Test Report

Prepared for: Pix4D S.A.

Model: 324003

Name: viDoc RTK Rover for iPad Pro

Serial Number: 2100118

Contains FCC ID: 228B324001 Contains IC: 27729-324001

To

FCC Part 15.247 DTS IC RSS-247 Issue 2

Date of Issue: 19 October 2021

On the behalf of the applicant: Pix4D S.A.

Route de Renes 24

Prilly 1009 Switzerland

Attention of: Ryan Sweeney, Channel Sales Manager

Ph: 1(702)551-8297

Email: Ryan.Sweeney@pix4d.com

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax

www.compliancetesting.com
Project No: p2180003

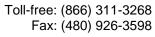
Afzal Fazal

Project Test Engineer

apol Foral

This report may not be reproduced, except in full, without written permission from Compliance Testing.

All results contained herein relate only to the sample tested.



www.ComplianceTesting.com info@ComplianceTesting.com

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	12 October 2021	Afzal Fazal	Original Document
2.0	19 October 2021	Afzal Fazal	Added modulation and data rate

Current revision of the test report replaces any prior versions. Only the current version of the test report is valid.

 $www. Compliance Testing. com\\ info@Compliance Testing. com\\$

Table of Contents

<u>Description</u>	<u>Page</u>
Standard Test Conditions and Engineering Practices	6
15.207 A/C Powerline Conducted Emissions	9
15.209 Radiated Emissions	12
Test Equipment Utilized	19
Measurement Uncertainty	20

www.ComplianceTesting.com info@ComplianceTesting.com

The applicant has been cautioned as to the following

15.21 - Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes, or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) - Special Accessories

Equipment marked to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

www.ComplianceTesting.com info@ComplianceTesting.com

ANAB

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

FCC Site Reg. #349717

IC Site Reg. #2044A-2

www.ComplianceTesting.com info@ComplianceTesting.com

Standard Test Conditions and Engineering Practices

Unless otherwise indicated in the specific measurement results, the ambient temperature was maintained within the range of 10° to 40°C (50° to 104°F) and the relative humidity levels were in the range of 10% to 90%.

Environmental Conditions			
Temperature (°C)	Humidity (%)		
29.3	31.7		

Note: The highest clock frequency generated from the device was at 2.48 GHz, therefore the device was tested up to 18 GHz per FCC 15.33 (b)(1).

EUT Description

Model: 324003

Description: viDoc RTK Rover for iPad Pro

Firmware: 0.2.1(9) **Serial Number:** 2100118

Additional Information: The firmware was placed in a test mode of operation where a long press on the power button allowed us to place the unit in normal operation, or in continuous transmit on either low, mid, or high

channel. A standard AC to USB charging adapter was used to charge the device during transmit.

EUT Operation during Tests

The EUT's battery was run down before the test and monitored to ensure that full charge was not reached during the test (charging circuits active). The device was tested in three orthogonal axis and on low, mid, and high channels. The worst-case data has been reported.

Transmitter Description

Protocol: Bluetooth Low Energy Frequency Range: 2402 – 2480 MHz

Antenna Type: PCB Antenna Antenna Gain: -0.39 dBi Modulation: GFSK Data Rate: 1 Mbps

www. Compliance Testing. cominfo@Compliance Testing. com

Accessories:

Qty	Description	Manufacturer	Model	S/N
1	Power Adapter	Apple Inc.	A1692	FNT0303PD74PPM9AT

Cables:

Qty	Description	Length (M)	Shielding Y/N	Shielded Hood Y/N	Termination
1	Charging cable	0.53	Υ	Υ	Υ

Modifications:

none

www.ComplianceTesting.com info@ComplianceTesting.com

Test Results Summary

Specification	Test Name	Pass, Fail, N/A	Comments
15.247(d), RSS-247 (5.1 & 5.2) 15.209(a), RSS-Gen (6.13 & 8.9) 15.205, RSS-Gen (8.10)	Radiated Spurious Emissions	Pass	
15.207, ISED-003	A/C Powerline Conducted Emissions	Pass	
15.109, RSS-Gen 7.1	Receiver Spurious Emission Limits	Pass	

Note:

Spectrum frequency from 9MHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no obvious emission were detected from 9KHz to 30MHz and 18GHz to 25GHz, so below final test was performed with frequency range from 30MHz to 18GHz.

Statements of conformity are reported as:

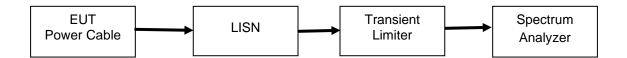
- Pass the measured value is below the acceptance limit, acceptance limit = test limit.
- Fail the measured value is above the acceptance limit, acceptance limit = test limit.

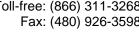
References	Description
CFR47, Part 15, Subpart B	Unintentional Radiators
CFR47, Part 15, Subpart C	Intentional Radiators
ANSI C63.10-2013	American National standard for testing Unlicensed Wireless Devices
ANSI C63.4-2014	Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz.
ISO/IEC 17025:2017	General requirements for the Competence of Testing and Calibrations Laboratories
KDB 558074 D01 v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

www.ComplianceTesting.com info@ComplianceTesting.com

15.207 A/C Powerline Conducted Emissions

Engineer: Afzal Fazal Test Date: 9/15/2021

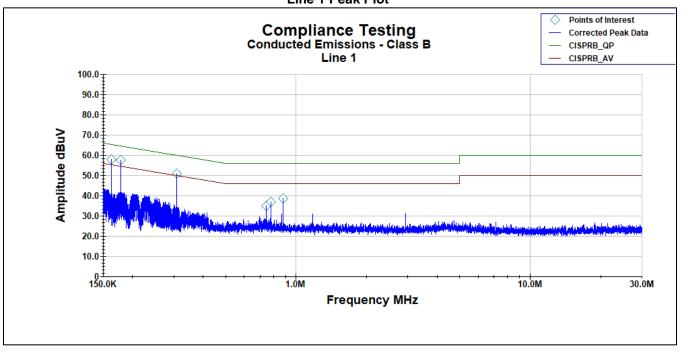

Test Procedure

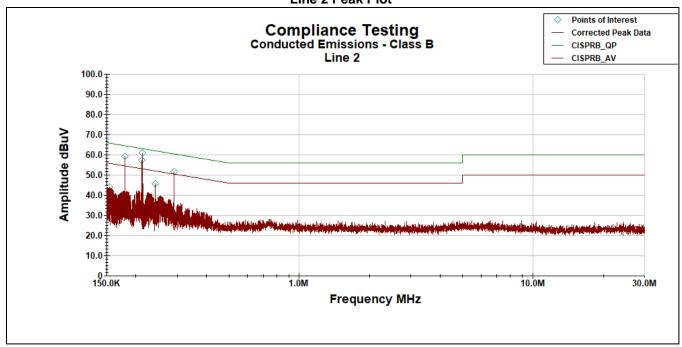

The EUT power cable was connected to a LISN and the monitored output of the LISN was connected to a transient limiter, which then connected directly to a spectrum analyzer. The conducted emissions from 150 kHz to 30 MHz were measured and compared to the specification limits. The test was performed per section 6.2 of C63.10:2013 "Standard test method for ac power-line conducted emissions from unlicensed wireless devices".

The Spectrum Analyzer was set to the following:

RBW = 9 kHz VBW ≥ 3 x RBW Sweep time = auto couple Detector = Peak, Quasi-Peak, Average Trace Mode = max hold

Test Setup




www.ComplianceTesting.com info@ComplianceTesting.com

Conducted Emissions Test Results

Line 1 Peak Plot

Line 2 Peak Plot

www.ComplianceTesting.com info@ComplianceTesting.com

Line 1 Neutral QP Detector

Frequency	Measured Value (dBuV)	LISN Correction Factor (dB)	Cable Loss (dB)	Transient Limiter (dB)	Final Data (dBuV)	Limit (dBuV)	Avg Margin (dB)
158.9 KHz	28.83	0.384	0.02	10.2	39.434	65.746	-26.311
173.0 KHz	23.74	0.341	0.02	10.1	34.201	65.343	-31.142
300.87 KHz	19.98	0.17	0.025	10.1	30.275	61.689	-31.415
731.75 KHz	13.81	0.09	0.037	10.1	24.037	56	-31.963
780.86 KHz	11.69	0.09	0.039	10.1	21.919	56	-34.081
879.84 KHz	10.04	0.09	0.04	10.1	20.27	56	-35.73

Line 1 Neutral Avg Detector

Frequency	Measured Value (dBuV)	LISN Correction Factor (dB)	Cable Loss (dB)	Transient Limiter (dB)	Final Data (dBuV)	Limit (dBuV)	Avg Margin (dB)
158.9 KHz	9.74	0.38	0.02	10.2	20.348	55.746	-35.398
173.0 KHz	8.7	0.34	0.02	10.1	19.158	55.343	-36.185
300.87 KHz	5.74	0.17	0.025	10.1	16.038	51.689	-35.651
731.75 KHz	5.53	0.09	0.037	10.1	15.757	46	-30.243
780.86 KHz	5.21	0.09	0.039	10.1	15.439	46	-30.561
879.84 KHz	5.01	0.09	0.04	10.1	15.237	46	-30.763

Line 2 Phase QP Detector

		LI	ile z Filase WF	Detector			
Frequency	Measured Value (dBuV)	LISN Correction Factor (dB)	Cable Loss (dB)	Transient Limiter (dB)	Final Data (dBuV)	Limit (dBuV)	QP Margin (dB)
154.58 KHz	29.17	0.42	0.02	10.2	39.812	65.869	-26.057
175.38 KHz	26.28	0.34	0.02	10.1	36.744	65.275	-28.531
199.63 KHz	27.72	0.28	0.02	10.1	38.121	64.582	-26.461
203.9 KHz	27.94	0.27	0.02	10.1	38.334	64.46	-26.126
225.67 KHz	26.04	0.24	0.021	10.1	36.4	63.838	-27.438
295.38 KHz	24.46	0.16	0.025	10.1	34.745	61.846	-27.101

Line 2 Phase Avg Detector

Frequency	Measured Value (dBuV)	LISN Correction Factor (dB)	Cable Loss (dB)	Transient Limiter (dB)	Final Data (dBuV)	Limit (dBuV)	QP Margin (dB)
154.58 KHz	11.1	0.42	0.02	10.2	21.745	55.869	-34.124
175.38 KHz	11.19	0.34	0.02	10.1	21.651	55.275	-33.624
199.63 KHz	9.99	0.28	0.02	10.1	20.391	54.582	-34.191
203.9 KHz	12.45	0.27	0.02	10.1	22.844	54.46	-31.616
225.67 KHz	11.03	0.24	0.021	10.1	21.394	53.838	-32.444
295.38 KHz	7.38	0.16	0.025	10.1	17.665	51.846	-34.181

www.ComplianceTesting.com info@ComplianceTesting.com

15.209 Radiated Emissions

Engineer: Afzal Fazal
Test Date: 9/16-23/2021

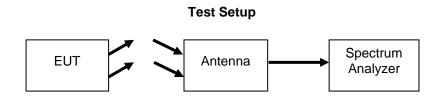
Test Procedure

The EUT was tested in a semi-anechoic test chamber set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized. The test was performed per section 11.11 of C63.10:2013 "Emissions in nonrestricted frequency bands" and compared to limits of 15.209.

All emissions from 30 MHz to 1 GHz were examined.

Measured Level includes antenna and receiver cable correction factors.

Correction factors were input into the spectrum analyzer before recording "Measured Level".


RBW = 120 KHz VBW = 300 KHz Detector – Quasi Peak

All emissions above 1 GHz were examined.

Measured Level includes antenna and receiver cable correction factors.

Correction factors were input into the spectrum analyzer before recording "Measured Level".

RBW = 1 MHz VBW = 3 MHz Detector – Average

Settings below 1 GHz

RBW = 120 KHz

VBW = 300 KHz

Detector - Quasi Peak

Settings above 1 GHz

RBW = 1 MHz

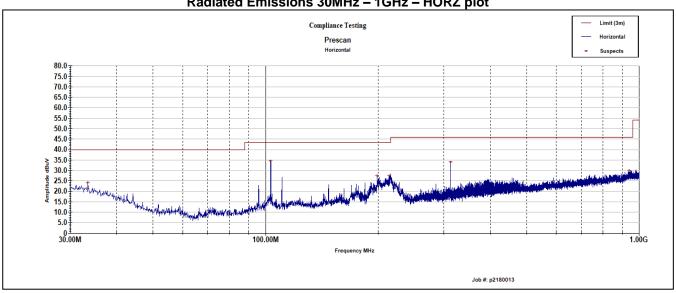
VBW = 3 MHz

Detector - Peak

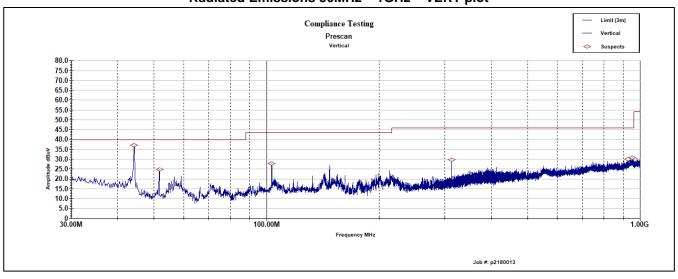
Sample Calculations

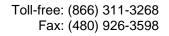
Corrected Value = Measured Value + Correction factor

Correction factor = ACF + Cable loss



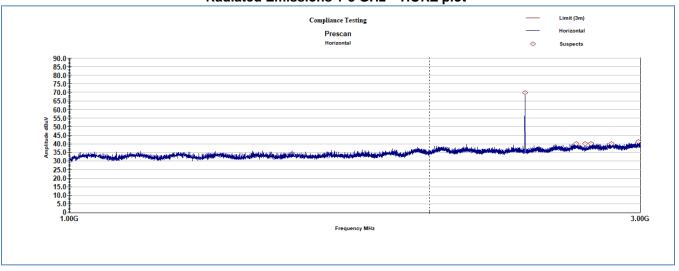
www.ComplianceTesting.com info@ComplianceTesting.com


Radiated Emissions: 30MHz - 1GHz

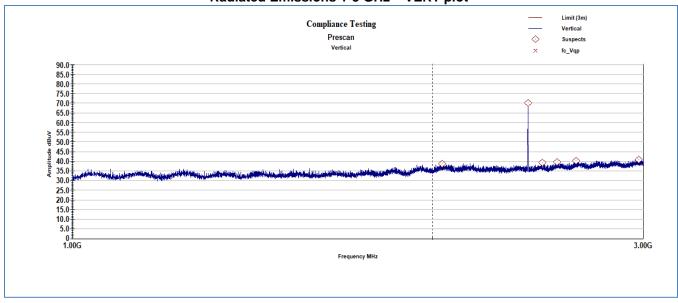

Emission Frequency (MHz)	Measured Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Antenna Polarity (V/H)	Turntable Position (deg)	Detector (QP,PK,Avg)
44.23	32.66	40	-7.34	110	V	0	QP
95.850	13.33	43.5	-30.17	110	Н	0	QP
103.230	30.39	43.5	-13.11	330	Н	300	QP
149.790	17.59	43.5	-25.91	110	V	0	QP
213.810	18.7	43.5	-24.8	110	V	0	QP
312.520	30.3	46	-15.7	110	Н	300	QP

Radiated Emissions 30MHz - 1GHz - HORZ plot

Radiated Emissions 30MHz - 1GHz - VERT plot

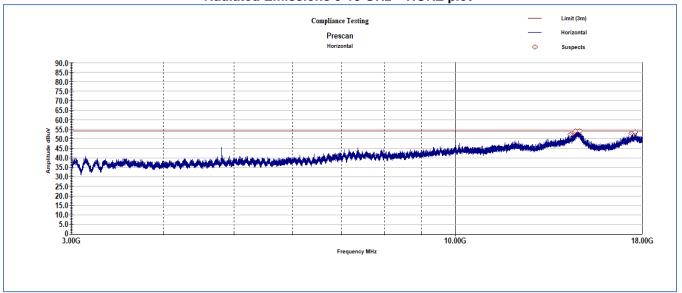


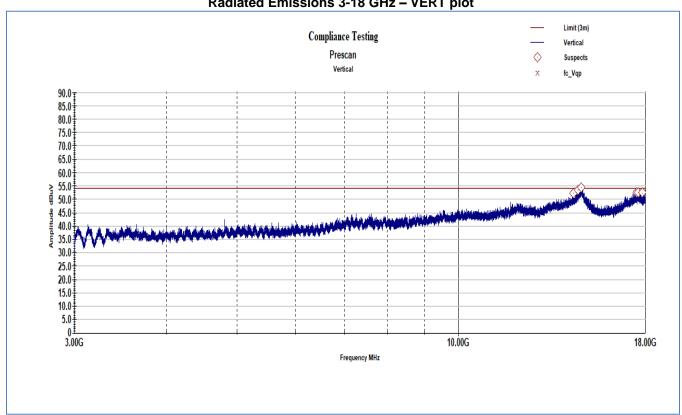
www.ComplianceTesting.com info@ComplianceTesting.com


Radiated Emissions 1-18 GHz

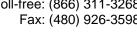
Emission Frequency (MHz)	Measured Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Antenna Polarity (V/H)	Turntable Position (deg)	Detector (QP,PK,Avg)
2468.441	38.09	53.9	-15.81	150	V	0	AVG
2651.325	38.88	53.9	-15.02	150	Н	0	AVG
2971.432	39.66	53.9	-14.24	150	V	0	AVG
14539.250	51.09	53.9	-2.81	150	Н	0	AVG
14550.604	50.92	53.9	-2.98	150	V	0	AVG
17379.929	51.37	53.9	-2.53	150	Н	0	AVG
17568.917	50.77	53.9	-3.13	150	V	0	AVG

Radiated Emissions 1-3 GHz - VERT plot

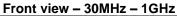




www.ComplianceTesting.com info@ComplianceTesting.com

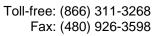

Radiated Emissions 3-18 GHz – HORZ plot

Radiated Emissions 3-18 GHz - VERT plot

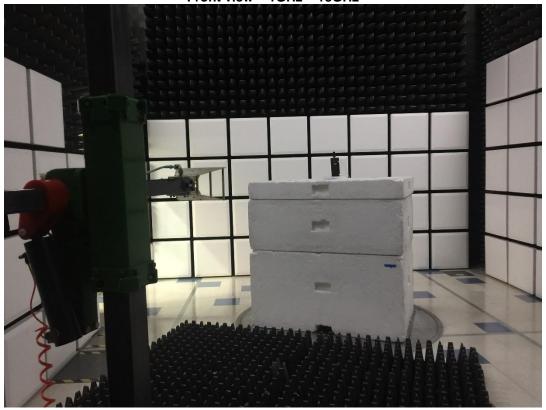


www. Compliance Testing. cominfo@Compliance Testing. com




Radiated Emissions Test Setup Photos

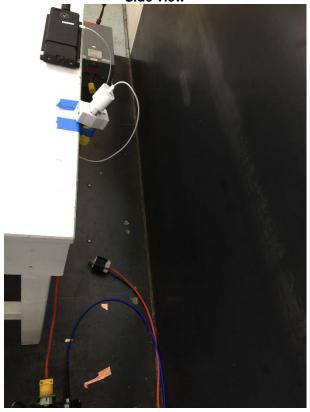
Back view - 30MHz - 1GHz



www.ComplianceTesting.com info@ComplianceTesting.com

Back view - 1GHz - 18GHz




www. Compliance Testing. cominfo@Compliance Testing. com

A/C Conducted Emissions Test Setup Photos

Side view

www.ComplianceTesting.com info@ComplianceTesting.com

Test Equipment Utilized

FCC Part 15B

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Preamplifier	Eravant	S BB-0115034018- 2F2F-E3	i00591	Verified on:	9/19/21
Transient Limiter	Com-Power	LIT-153	i00123	Verified on:	9/15/21
Bi-Log antenna	Chase	CBL6111C	i00267	8/28/20	8/28/22
Humidity / Temp Meter*	Newport	IBTHX-W-5	i00282	8/28/20	8/28/21*
EMI Analyzer	Agilent	E7405A	i00379	12/29/20	12/29/21
3 Meter Semi- Anechoic Chamber	Panashield	3 Meter Semi- Anechoic Chamber	i00428	7/17/20	7/17/23
LISN	Com-Power	LI-125A	i00447	4/28/20	4/28/22
LISN	Com-Power	LI-125A	i00449	4/28/20	4/28/22

^{*}Extended 30 days by the Lab Manager

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

www.ComplianceTesting.com info@ComplianceTesting.com

Measurement Uncertainty

Measurement Uncertainty for Compliance Testing is listed in the table below.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Conducted Emissions	dBuV	0.15 - 30 MHz	± 3.2 dB
Radiated Emissions	dBuV/m	30 - 1000 MHz	± 3.6 dB
Radiated Emissions	dBuV/m	1 - 6 GHz	± 3.9 dB
Radiated Emissions	dBuV/m	6 – 18 GHz	± 4.2 dB

The reported expanded uncertainty +/- $U_{lab}(dB)$ has been estimated at a 95% confidence level (k=2) U_{lab} is less than or equal to U_{EMC} therefore;

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit.
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

END OF TEST REPORT