.1	Details of Client	5
	2.2	Test Location	5
	2.3	Test Facility	5
	2.4	General Description of EUT	6
	2.5	Test Environment	
	2.6	Description of Support Units	8
3	Ed	quipment List	
4		easurement Uncertainty (95% confidence levels, k=2)	
5		est results and Measurement Data	
	5.1	Antenna Requirement	13
	5.2	Other requirements Frequency Hopping Spread Spectrum System Hopping Sequ	ience
	- 0	14	40
	5.3	AC Power Line Conducted Emissions	
	5.4	Conducted Output Power	
	5.5	20dB Emission Bandwidth & 99% Occupied Bandwidth	
	5.6	Carrier Frequencies Separation	
	5.7	Hopping Channel Number	
	5.8	Dwell Time	
	5.9	Band-edge for RF Conducted Emissions	25
	5.10	Spurious RF Conducted Emissions	26
	5.11	Radiated Spurious Emissions	27
	5.12	Restricted bands around fundamental frequency	30
6	Ph	notographs - Setup Photos	
7	Ar	pendix	33

Report No.: SUCR250600055003

Rev.: 01 Page: 4 of 94

1 Test Summary

Test Item	FCC Rule No.	Test Method	Test Result	Result
Antenna Requirement	15.203/15.247(b)		Clause 5.1	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013) Section 6.2	Clause 5.3	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013) Section 7.8.5	Clause 5.4	PASS
20dB Emission Bandwidth & 99% Occupied Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013) Section 6.9.2/6.9.3	Clause 5.5	For Report Purpose
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013) Section 7.8.2	Clause 5.6	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013) Section 7.8.3	Clause 5.7	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013) Section 7.8.4	Clause 5.8	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013) Section 7.8.6	Clause 5.9	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013) Section 7.8.8	Clause 5.10	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013) Section 6.4 / 6.5 / 6.6	Clause 5.11	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013) Section 6.10.5	Clause 5.12	PASS

Report No.: SUCR250600055003

Rev.: 01 Page: 5 of 94

2 General Information

2.1 Details of Client

Applicant:	COOSEA GROUP (HK) COMPANY LIMITED
Address of Applicant:	UNIT 5-6 16/F MULTIFIELD PLAZA 3-7A PRAT AVENUE TSIMSHATSUI KL
Manufacturer:	COOSEA GROUP (HK) COMPANY LIMITED
Address of Manufacturer:	UNIT 5-6 16/F MULTIFIELD PLAZA 3-7A PRAT AVENUE TSIMSHATSUI KL

2.2 Test Location

Company:	SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.
Address:	South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone
Post code:	215000
Test engineer:	Tizzy Song, Ives Cheng

2.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 6336.01)

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 6336.01.

• Innovation, Science and Economic Development Canada

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0120.

IC#: 27594.

• FCC -Designation Number: CN1312

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized as an accredited testing laboratory.

Designation Number: CN1312.

Test Firm Registration Number: 717327

Report No.: SUCR250600055003

Rev.: 01 Page: 6 of 94

2.4 General Description of EUT

Hardware Version:	1.0
Software Version:	SL005TCV10002
IMEI:	354637280000903
Operation Frequency:	2400MHz~2483.5MHz fc = 2402 MHz + N * 1 MHz, where: -fc = "Operating Frequency" in MHz, -N = "Channel Number" with the range from 0 to 78.
Bluetooth version:	Bluetooth V5.2
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Antenna Type:	☐ External, ⊠ Integrated
	-1.26dBi (Ant2)
Antenna Gain:	Note: The antenna gain are derived from the gain information report provided by the manufacturer.
RF Cable*:	1dB

Note:

^{1.} Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, SGS is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Report No.: SUCR250600055003

Rev.: 01 Page: 7 of 94

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH0)	2402MHz
The Middle channel(CH39)	2441MHz
The Highest channel(CH78)	2480MHz

Report No.: SUCR250600055003

Rev.: 01 8 of 94 Page:

2.5 Test Environment

Environment Parameter	101 kPa Selected Values During Tests			
Relative Humidity	44-46 % RH Ambient			
Value	Temperature(℃) Voltage(V)			
NTNV	22~23	3.8		
Remark:				

NV: Normal Voltage NT: Normal Temperature

2.6 Description of Support Units

The EUT has been tested as an independent unit.

Report No.: SUCR250600055003

Rev.: 01 Page: 9 of 94

3 Equipment List

DE Toot Equipment						
Equipment	Manufacturer	RF Test Equipment Model No.	Inventory No.	Cal Date	Cal Due Date	
Shielding Room	Brilliant-emc	N/A	SUWI-04-08-01	11/9/2022	11/8/2025	
Temperature and humidity meter	MingGao	TH101B	SUWI-01-01-07	2/13/2025	2/12/2026	
Measurement Software	Tonscend	TST272 V2.0	SUWI-03-55-03	NCR	NCR	
Signal Analyzer	ROHDE&SCHWARZ	FSW43	SUWI-01-02-04	5/8/2025	5/7/2026	
Temperature Chamber	ESPEC	SU-242	SUWI-01-13-01	5/9/2025	5/8/2026	
Wideband Radio Communication Tester	ROHDE&SCHWARZ	CMW500	SUWI-01-16-05	1/21/2025	1/20/2026	
DC Power Supply	HYELEC	HY3005B	SUWI-01-18-01	1/15/2025	1/14/2026	
Power meter	Anritsu	ML2495A	SUWI-01-31-01	11/19/2024	11/18/2025	
Pulse power sensor	Anritsu	MA2411B	SUWI-01-32-01	11/19/2024	11/18/2025	
MXG Vector signal genitor	KEYSIGHT	N5182B	SUWI-01-38-01	1/15/2025	1/14/2026	
Router	ASUS	GT- AXE11000(FCC ID MSQ- RTAXJF00)	SUWI-03-14-02	NCR	NCR	
Signal Generator	ROHDE&SCHWARZ	SMW200A	SUWI-01-07-08	3/27/2025	3/26/2026	
Signal Analyzer	KEYSIGHT	N9020A	SUWI-01-02-07	11/19/2024	11/18/2025	

Report No.: SUCR250600055003

Rev.: 01 Page: 10 of 94

9*6*6 Test Equipment						
Equipment	Manufacturer	Model No.	Inventory No.	Cal Date	Cal Due Date	
Semi-Anechoic Chamber	Brilliant-emc	N/A	SUWI-04-02-01	6/3/2023	6/2/2026	
Temperature and humidity meter	MingGao	TH101B	SUWI-01-01-05	2/13/2025	2/12/2026	
Signal Analyzer	ROHDE&SCHWARZ	FSW43	SUWI-01-02-04	1/20/2025	1/19/2026	
Signal Analyzer	KEYSIGHT	N9020A	SUWI-01-02-07	11/21/2024	11/20/2025	
Test receiver	ROHDE&SCHWARZ	ESR7	SUWI-01-10-01	1/15/2025	1/14/2026	
DC Power Supply	HYELEC	HY3005B	SUWI-01-18-01	1/15/2025	1/14/2026	
Receiving antenna	SCHWRZBECK MESS- ELEKTRONIK	VULB 9168	SUWI-01-11-04	8/22/2024	8/21/2026	
Receiving antenna	SCHWRZBECK MESS- ELEKTRONIK	VULB 9163	SUWI-01-11-01	5/7/2025	5/6/2027	
Receiving antenna	SCHWRZBECK MESS- ELEKTRONIK	BBHA 9120D	SUWI-01-11-02	5/7/2025	5/6/2027	
Receiving antenna	SCHWRZBECK MESS- ELEKTRONIK	BBHA 9170	SUWI-01-11-03	5/7/2025	5/6/2027	
Active Loop Antenna	SCHWRZBECK MESS- ELEKTRONIK	FMZB 1519B	SUWI-01-21-01	5/7/2025	5/6/2027	
Amplifier	Tonscend	TAP9K3G40	SUWI-01-14-01	1/15/2025	1/14/2026	
Amplifier	Tonscend	TAP01018050	SUWI-01-14-02	1/15/2025	1/14/2026	
Amplifier	Tonscend	TAP18040048	SUWI-01-14-03	1/20/2025	1/19/2026	
Wideband Radio Communication Tester	Anritsu	MT8820C	SUWI-01-26-01	9/10/2024	9/9/2025	
Wideband Radio Communication Tester	Anritsu	MT8821C	SUWI-01-26-03	11/19/2024	11/18/2025	
Wideband Radio Communication Tester	ROHDE&SCHWARZ	CMW500	SUWI-01-16-09	9/10/2024	9/9/2025	
Measurement Software	Tonscend	JS32-RE V4.0.0.0	SUWI-02-09-04	NCR	NCR	
Measurement Software	Tonscend	JS32-RSE 4.0.0.1	SUWI-02-09-06	NCR	NCR	
Router	PLANET	FSD-803	SUWI-03-14-01	NCR	NCR	
Open Switch and	ROHDE&SCHWARZ		SUWI-03-15-01	NCR	NCR	
Multiplier Unit	ROHDE&SCHWARZ	TC-MX60	SUWI-03-16-01	NCR	NCR	
Receive Unit	ROHDE&SCHWARZ	TC-RSE60	SUWI-03-16-02	NCR	NCR	
Receive Unit	ROHDE&SCHWARZ	TC-RSE90	SUWI-03-16-03	NCR	NCR	
Multiplier Unit	ROHDE&SCHWARZ	TC-MX90	SUWI-03-17-01	NCR	NCR	
Receive Unit	ROHDE&SCHWARZ	TC-RSE140	SUWI-03-19-01	NCR	NCR	
Multiplier Unit	ROHDE&SCHWARZ	TC-MX140	SUWI-03-19-02	NCR	NCR	
Receive Unit	ROHDE&SCHWARZ	TC-RSE220	SUWI-03-19-04	NCR	NCR	

Report No.: SUCR250600055003

Rev.: 01 Page: 11 of 94

Multiplier Unit	ROHDE&SCHWARZ	TC-MX220	SUWI-03-17-02	NCR	NCR
Receive Unit	ROHDE&SCHWARZ	TC-RSE325	SUWI-03-16-04	NCR	NCR
Multiplier Unit	ROHDE&SCHWARZ	TC-MX325	SUWI-03-17-03	NCR	NCR
Signal Generator	ROHDE&SCHWARZ	SMB100A	SUWI-01-08-01	2/1/2024	1/31/2025
Measurement Software	ROHDE&SCHWARZ	ELEKTRA V4.20.1	SUWI-02-09-07	NCR	NCR
Radio Communication Analyzer	StarPoint	SP9500E	SUWI-01-28-02	11/19/2024	11/18/2025

	Conduction Test Equipment						
Equipment	Manufacturer	Model No.	Inventory No.	Cal Date	Cal Due Date		
Test receiver	ROHDE&SCHWARZ	ESR7	SUWI-01-10-01	1/15/2025	1/14/2026		
Wideband Radio Communication Tester	Anritsu	MT8820C	SUWI-01-26-01	9/10/2024	9/9/2025		
Temperature and humidity meter	MingGao	TH101B	SUWI-01-01-06	2/13/2025	2/12/2026		
Artificial network	ROHDE&SCHWARZ	ENV216	SUWI-01-19-03	5/8/2025	5/7/2026		
Artificial network	ROHDE&SCHWARZ	ENV216	SUWI-01-19-04	5/8/2025	5/7/2026		
Measurement Software	Tonscend	JS32-CE 4.0.0.2	SUWI-02-09-05	NCR	NCR		
DC Power Supply	HYELEC	HY3005B	SUWI-01-18-01	1/15/2025	1/14/2026		
Wideband Radio Communication Tester	Anritsu	MT8821C	SUWI-01-26-03	11/19/2024	11/18/2025		
Wideband Radio Communication Tester	ROHDE&SCHWARZ	CMW500	SUWI-01-16-09	9/10/2024	9/9/2025		
Radio Communication Analyzer	StarPoint	SP9500E	SUWI-01-28-02	11/19/2024	11/18/2025		

Remark: NCR=No Calibration Requirement.

Report No.: SUCR250600055003

Rev.: 01 Page: 12 of 94

4 Measurement Uncertainty (95% confidence levels, k=2)

1 1110400	mode and more of the first tarilly (00% of mode 1000 1000) in 2)					
No.	Item	Measurement Uncertainty				
1	Total RF power, conducted	±0.54dB				
2	RF power density, conducted	±1.03dB				
3	Spurious emissions, conducted	±0.54dB				
4	Radio Frequency	1%				
5	Duty Cycle	±0.37%				
6	Occupied Bandwidth	1%				
7	Conduction Emission	± 2.90dB (150kHz to 30MHz)				
		± 3.13dB (9k -30MHz)				
	Radiated Emission	± 4.88dB (30M -1GHz)				
8	Radiated Effission	± 4.75dB (1GHz to 18GHz)				
		± 4.77dB (Above 18GHz)				

Remark:

The U_{lab} (lab Uncertainty) is less than $U_{cispr/ETSI}$ (CISPR/ETSI Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;

- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

Report No.: SUCR250600055003

Rev.: 01 Page: 13 of 94

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(b)

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is Integrated Antenna and no consideration of replacement.

The best case gain of the antenna is -1.26dBi (Ant2).

Note:

The antenna gain are derived from the gain information report provided by the manufacturer. Remark:

As above information is provided and confirmed by the applicant. SGS is not liable to the accuracy, suitability, reliability or/and integrity of the information.

Report No.: SUCR250600055003

Rev.: 01 Page: 14 of 94

5.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

5.2.1 Test Requirement:

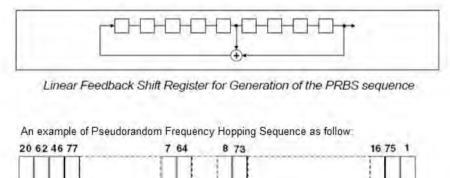
47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

5.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudo random sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- > Number of shift register stages: 9
- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Report No.: SUCR250600055003

Rev.: 01 Page: 15 of 94

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

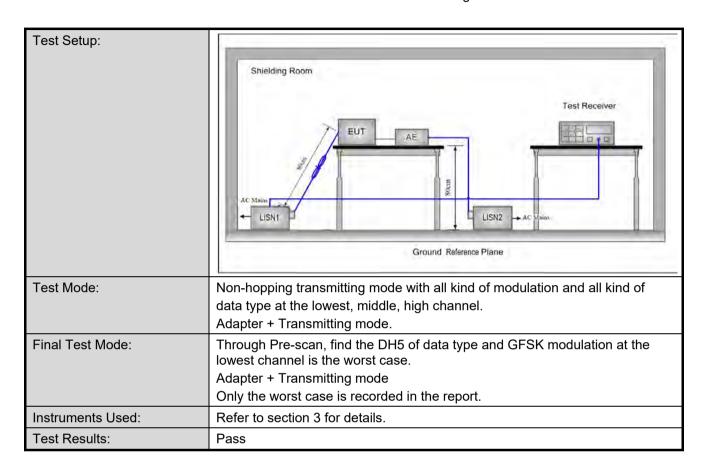
According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the RF system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels. The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Report No.: SUCR250600055003

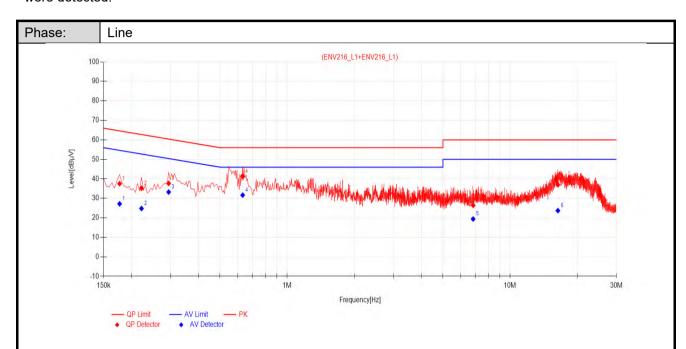
Rev.: 01 Page: 16 of 94


5.3 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.207			
Test Method:	ANSI C63.10: 2013 Section 6.2				
Test Frequency Range:	150kHz to 30MHz				
Receiver Setup:	RBW = 9kHz, VBW = 30kHz				
Limit:	Fraguency range (MHz)	Limit (d	BuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the log	arithm of the frequency.			
Test Procedure:	room. 2) The EUT was connect Impedance Stabilizat impedance. The pow connected to a secon plane in the same wa multiple socket outlet single LISN provided 3) The tabletop EUT was ground reference plane placed on the horizor 4) The test was performe the EUT shall be 0.4 vertical ground refere reference plane. The unit under test and be mounted on top of the the closest points of the and associated equip 5) In order to find the mand all of the interface.	ted to AC power source throused to AC power source throused to Network) which provides are cables of all other units of a LISN 2, which was bonded by as the LISN 1 for the unit be strip was used to connect must the rating of the LISN was not a placed upon a non-metallic and the And for floor-standing arrantal ground reference plane. The work of the Vertical ground reference plane was bonded to the LISN 1 was placed 0.8 m from the LISN 1 was placed 0.8 m from the LISN 1 and the EUT. All ownent was at least 0.8 m from the LISN 1 and the EUT. All ownent was at least 0.8 m from the LISN 1 and the EUT. All ownent was at least 0.8 m from the cables must be changed and ucted measurement.	gh a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were to the ground reference eing measured. A ultiple power cables to a ot exceeded. table 0.8m above the angement, the EUT was rence plane. The rear of ference plane. The horizontal ground m the boundary of the plane for LISNs is distance was between ther units of the EUT at the LISN 2.		

Report No.: SUCR250600055003

Rev.: 01 Page: 17 of 94


Report No.: SUCR250600055003

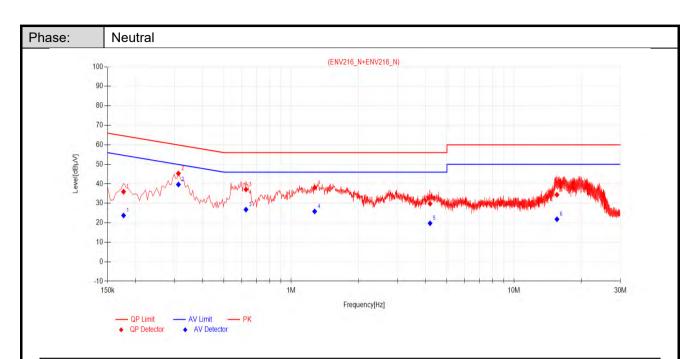
Rev.: 01 Page: 18 of 94

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Final	Data List										
NO.	Frequency [MHz]	Factor [dB]	QP Reading [dBµV] TrueQP Reading [dBµV]	QP Value [dΒμV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBµV] TrueAV Reading [dBµV]]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.1770	10.08	27.45	37.53	64.63	27.10	17.10	27.18	54.63	27.45	PASS
2	0.2220	10.08	25.10	35.18	62.74	27.56	14.71	24.79	52.74	27.95	PASS
3	0.2940	10.06	27.61	37.67	60.41	22.74	23.17	33.23	50.41	17.18	PASS
4	0.6315	10.06	31.27	41.33	56.00	14.67	21.59	31.65	46.00	14.35	PASS
5	6.8325	9.81	16.59	26.40	60.00	33.60	9.59	19.40	50.00	30.60	PASS
6	16.4040	9.76	27.17	36.93	60.00	23.07	13.94	23.70	50.00	26.30	PASS


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Value =Reading[dBµV] + Factor(Lisn factor[dB] + cable loss[dB]).
- 3. Margin = Limit[$dB\mu V$] Value[$dB\mu V$]

SUCR250600055003 Report No.:

Rev.: 01 19 of 94 Page:

Final	Data List										
NO.	Frequency [MHz]	Factor [dB]	QP Reading [dBμV] TrueQP Reading[dBμV]	QP Value [dΒμV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV] TrueAV Reading [dBμV]]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.1770	10.08	25.89	35.97	64.63	28.66	13.66	23.74	54.63	30.89	PASS
2	0.3120	10.07	35.25	45.32	59.92	14.60	29.57	39.64	49.92	10.28	PASS
3	0.6270	10.06	27.04	37.10	56.00	18.90	16.71	26.77	46.00	19.23	PASS
4	1.2750	9.95	28.12	38.07	56.00	17.93	15.89	25.84	46.00	20.16	PASS
5	4.2000	9.86	19.95	29.81	56.00	26.19	9.90	19.76	46.00	26.24	PASS
6	15.5850	9.73	24.66	34.39	60.00	25.61	12.09	21.82	50.00	28.18	PASS

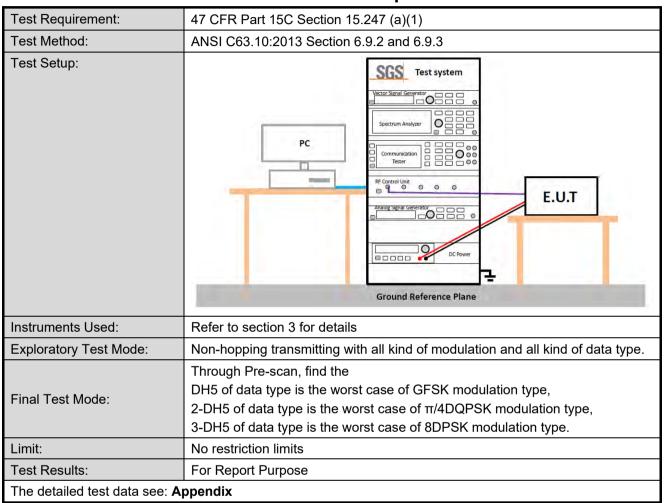
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Value =Reading[dB μ V] + Factor(Lisn factor[dB] + cable loss[dB]). 3. Margin = Limit[dB μ V] Value[dB μ V]

Report No.: SUCR250600055003

Rev.: 01 Page: 20 of 94

5.4 Conducted Output Power


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)&15.247 (b)(1)			
Test Method:	ANSI C63.10:2013 Section 7.8.5			
Test Setup:	Ground Reference Plane * Test with power meter (Detector function: Peak			
Test Instruments:	Refer to section 3 for details			
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.			
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.			
Limit:	0.125 watts			
Test Results:	Pass			
The detailed test data see: A	ppendix			

Report No.: SUCR250600055003

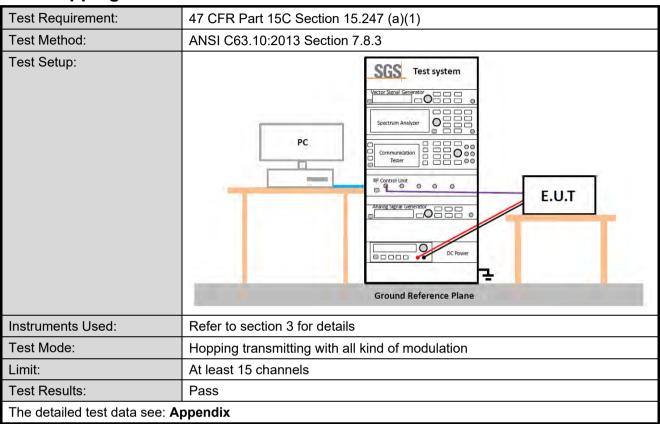
Rev.: 01 Page: 21 of 94

5.5 20dB Emission Bandwidth & 99% Occupied Bandwidth

Report No.: SUCR250600055003

Rev.: 01 Page: 22 of 94

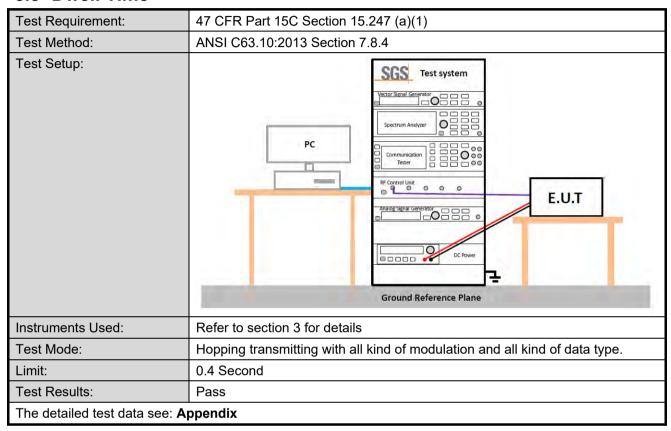
5.6 Carrier Frequencies Separation


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013 Section 7.8.2					
Test Setup:	SGS Test system Vistor Signal Generator Spectrum Analyzer Communication Fet Control Unit Analog Manal Generator DC Hower E.U.T Ground Reference Plane					
Test Instruments:	Refer to section 3 for details					
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Limit:	2/3 of the 20dB bandwidth					
	Remark: the transmission power is less than 0.125W.					
Test Results:	Pass					
The detailed test data see: A	ppendix					

Report No.: SUCR250600055003

Rev.: 01 Page: 23 of 94

5.7 Hopping Channel Number



Report No.: SUCR250600055003

Rev.: 01 Page: 24 of 94

5.8 Dwell Time

Report No.: SUCR250600055003

Rev.: 01 Page: 25 of 94

5.9 Band-edge for RF Conducted Emissions

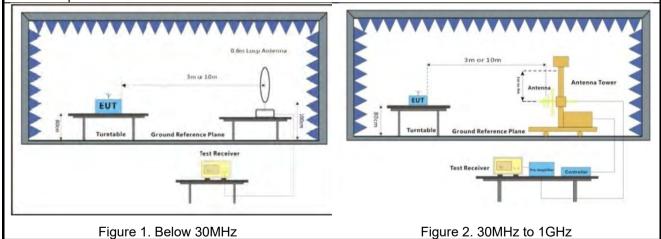
Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 Section 7.8.6			
Test Setup:	PC Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer DC Rower E.U.T Ground Reference Plane			
Instruments Used:	Refer to section 3 for details			
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.			
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Results:	Pass			
The detailed test data see:	Appendix			

Report No.: SUCR250600055003

Rev.: 01 Page: 26 of 94

5.10 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 Section 7.8.8					
Test Setup:	SGS Test system Sector Signal Generator					
Instruments Used:	Refer to section 3 for details					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test Results:	Pass					
The detailed test data see:	Appendix					



Report No.: SUCR250600055003

Rev.: 01 27 of 94 Page:

5.11Radiated Spurious Emissions

	<u> </u>					
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205					
Test Method:	ANSI C63.10 :2013 Section	on 6.4 / 6.5 / 6.6				
Test Site:	Measurement Distance: 3	m (Semi-Anechoic	Chamber)			
Test Frequency:	9kHz ~ 25GHz					
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30	
	1.705MHz-30MHz	30	-	-	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	
	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3	
	Remark: 15.35(b),Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emissio level radiated by the device.					
Test Setup:						

Report No.: SUCR250600055003

Rev.: 01 Page: 28 of 94

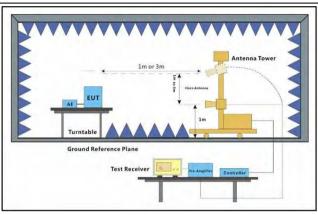


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
 - (Distance from antenna to EUT is 1m for measurements >18GHz).
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.
- j. The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.
- k. The disturbance above 18GHz was very low, and the harmonics were the highest point could be found when testing, so only the harmonics had been displayed.
- At a measurement distance of 1 meter the limit line was increased by 20*LOG(3/1) = 9.54 dB.

Test Configuration:

Measurements below 30MHz

- RBW = 10 kHz
- VBW = 30 kHz
- Detector = Peak & Average & Quasi-peak
- Trace mode = max hold

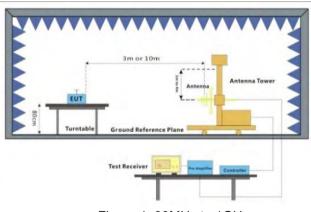
Measurements Below 1000MHz

- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Quasi-peak

Report No.: SUCR250600055003

Rev.: 01 Page: 29 of 94

	Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	• VBW ≥ 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	Use duty cycle correction factor method per 15.35(c).
	Duty cycle = On time / 100 milliseconds
	On time = $N_1*L_1 + N_2*L_2+N_{N-1}*L_{N-1} + N_N*L_N$
	Where N_1 is number of type 1 pulese, L_1 is length of type 1 pulses, etc.
	Average Value = Peak Value +20*log(Duty cycle).
Comboneton Took	Non-hopping transmitting mode with all kind of modulation and all kind of
Exploratory Test	data type
Mode.	Adapter + Transmitting mode.
	Through Pre-scan, find the
	DH5 of data type and GFSK modulation is the worst case.
Final Test Mode:	Pretest the EUT at Adapter + Transmitting mode
	For below 1GHz part, through pre-scan all channels, but only the worst case is
	recorded in the report.
Instruments Used:	Refer to section 3 for details
Test Results:	Pass
The detailed test data	a see: Appendix


Report No.: SUCR250600055003

Rev.: 01 Page: 30 of 94

5.12Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2013 Section 6.10.5				
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)				
Limit:	Frequency	Limit (dBuV/m)	Remark		
	30MHz-88MHz	40.0	Quasi-peak		
	88MHz-216MHz	43.5	Quasi-peak		
	216MHz-960MHz	46.0	Quasi-peak		
	960MHz-1GHz	54.0	Quasi-peak		
	Above 1GHz	54.0	Average Value		
	Above IGHZ	74.0	Peak Value		

Test Setup:

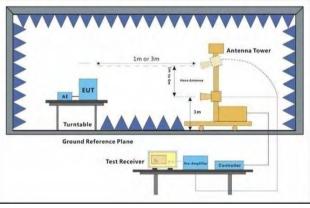


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

Report No.: SUCR250600055003

Rev.: 01 Page: 31 of 94

	 h. Test the EUT in the lowest channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete. 					
T						
Test Configuration:	Measurements Below 1000MHz					
	• RBW = 120 kHz					
	• VBW = 300 kHz					
	Detector = Quasi-peak					
	Trace mode = max hold					
	Peak Measurements Above 1000 MHz					
	• RBW = 1 MHz					
	• VBW ≥ 3 MHz					
	Detector = Peak					
	Sweep time = auto					
	Trace mode = max hold					
	Average Measurements Above 1000MHz					
	Use duty cycle correction factor method per 15.35(c).					
	Duty cycle = On time / 100 milliseconds					
	On time = $N_1*L_1 + N_2*L_2+N_{N-1}*L_{N-1} + N_N*L_N$					
	Where N_1 is number of type 1 pulese, L_1 is length of type 1 pulses, etc.					
	Average Value = Peak Value +20*log(Duty cycle).					
	Non-hopping transmitting mode with all kind of modulation and all kind of					
Exploratory Test Mode:	data type					
	Adapter + Transmitting mode.					
	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst					
E' 17 (M. 1	case.					
Final Test Mode:	Pretest the EUT at Adapter + Transmitting mode,					
	Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 3 for details					
Test Results:	Pass					
The detailed test data see	: Appendix					

Report No.: SUCR250600055003

Rev.: 01 Page: 32 of 94

6 Photographs - Setup Photos

Refer to Appendix A.2 BT&WLAN Setup Photos.

Report No.: SUCR250600055003

Rev.: 01 Page: 33 of 94

7 Appendix

1. Bandwidth

1.1 Test Result

1.1.1 OBW

Mode	TX	Frequency	Packet	ANT	99% Occupied Bandwidth (MHz)		Verdict
	Type	(MHz)	Type		Result	Limit	Verdict
GFSK	SISO	2402	DH5	1	0.766	/	Pass
		2441	DH5	1	0.763	/	Pass
		2480	DH5	1	0.765	/	Pass
Pi/4DQPSK	SISO	2402	2DH5	1	1.151	/	Pass
		2441	2DH5	1	1.150	/	Pass
		2480	2DH5	1	1.153	/	Pass
8DPSK	SISO	2402	3DH5	1	1.158	/	Pass
		2441	3DH5	1	1.154	/	Pass
		2480	3DH5	1	1.159	1	Pass

1.1.2 20dB BW

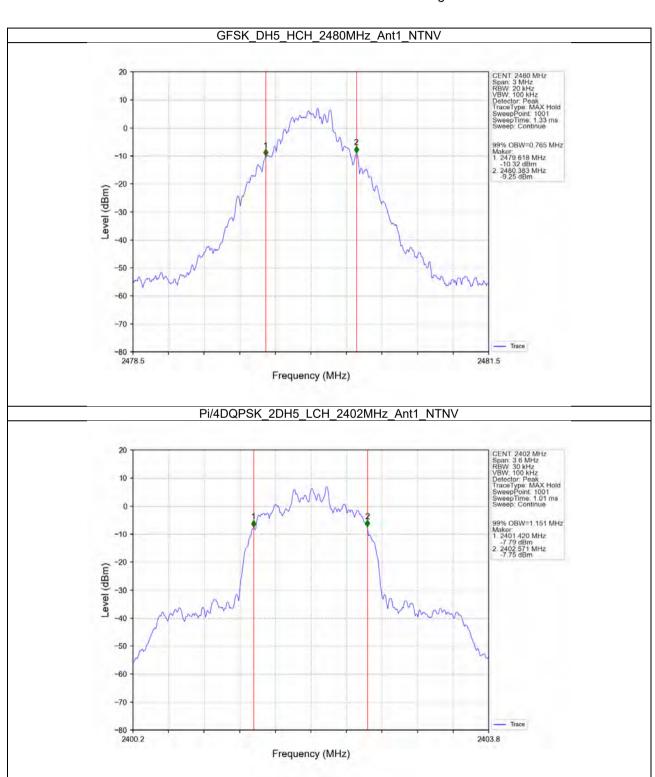
Mode	TX	Frequency	Packet	ANT	20dB Bandwidth (MHz)		Verdict
	Type	(MHz)	Туре		Result	Limit	verdict
GFSK	SISO	2402	DH5	1	0.805	/	Pass
		2441	DH5	1	0.804	/	Pass
		2480	DH5	1	0.805	1	Pass
Pi/4DQPSK	SISO	2402	2DH5	1	1.276	1	Pass
		2441	2DH5	1	1.273	1	Pass
		2480	2DH5	1	1.274	1	Pass
8DPSK	SISO	2402	3DH5	1	1.273	1	Pass
		2441	3DH5	1	1.263	1	Pass
		2480	3DH5	1	1.265	1	Pass



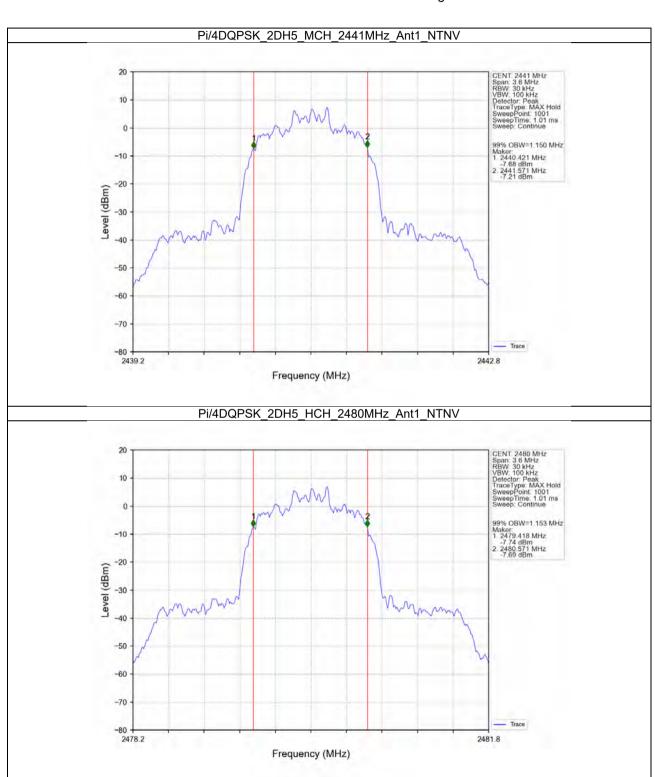
Report No.: SUCR250600055003

Rev.: 01 Page: 34 of 94

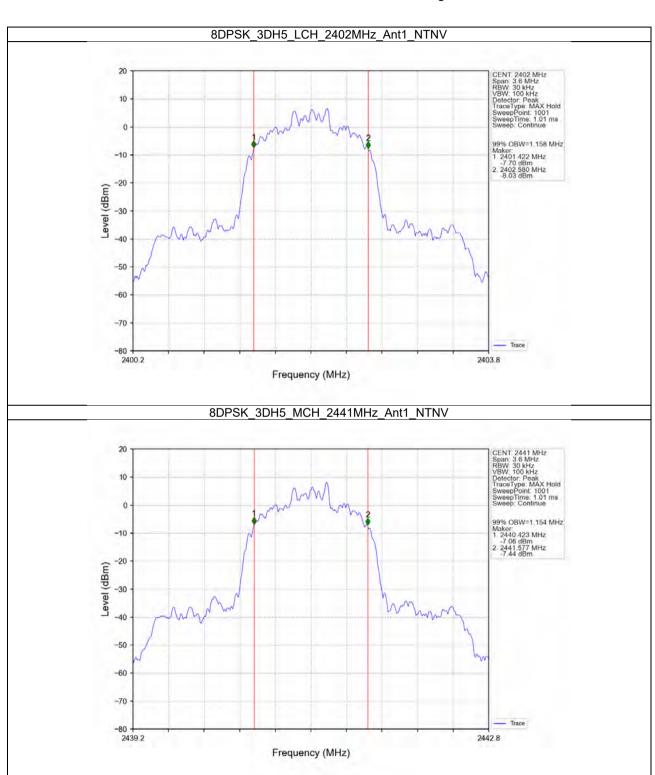
1.2 Test Graph


1.2.1 OBW

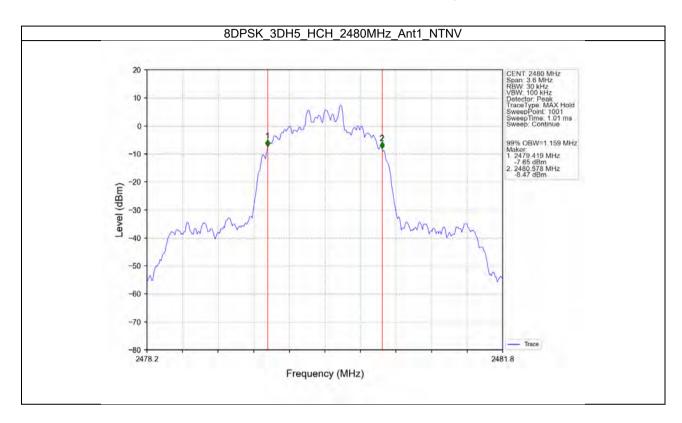
Report No.: SUCR250600055003


Rev.: 01 Page: 35 of 94

Report No.: SUCR250600055003

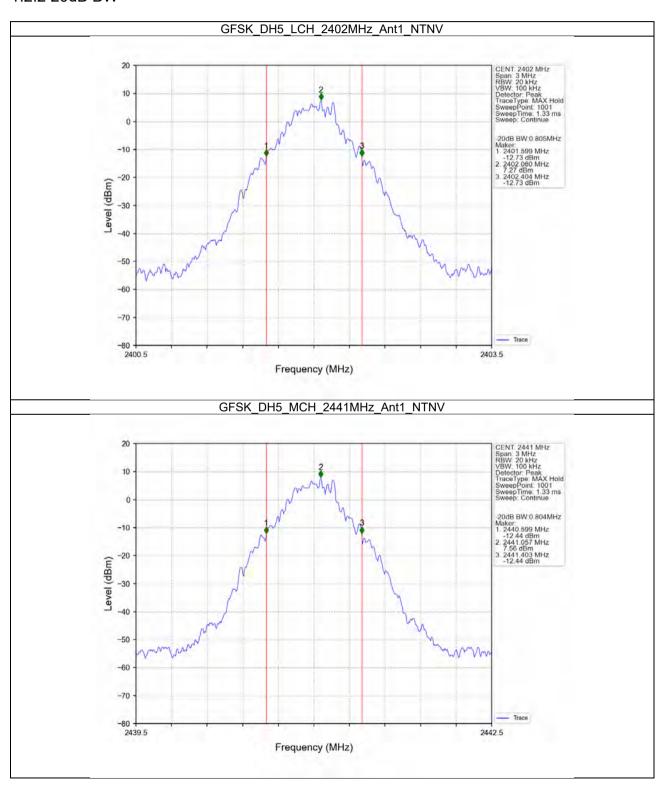

Rev.: 01 Page: 36 of 94

Report No.: SUCR250600055003


Rev.: 01 Page: 37 of 94

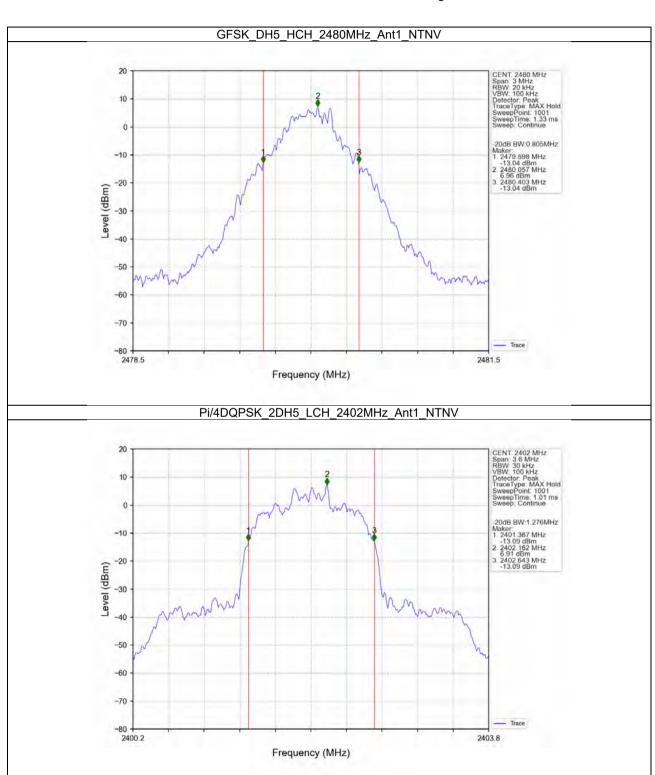
Report No.: SUCR250600055003

Rev.: 01 Page: 38 of 94

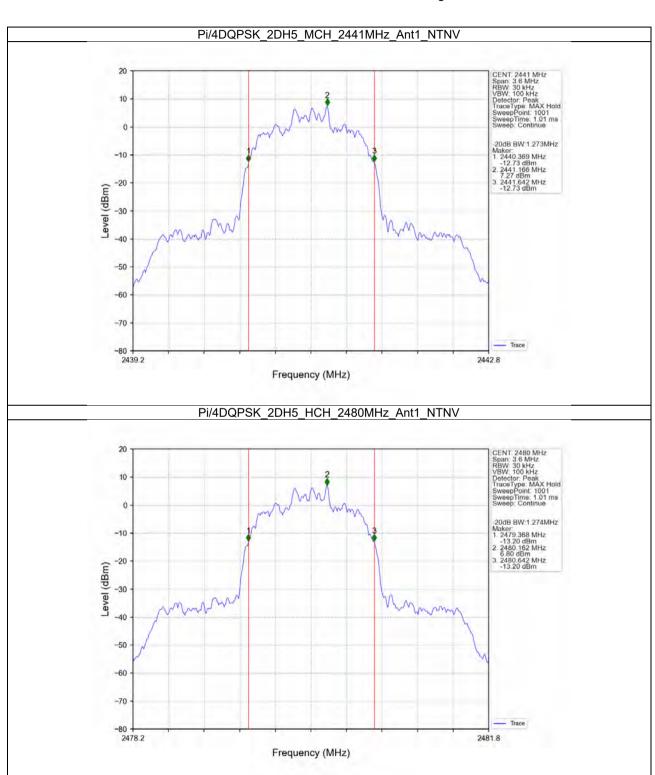


Report No.: SUCR250600055003

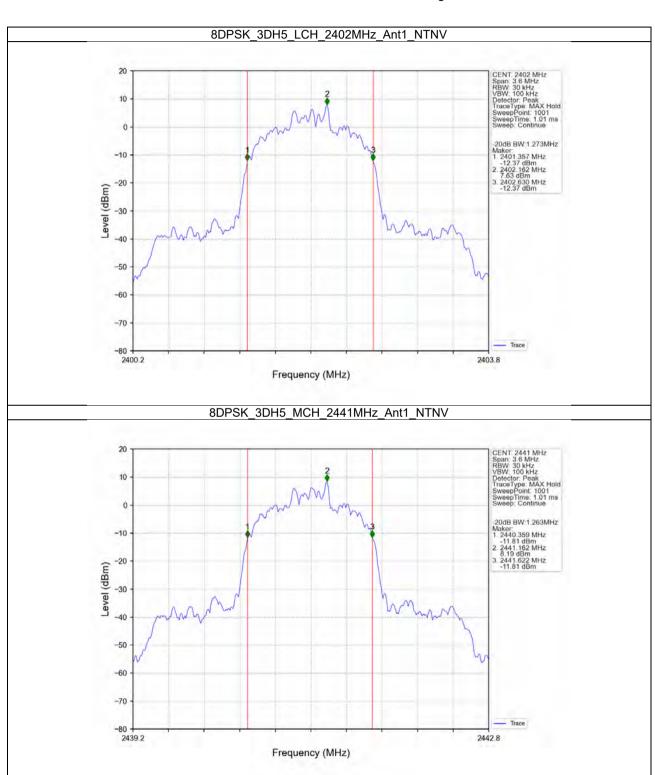
Rev.: 01 Page: 39 of 94


1.2.2 20dB BW

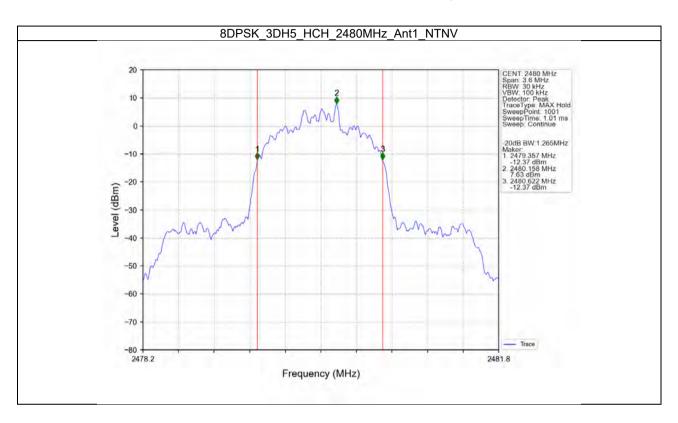
Report No.: SUCR250600055003


Rev.: 01 Page: 40 of 94

Report No.: SUCR250600055003


Rev.: 01 Page: 41 of 94

Report No.: SUCR250600055003


Rev.: 01 Page: 42 of 94

Report No.: SUCR250600055003

Rev.: 01 Page: 43 of 94

Report No.: SUCR250600055003

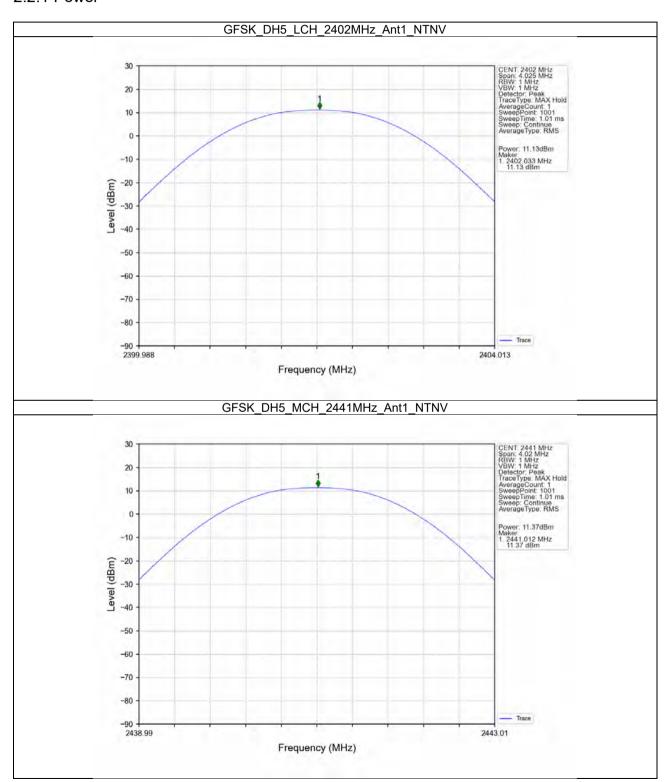
Rev.: 01 Page: 44 of 94

2. Maximum Conducted Output Power

2.1 Test Result

2.1.1 Power

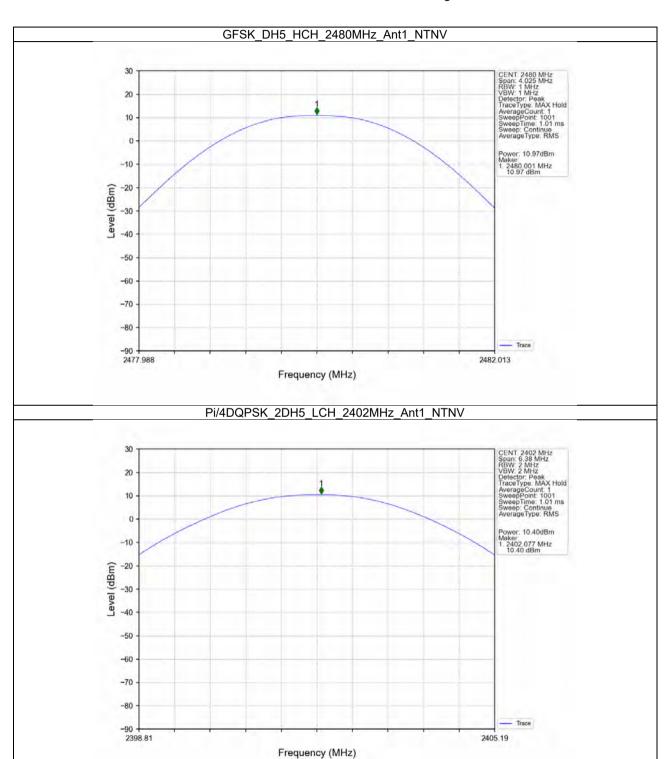
Mode	TX	Frequency	Packet	Maximum Peak Conduc	ted Output Power (dBm)	Vardiat			
	Type	(MHz)	Type	ANT1	Limit	Verdict			
		2402	DH5	11.13	<=30	Pass			
GFSK	SISO	2441	DH5	11.37	<=30	Pass			
		2480	DH5	10.97	<=30	Pass			
	SISO	2402	2DH5	10.40	<=20.97	Pass			
Pi/4DQPSK		2441	2DH5	10.69	<=20.97	Pass			
		2480	2DH5	10.35	<=20.97	Pass			
	SISO	2402	3DH5	10.68	<=20.97	Pass			
8DPSK		2441	3DH5	10.89	<=20.97	Pass			
		2480	3DH5	10.43	<=20.97	Pass			
Note1: Antenna	Note1: Antenna Gain: Ant1: -1.26dBi;								



Report No.: SUCR250600055003

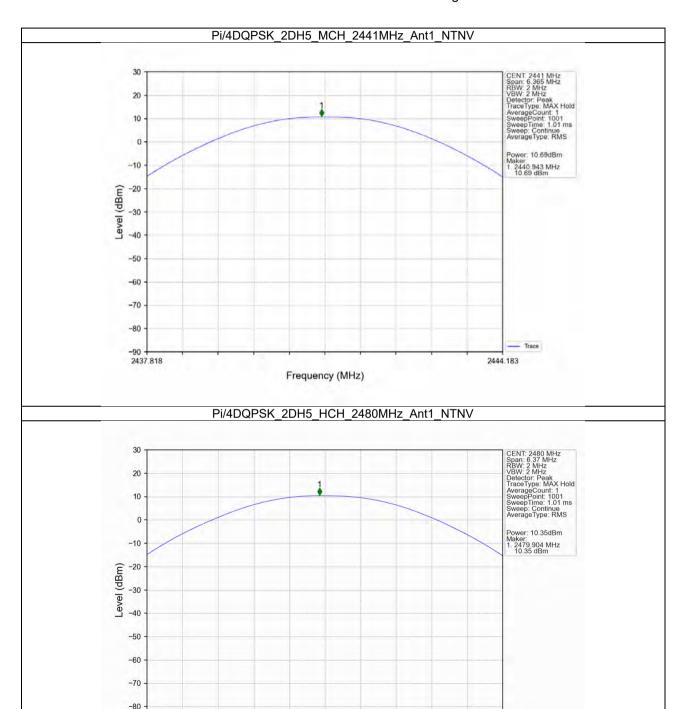
Rev.: 01 Page: 45 of 94

2.2 Test Graph


2.2.1 Power

Report No.: SUCR250600055003

Rev.: 01 Page: 46 of 94

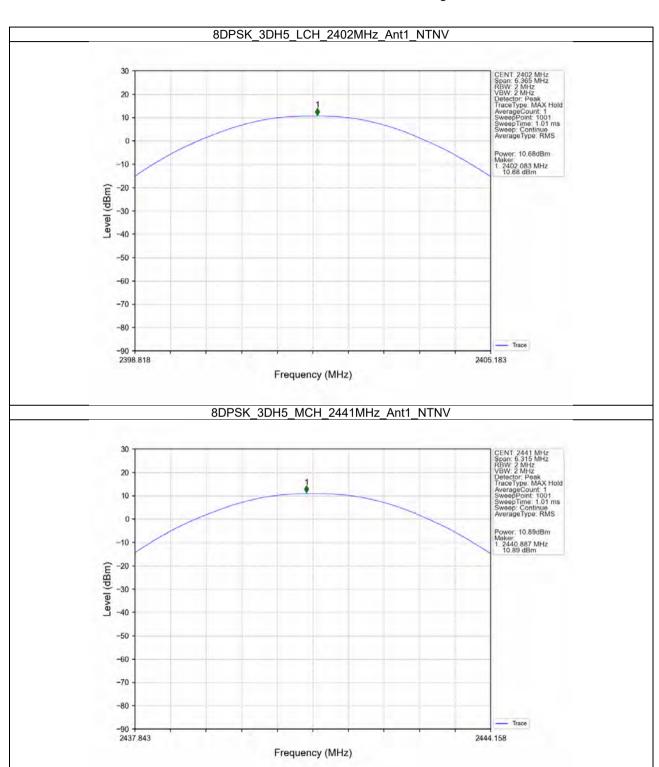


-90 -

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd

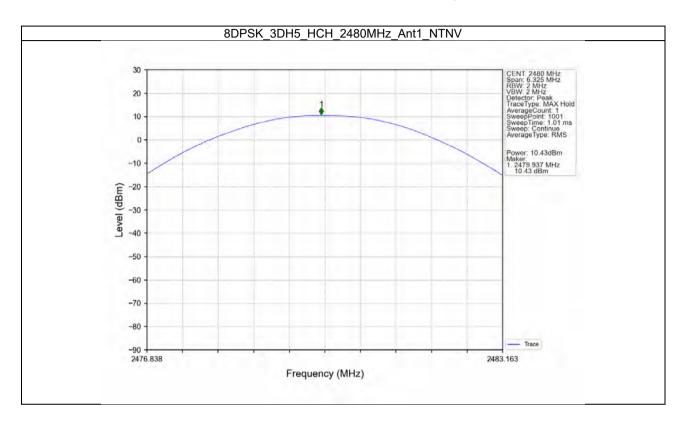
Report No.: SUCR250600055003

Rev.: 01 Page: 47 of 94



Frequency (MHz)

Report No.: SUCR250600055003


Rev.: 01 Page: 48 of 94

Report No.: SUCR250600055003

Rev.: 01 Page: 49 of 94

Report No.: SUCR250600055003

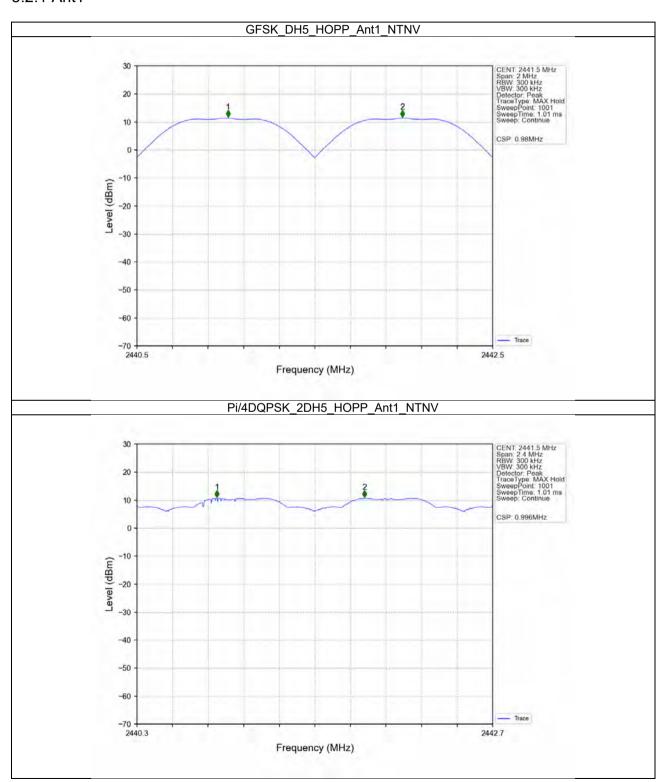
Rev.: 01 Page: 50 of 94

3. Carrier Frequency Separation

3.1 Test Result

3.1.1 Ant1

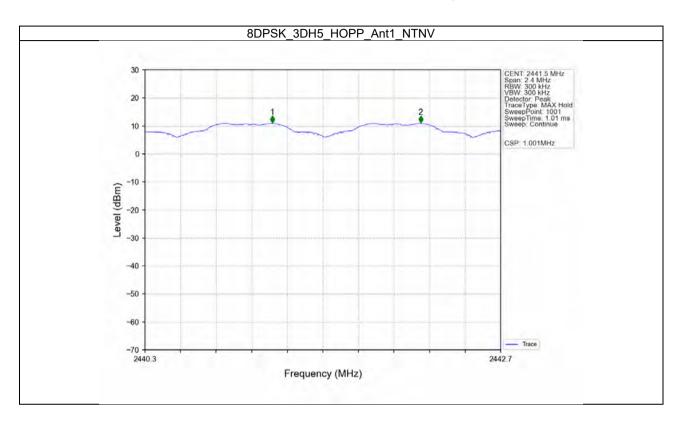
Ant1									
Modo	TX	Frequency	Packet	Channel Separation	20dB Bandwidth	Limit	Verdict		
Mode	Type	(MHz)	Type	(MHz)	(MHz)	(MHz)	verdict		
GFSK	SISO	HOPP	DH5	0.980	0.805	>=0.805	Pass		
Pi/4DQPSK	SISO	HOPP	2DH5	0.996	1.276	>=0.851	Pass		
8DPSK	SISO	HOPP	3DH5	1.001	1.273	>=0.849	Pass		



Report No.: SUCR250600055003

Rev.: 01 Page: 51 of 94

3.2 Test Graph


3.2.1 Ant1

Report No.: SUCR250600055003

Rev.: 01 Page: 52 of 94

Report No.: SUCR250600055003

Rev.: 01 Page: 53 of 94

4. Number of Hopping Frequencies

4.1 Test Result

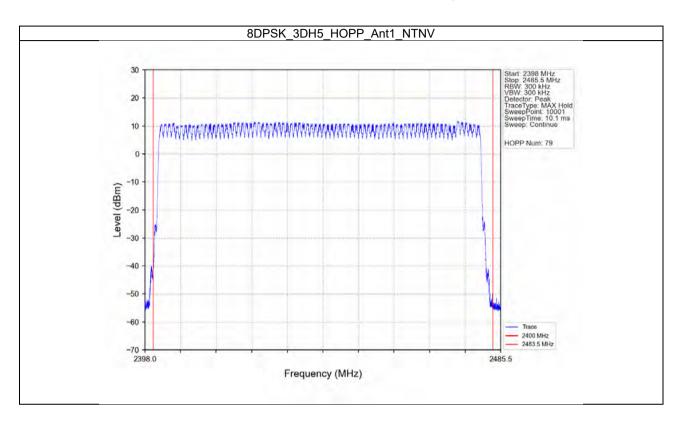
4.1.1 HoppNum

Mode	TX	Frequency	Packet Num of Hopp		g Frequencies	Verdict
Mode	Type	(MHz)	Туре	ANT1	Limit	verdict
GFSK	SISO	HOPP	DH5	79	>=15	Pass
Pi/4DQPSK	SISO	HOPP	2DH5	79	>=15	Pass
8DPSK	SISO	HOPP	3DH5	79	>=15	Pass

Report No.: SUCR250600055003

Rev.: 01 Page: 54 of 94

4.2 Test Graph


4.2.1 HoppNum

Report No.: SUCR250600055003

Rev.: 01 Page: 55 of 94

Report No.: SUCR250600055003

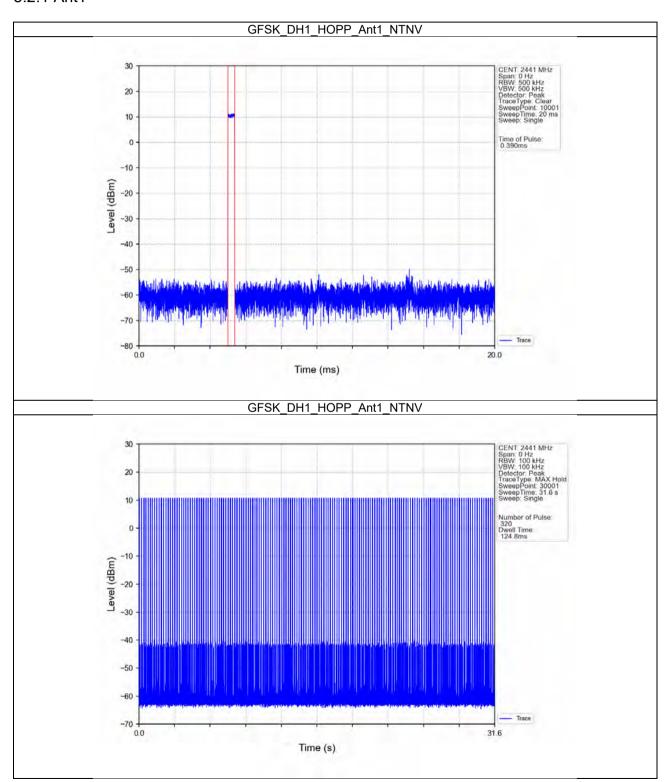
Rev.: 01 Page: 56 of 94

5. Time of Occupancy (Dwell Time)

5.1 Test Result

5.1.1 Ant1

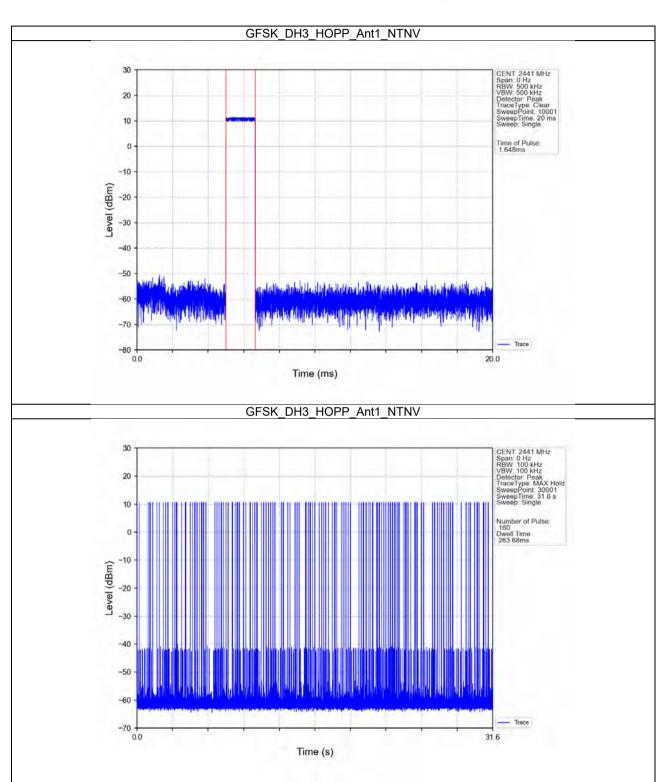
					Ant1				
Mode TX	Frequency	Packet	Duration of	Observation	Num of Pulse in	Dwell	Limit	Verdict	
Mode	Туре	(MHz)	Type	Single Pulse (ms)	Period (s)	Observation Period	Time (ms)	(ms)	verdict
GFSK SISO	НОРР	DH1	0.390	31.600	320	124.800	<=400	Pass	
		DH3	1.648	31.600	160	263.680	<=400	Pass	
		DH5	2.894	31.600	103	298.082	<=400	Pass	
		О НОРР	2DH1	0.394	31.600	321	126.474	<=400	Pass
Pi/4DQPSK	SISO		2DH3	1.650	31.600	167	275.550	<=400	Pass
			2DH5	2.898	31.600	109	315.882	<=400	Pass
8DPSK SISO		3DH1	0.390	31.600	320	124.800	<=400	Pass	
	SISO	HOPP	3DH3	1.646	31.600	165	271.590	<=400	Pass
			3DH5	2.898	31.600	104	301.392	<=400	Pass



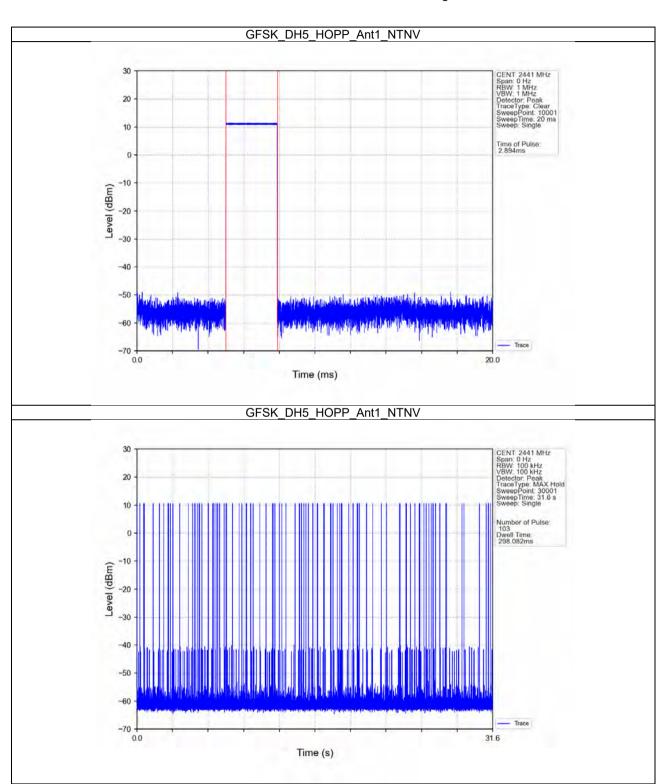
Report No.: SUCR250600055003

Rev.: 01 Page: 57 of 94

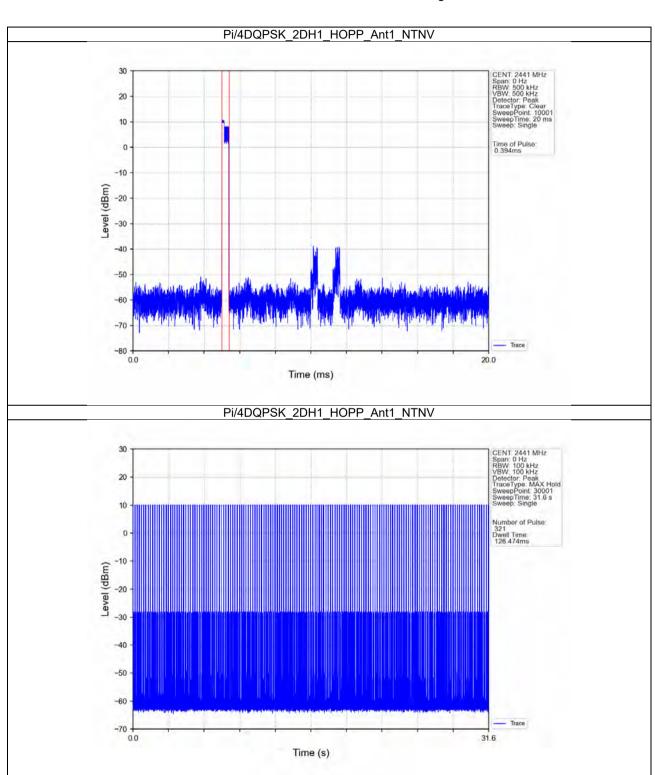
5.2 Test Graph


5.2.1 Ant1

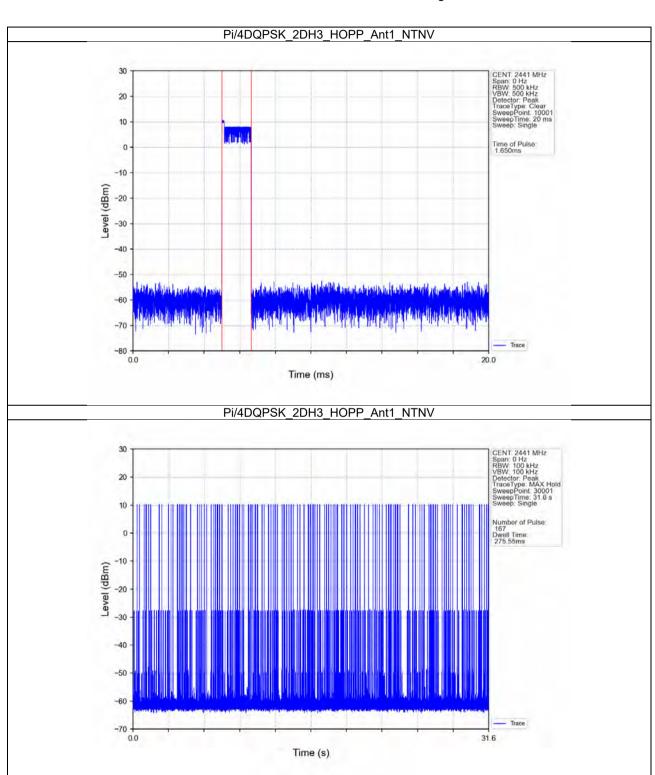
Report No.: SUCR250600055003


Rev.: 01 Page: 58 of 94

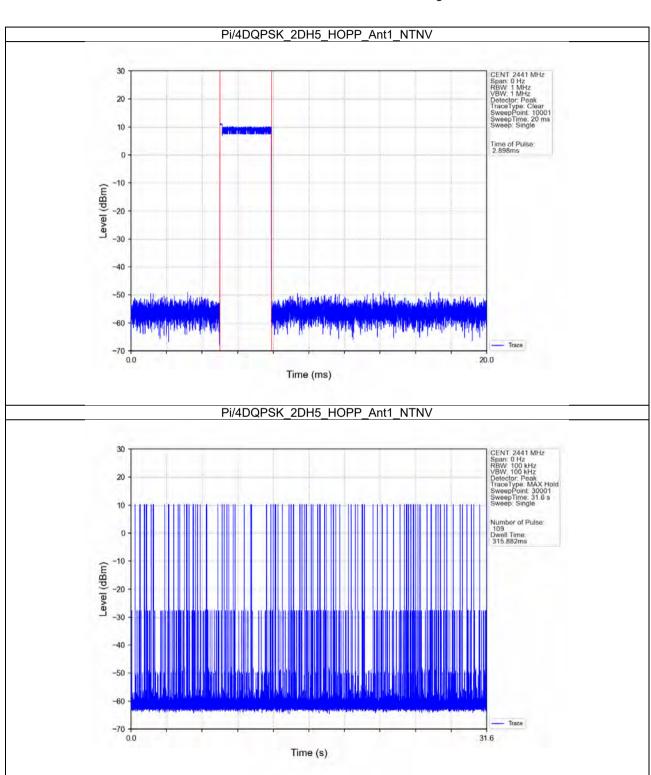
Report No.: SUCR250600055003


Rev.: 01 Page: 59 of 94

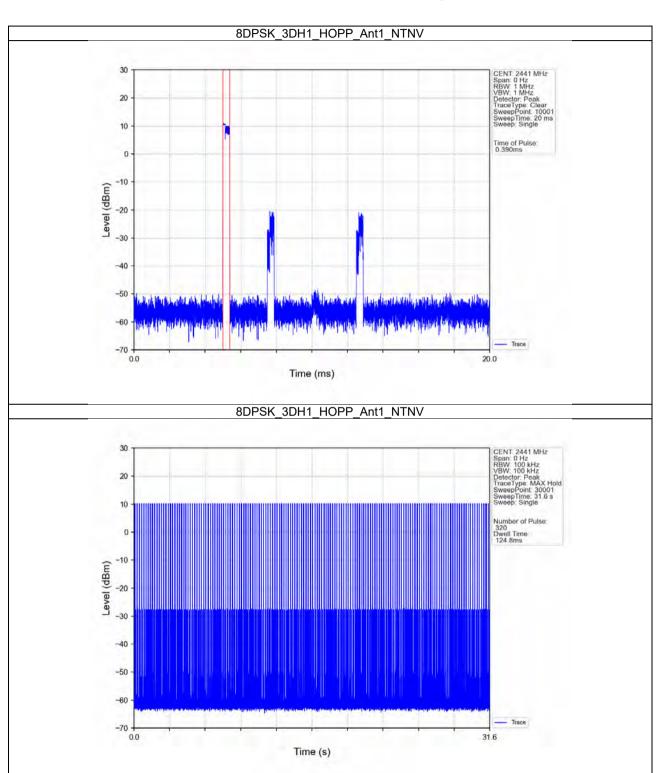
Report No.: SUCR250600055003


Rev.: 01 Page: 60 of 94

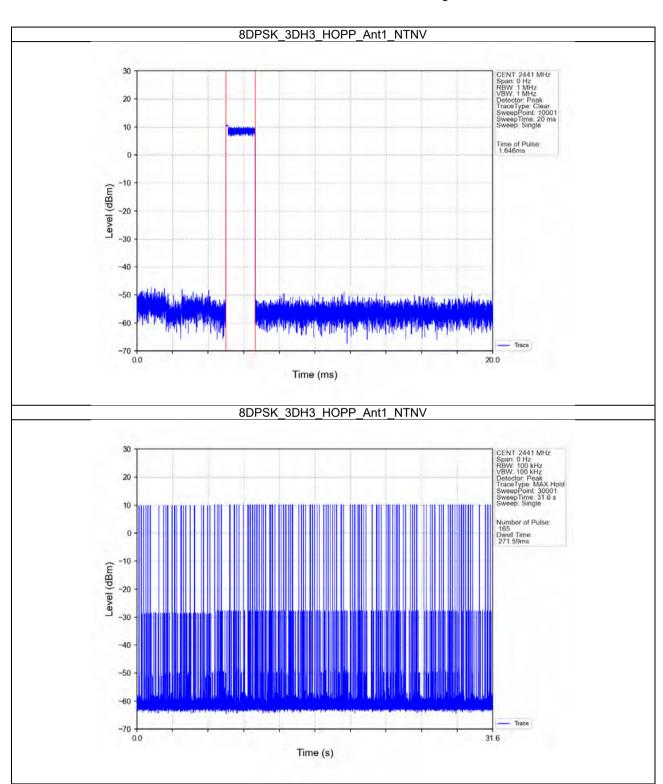
Report No.: SUCR250600055003


Rev.: 01 Page: 61 of 94

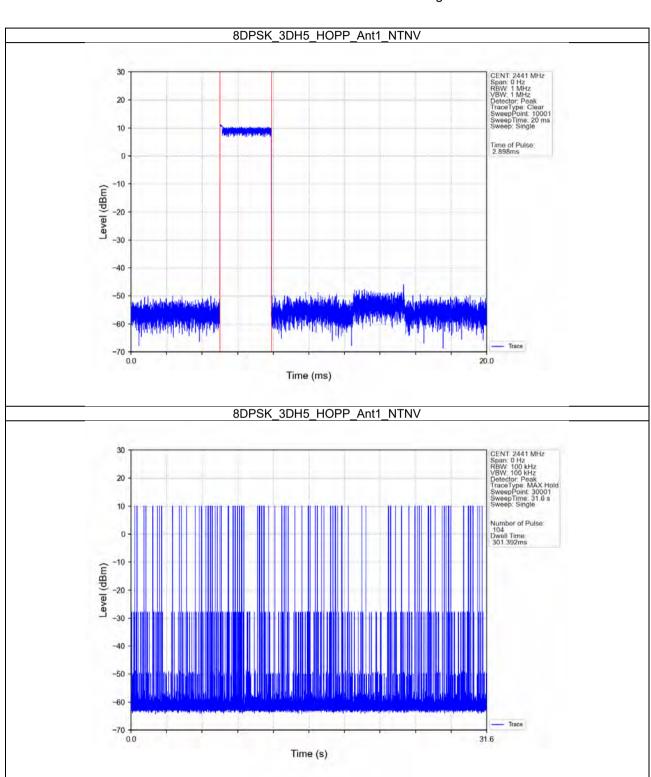
Report No.: SUCR250600055003


Rev.: 01 Page: 62 of 94

Report No.: SUCR250600055003


Rev.: 01 Page: 63 of 94

Report No.: SUCR250600055003


Rev.: 01 Page: 64 of 94

Report No.: SUCR250600055003

Rev.: 01 Page: 65 of 94

Report No.: SUCR250600055003

Rev.: 01 Page: 66 of 94

6. Unwanted Emissions In Non-restricted Frequency Bands

6.1 Test Result

6.1.1 Ref

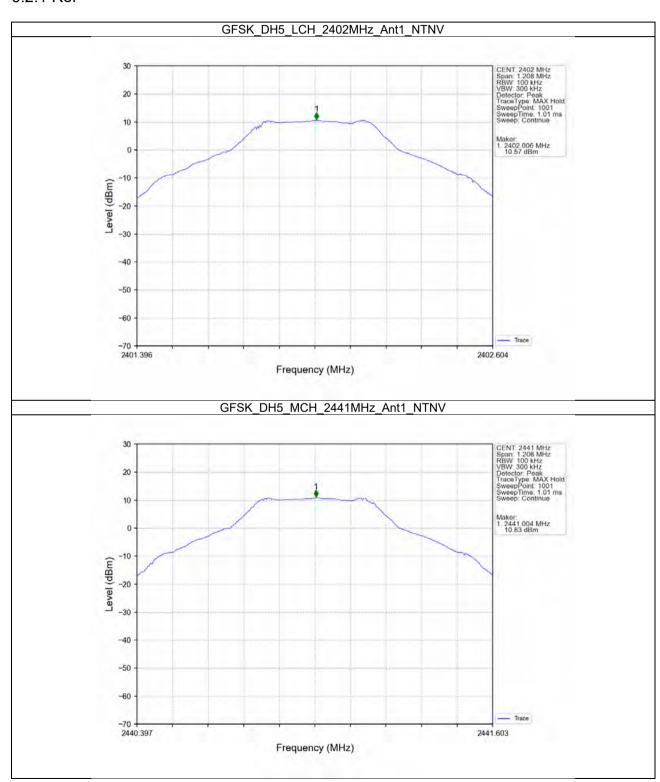
Mode	TX Type	Frequency (MHz)	Packet Type	ANT	Level of Reference (dBm)
		2402	DH5	1	10.57
GFSK	SISO	2441	DH5	1	10.83
		2480	DH5	1	10.42
Pi/4DQPSK		2402	2DH5	1	9.85
	SISO	2441	2DH5	1	10.33
		2480	2DH5	1	9.95
8DPSK		2402	3DH5	1	10.56
	SISO	2441	3DH5	1	10.53
		2480	3DH5	1	9.96

Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.

6.1.2 CSE

Mode	TX Type	Frequency (MHz)	Packet Type	ANT	Level of Reference (dBm)	Limit (dBm)	Verdict
	71	2402	DH5	1	10.83	-9.17	Pass
		2441	DH5	1	10.83	-9.17	Pass
GFSK	SISO	2480	DH5	1	10.83	-9.17	Pass
		HOPP	DUE	1	10.83	-9.17	Pass
		порр	DH5		10.83	-9.17	Pass
	SISO	2402	2DH5	1	10.33	-9.67	Pass
		2441	2DH5	1	10.33	-9.67	Pass
Pi/4DQPSK		2480	2DH5	1	10.33	-9.67	Pass
		HOPP	2DH5	1	10.33	-9.67	Pass
					10.33	-9.67	Pass
	SISO	2402	3DH5	1	10.56	-9.44	Pass
		2441	3DH5	1	10.56	-9.44	Pass
8DPSK		2480	3DH5	1	10.56	-9.44	Pass
		HOPP 3DH5	3DHE	1	10.56	-9.44	Pass
			ı	10.56	-9.44	Pass	

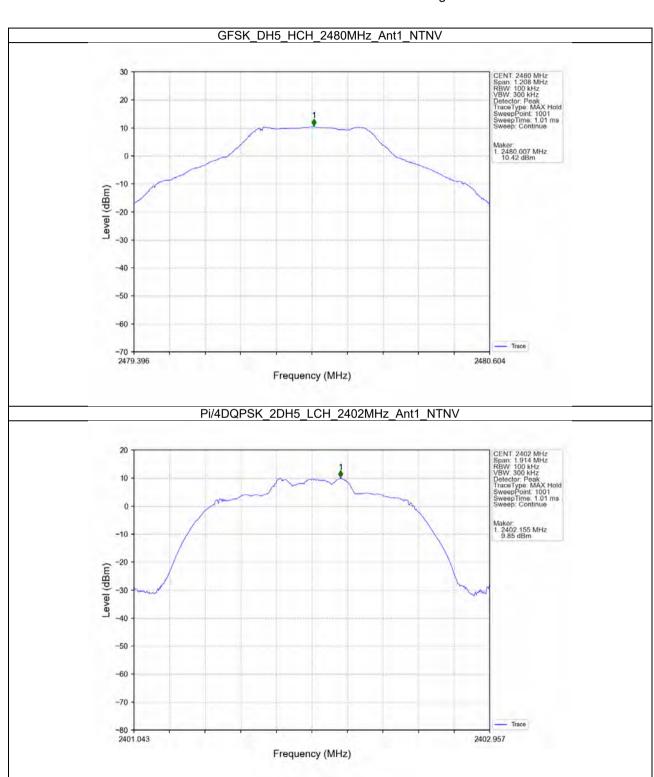
Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.



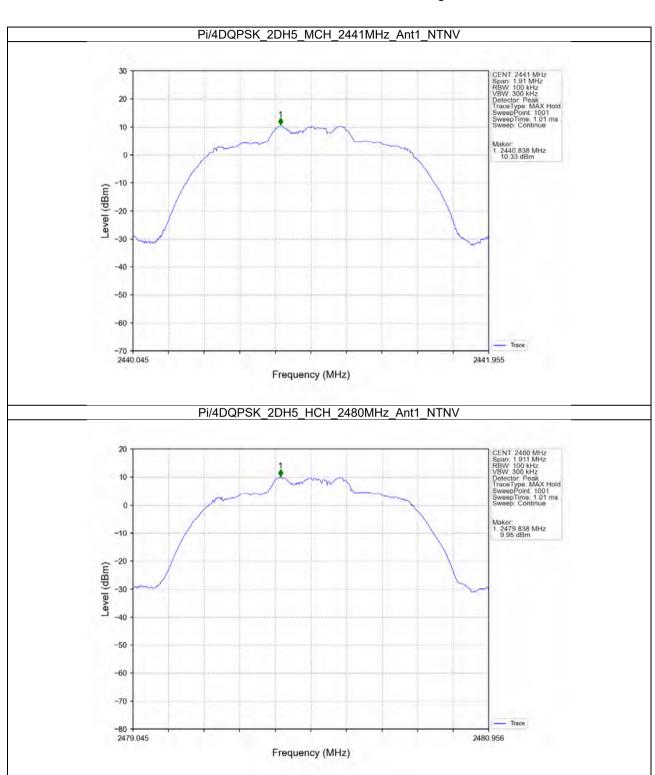
Report No.: SUCR250600055003

Rev.: 01 Page: 67 of 94

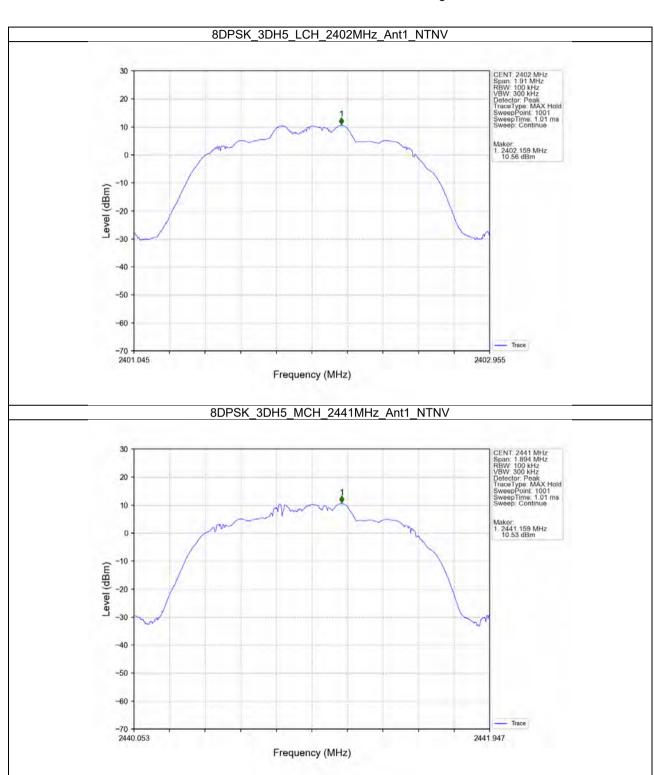
6.2 Test Graph


6.2.1 Ref

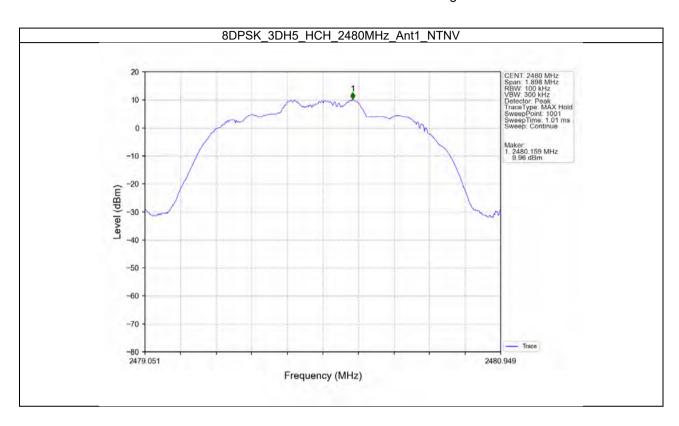
Report No.: SUCR250600055003


Rev.: 01 Page: 68 of 94

Report No.: SUCR250600055003

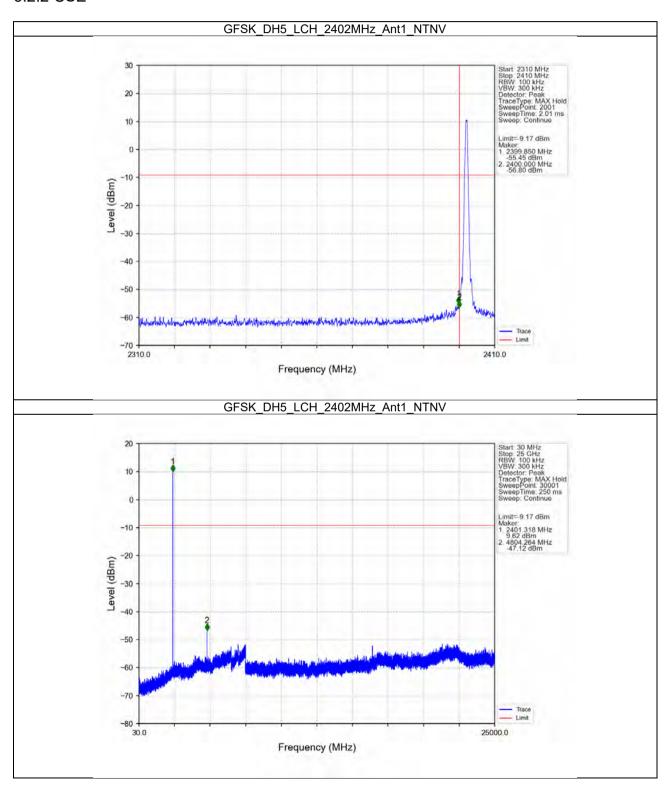

Rev.: 01 Page: 69 of 94

Report No.: SUCR250600055003


Rev.: 01 Page: 70 of 94

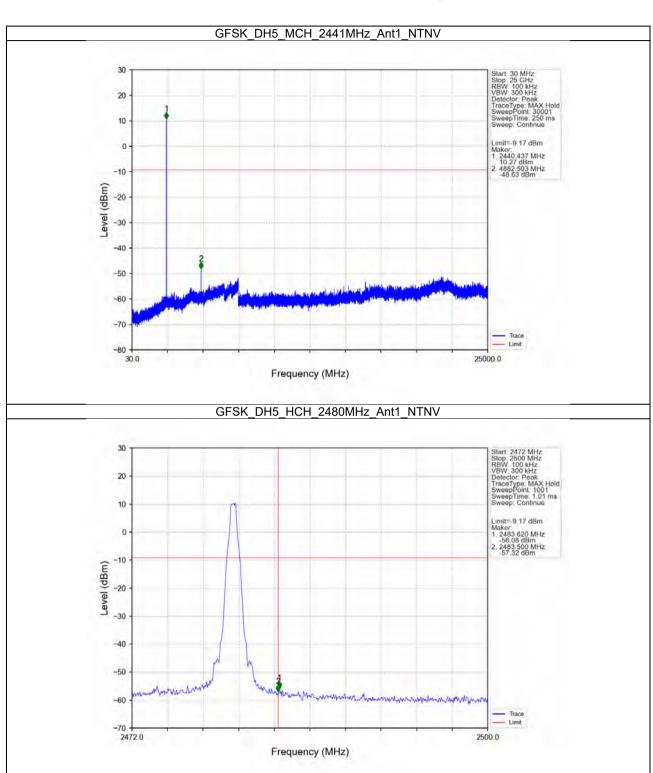
Report No.: SUCR250600055003

Rev.: 01 Page: 71 of 94

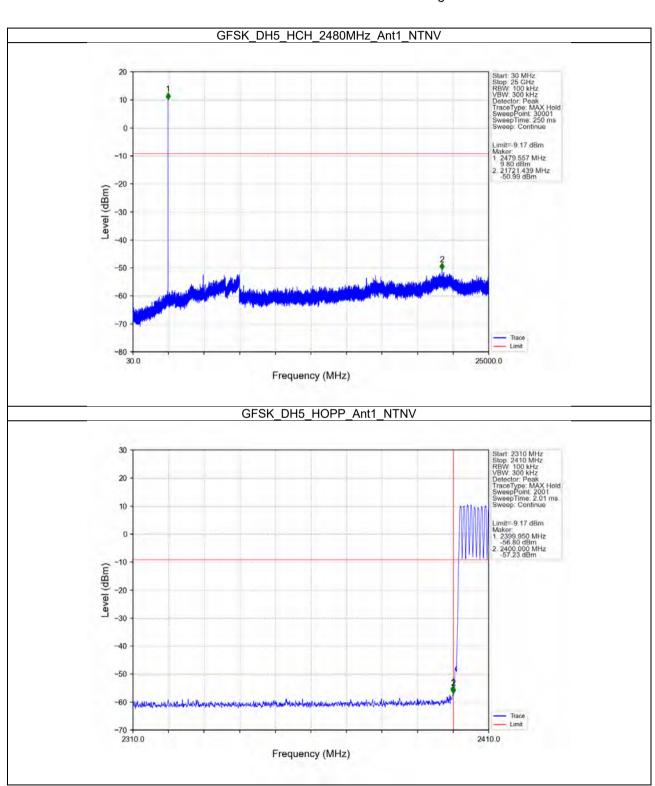


Report No.: SUCR250600055003

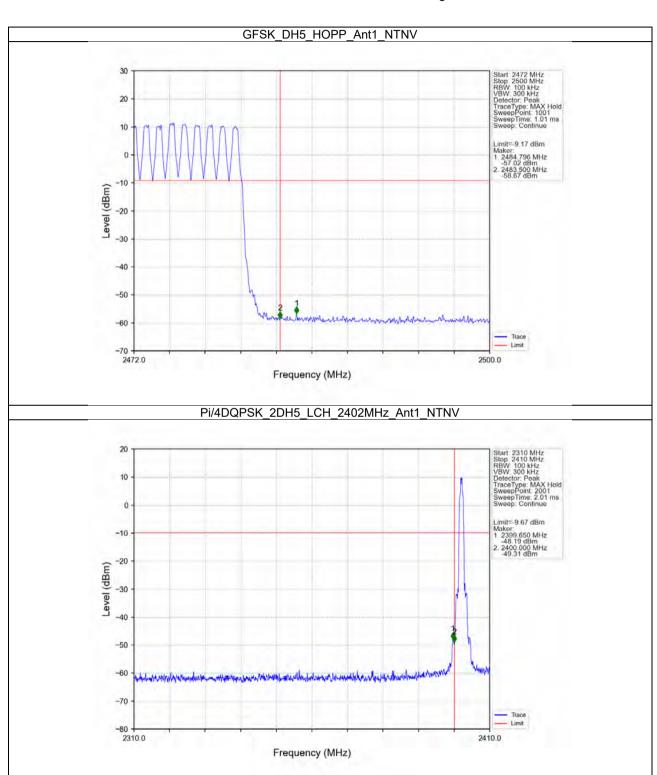
Rev.: 01 Page: 72 of 94


6.2.2 CSE

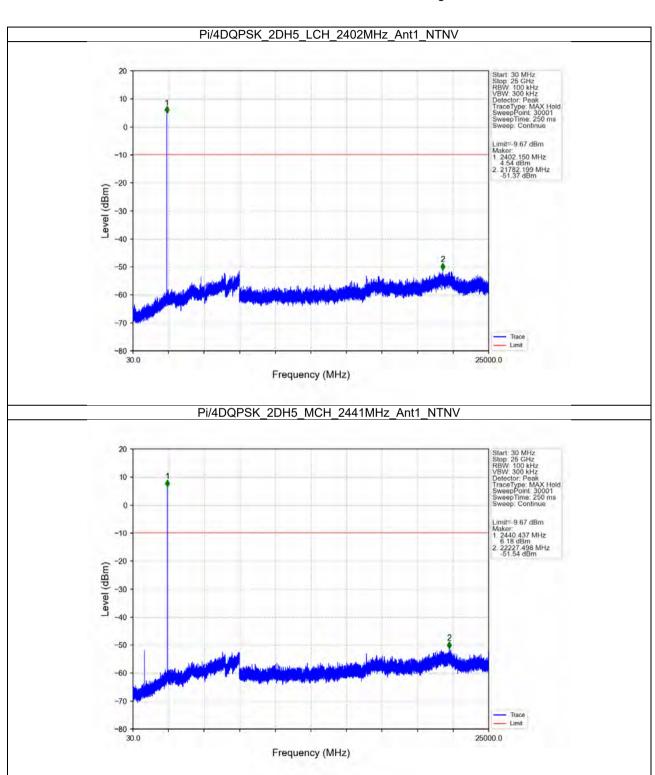
Report No.: SUCR250600055003


Rev.: 01 Page: 73 of 94

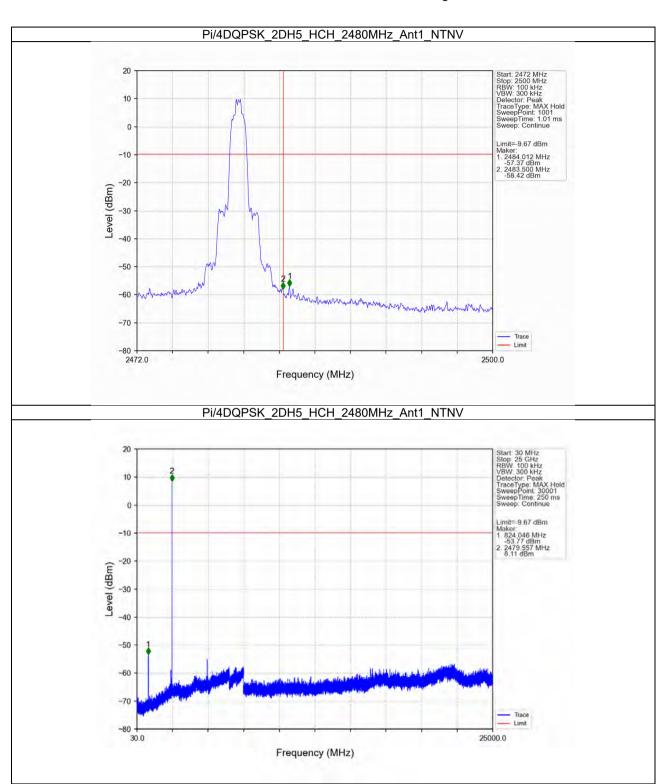
Report No.: SUCR250600055003


Rev.: 01 Page: 74 of 94

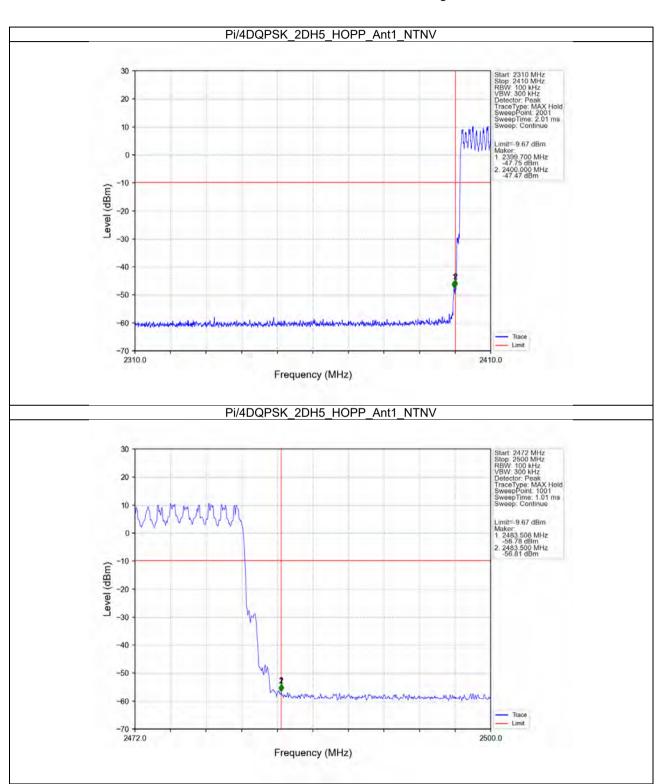
Report No.: SUCR250600055003


Rev.: 01 Page: 75 of 94

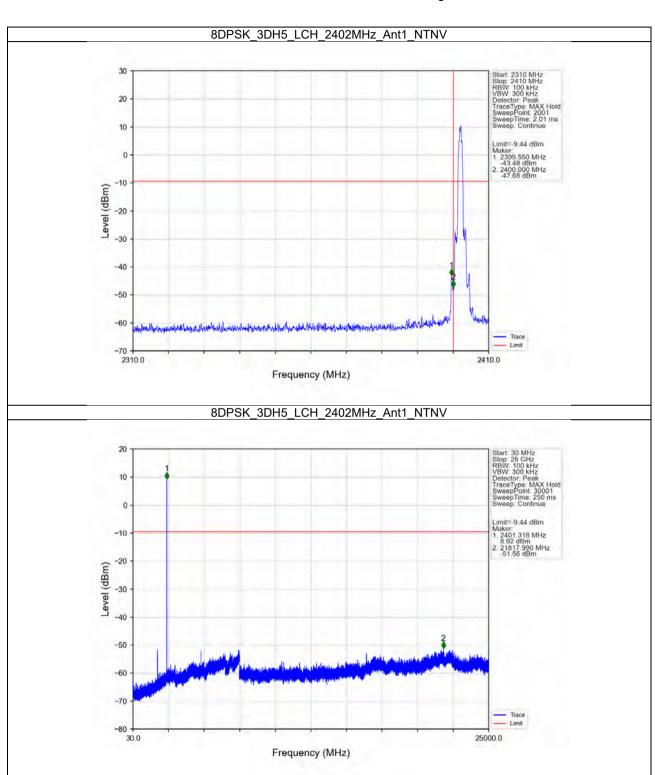
Report No.: SUCR250600055003


Rev.: 01 Page: 76 of 94

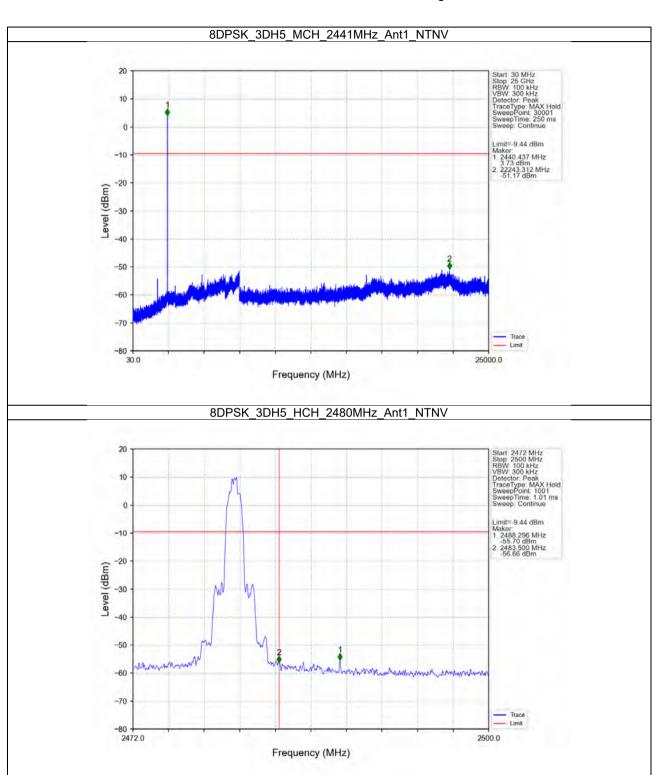
Report No.: SUCR250600055003


Rev.: 01 Page: 77 of 94

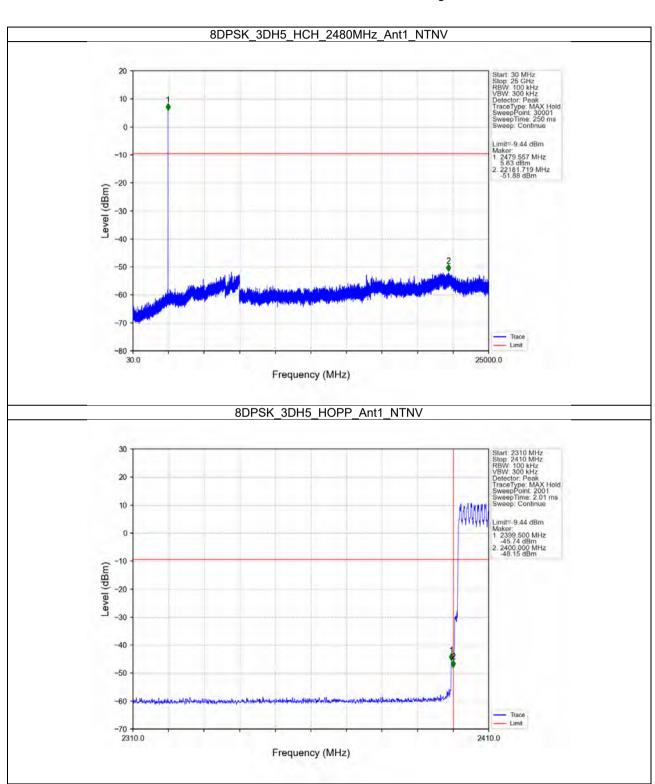
Report No.: SUCR250600055003


Rev.: 01 Page: 78 of 94

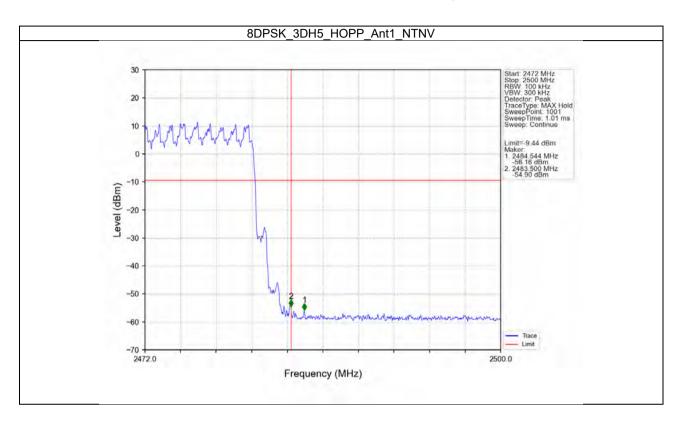
Report No.: SUCR250600055003


Rev.: 01 Page: 79 of 94

Report No.: SUCR250600055003

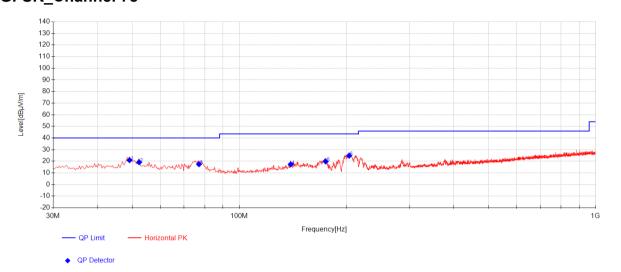

Rev.: 01 Page: 80 of 94

Report No.: SUCR250600055003


Rev.: 01 Page: 81 of 94

Report No.: SUCR250600055003

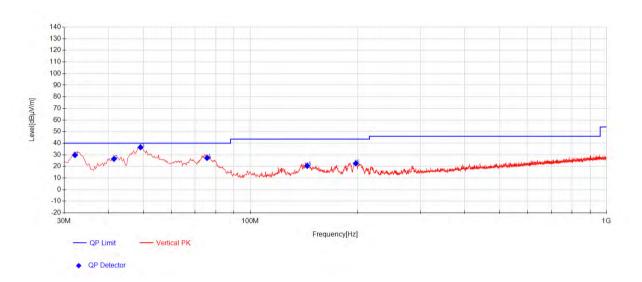
Rev.: 01 Page: 82 of 94



Report No.: SUCR250600055003

Rev.: 01 Page: 83 of 94

Radiated Spurious Emissions Radiated emission below 1GHz Worst case Mode: GFSK_Channel 78



Final	Final Data List											
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	49.1575	36.34	18.77	-34.18	20.93	40.00	19.07	199	19	Horizontal		
2	52.31	34.96	18.34	-34.16	19.14	40.00	20.86	264	19	Horizontal		
3	77.045	36.03	15.40	-33.95	17.48	40.00	22.52	185	146	Horizontal		
4	139.3675	32.42	18.54	-33.59	17.36	43.50	26.14	231	113	Horizontal		
5	174.7725	35.29	17.89	-33.37	19.81	43.50	23.69	187	294	Horizontal		
6	203.3875	42.67	15.30	-33.17	24.80	43.50	18.70	191	98	Horizontal		

Report No.: SUCR250600055003

Rev.: 01 Page: 84 of 94

Final	Data List									
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
1	32.1825	45.82	18.10	-34.18	29.74	40.00	10.26	206	162	Vertical
2	41.3975	41.92	18.76	-34.18	26.50	40.00	13.50	199	108	Vertical
3	49.1575	51.88	18.77	-34.18	36.47	40.00	3.53	234	186	Vertical
4	75.59	45.94	15.32	-33.96	27.30	40.00	12.70	187	232	Vertical
5	144.46	35.51	18.55	-33.56	20.51	43.50	22.99	219	179	Vertical
6	197.81	40.52	15.28	-33.22	22.58	43.50	20.92	208	342	Vertical

Remark:

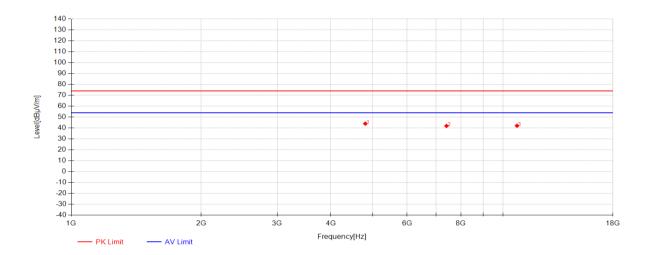
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier gain. The basic equation with a sample calculation is as follows:

Value = Reading(dB μ V) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

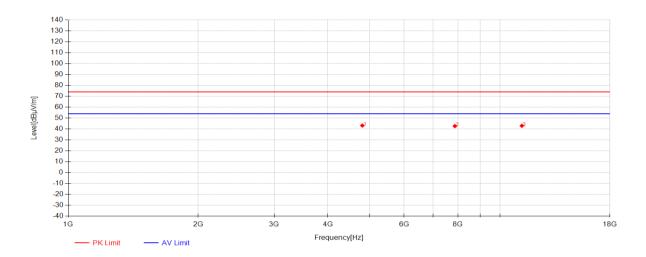
Margin = Limit($dB\mu V/m$) – Value($dB\mu V/m$)


2) All channels have been tested, but only the worst case data displayed in this report.

Report No.: SUCR250600055003

Rev.: 01 Page: 85 of 94

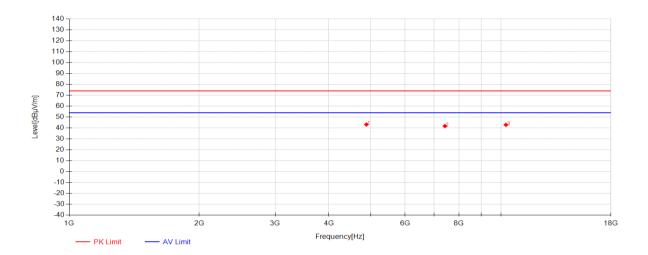
Transmitter emission Above 1GHz GFSK_Channel 00



Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	4803.75	58.46	31.09	-45.54	44.01	74.00	29.99	Horizontal			
2	7405.5	49.17	36.14	-43.40	41.91	74.00	32.09	Horizontal			
3	10788	42.03	38.58	-38.52	42.09	74.00	31.91	Horizontal			

Report No.: SUCR250600055003

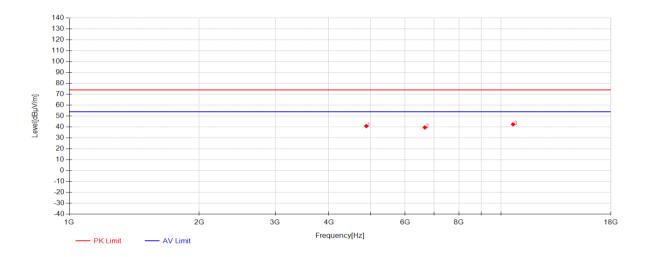
Rev.: 01 Page: 86 of 94



Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	4803.75	57.64	31.09	-45.54	43.19	74.00	30.81	Vertical			
2	7869.75	48.44	36.92	-42.67	42.69	74.00	31.31	Vertical			
3	11249.25	41.61	38.72	-37.40	42.93	74.00	31.07	Vertical			

Report No.: SUCR250600055003

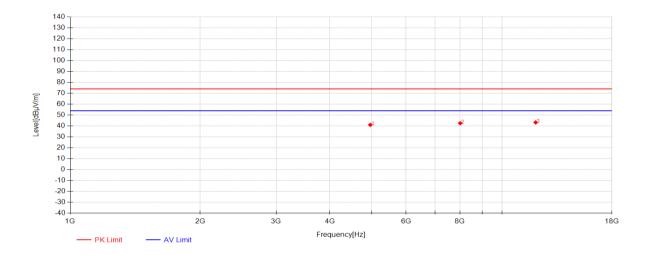
Rev.: 01 Page: 87 of 94



Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	4882.5	57.52	31.21	-45.53	43.20	74.00	30.80	Horizontal			
2	7420.5	48.97	36.18	-43.35	41.79	74.00	32.21	Horizontal			
3	10277.25	43.56	38.53	-39.18	42.90	74.00	31.10	Horizontal			

Report No.: SUCR250600055003

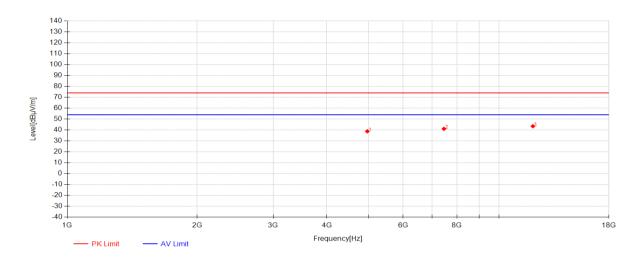
Rev.: 01 Page: 88 of 94



Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	4881.75	55.20	31.21	-45.53	40.88	74.00	33.12	Vertical			
2	6669.75	49.13	34.41	-43.97	39.56	74.00	34.44	Vertical			
3	10678.5	41.89	38.57	-38.01	42.45	74.00	31.55	Vertical			

Report No.: SUCR250600055003

Rev.: 01 Page: 89 of 94


Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	4959.75	55.34	31.34	-45.60	41.08	74.00	32.92	Horizontal			
2	8010	47.75	37.09	-42.25	42.59	74.00	31.41	Horizontal			
3	11979	41.68	39.09	-37.52	43.25	74.00	30.75	Horizontal			

Report No.: SUCR250600055003

Rev.: 01 Page: 90 of 94

GFSK_Channel 78

Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	4959.75	53.05	31.34	-45.60	38.79	74.00	35.21	Vertical			
2	7462.5	48.05	36.30	-43.24	41.10	74.00	32.90	Vertical			
3	11993.25	41.97	39.10	-37.59	43.47	74.00	30.53	Vertical			

Remark:

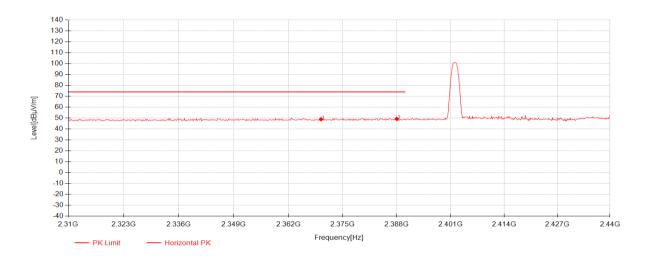
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier gain. The basic equation with a sample calculation is as follows:

Level = Reading($dB\mu V$) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

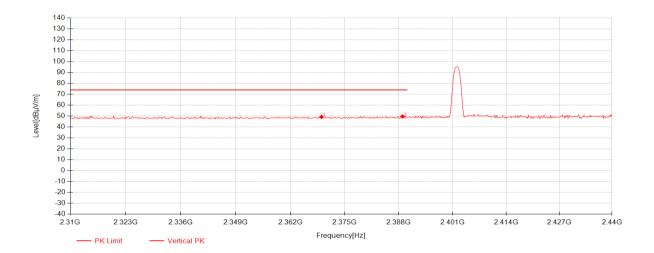
Margin = Limit($dB\mu V/m$) – Level($dB\mu V/m$)


2) All channels have been tested, but only the worst case data displayed in this report.

Report No.: SUCR250600055003

Rev.: 01 Page: 91 of 94

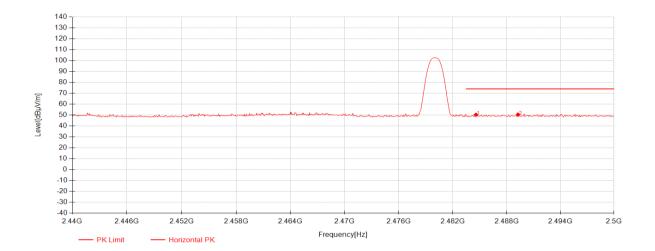
Restricted bands around fundamental frequency GFSK_Channel 00



Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	2369.8	45.61	26.94	-23.57	48.98	74.00	25.02	Horizontal			
2	2388	45.88	26.98	-23.57	49.28	74.00	24.72	Horizontal			

Report No.: SUCR250600055003

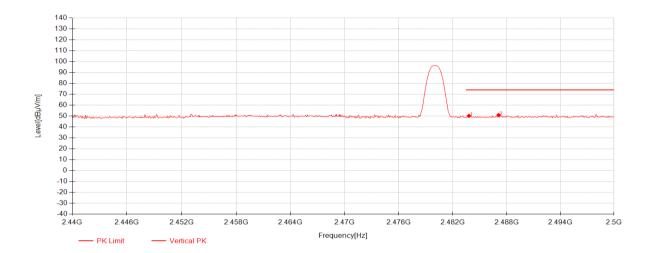
Rev.: 01 Page: 92 of 94



Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	2369.41	45.92	26.94	-23.57	49.29	74.00	24.71	Vertical			
2	2388.91	46.29	26.98	-23.57	49.70	74.00	24.30	Vertical			

Report No.: SUCR250600055003

Rev.: 01 Page: 93 of 94


Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	2484.58	46.70	27.17	-23.54	50.32	74.00	23.68	Horizontal			
2	2489.26	46.84	27.18	-23.54	50.48	74.00	23.52	Horizontal			

Report No.: SUCR250600055003

Rev.: 01 Page: 94 of 94

GFSK_Channel 78

Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity		
1	2483.8	46.61	27.17	-23.54	50.23	74.00	23.77	Vertical		
2	2487.1	47.36	27.17	-23.54	50.99	74.00	23.01	Vertical		

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier gain. The basic equation with a sample calculation is as follows:

Level = Reading(dB μ V) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

Margin = Limit($dB\mu V/m$) – Level($dB\mu V/m$)

---End of Report---