

## FCC RADIO TEST REPORT

Applicant.....: Yantai Trial Retailing Engineering CO.,LTD

Address.....: NO.161 CHANGJIANG ROAD, Pilot Free Trade Zone Yantai area, Shandong China.

Manufacturer.....: SHENZHEN SHINDY TECHNOLOGY CO., LTD.

Address.....: NO.401, 1300018, DAFU INDUSTRIAL COMMUNITY, ZHANGGE COMMUNITY, FUCHENG STREET, LONGHUA DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R.CHINA

Factory.....: SHENZHEN SHINDY TECHNOLOGY CO., LTD.

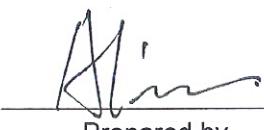
Address.....: NO.401, 1300018, DAFU INDUSTRIAL COMMUNITY, ZHANGGE COMMUNITY, FUCHENG STREET, LONGHUA DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R.CHINA

EUT.....: Retail AI Camera Z3

Brand Name.....: Retail Eye

Model No. ....: Retail Eye - Z3

FCC ID.....: 2A23I-AICAM-03


Measurement Standard.....: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Receipt Date of Samples....: June 07, 2021

Date of Tested.....: June 07, 2021 to August 20, 2021

Date of Report.....: September 07, 2021

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.



---

Prepared by

Alina Guo / Project Engineer



## Table of Contents

|                                                                        |    |
|------------------------------------------------------------------------|----|
| 1. Summary of Test Result.....                                         | 4  |
| 2. General Description of EUT .....                                    | 5  |
| 3. Test Channels and Modes Detail .....                                | 7  |
| 4. Configuration of EUT.....                                           | 7  |
| 5. Modification of EUT .....                                           | 7  |
| 6. Description of Support Device.....                                  | 8  |
| 7. Test Facility and Location .....                                    | 9  |
| 8. Applicable Standards and References.....                            | 10 |
| 9. Deviations and Abnormalities from Standard Conditions .....         | 10 |
| 10. Test Conditions .....                                              | 11 |
| 11. Measurement Uncertainty .....                                      | 11 |
| 12. Sample Calculations .....                                          | 12 |
| 13. Test Items and Results .....                                       | 13 |
| 13.1 Conducted Emissions Measurement .....                             | 13 |
| 13.2 Maximum Conducted Output Power Measurement.....                   | 17 |
| 13.3 6dB Bandwidth Measurement.....                                    | 19 |
| 13.4 Power Spectral Density Measurement .....                          | 21 |
| 13.5 Band Edge and Conducted Spurious Emissions Measurement.....       | 23 |
| 13.6 Radiated Spurious Emissions and Restricted Bands Measurement..... | 27 |
| 13.7 Antenna Requirement .....                                         | 34 |
| 14. Test Equipment List.....                                           | 35 |

## Revision History

## 1. Summary of Test Result

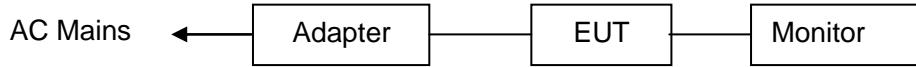
| FCC Rules                      | Description of Test                              | Result | Remarks |
|--------------------------------|--------------------------------------------------|--------|---------|
| §15.207 (a)                    | AC Power Conducted Emission                      | PASS   | ---     |
| §15.247(b)(3)                  | Maximum Conducted Output Power                   | PASS   | ---     |
| §15.247(a)(2)                  | 6dB Bandwidth                                    | PASS   | ---     |
| §15.247(e)                     | Power Spectral Density                           | PASS   | ---     |
| §15.247(d)                     | Band Edge and Conducted Spurious Emissions       | PASS   | ---     |
| §15.247(d),§15.209,<br>§15.205 | Radiated Spurious Emissions and Restricted Bands | PASS   | ---     |
| §15.203                        | Antenna Requirement                              | PASS   | ---     |

## 2. General Description of EUT

| Product Information     |                                                                                                                                |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Product name:           | Retail AI Camera Z3                                                                                                            |
| Main Model Name:        | Retail Eye - Z3                                                                                                                |
| Additional Model Name:  | N/A                                                                                                                            |
| Model Difference:       | N/A                                                                                                                            |
| S/N:                    | 00001-3K-Z3                                                                                                                    |
| Brand Name              | Retail Eye                                                                                                                     |
| Hardware version:       | Not Stated                                                                                                                     |
| Software version:       | Not Stated                                                                                                                     |
| Rating:                 | DC 5V come from USB port                                                                                                       |
| Classification:         | Class A                                                                                                                        |
| Typical arrangement:    | Table-top                                                                                                                      |
| I/O Port:               | N/A                                                                                                                            |
| Accessories Information |                                                                                                                                |
| Adapter:                | M/N: JHD-AP024J-050300BA-A<br>Input: AC 100-240V 50/60Hz, 0.55A<br>Output: DC 5V 3000mA                                        |
| Cable:                  | DC Line: 1.5m                                                                                                                  |
| Other:                  | N/A                                                                                                                            |
| Additional Information  |                                                                                                                                |
| Note:                   | N/A                                                                                                                            |
| Remark:                 | All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual. |

| Technical Specification |                                         |
|-------------------------|-----------------------------------------|
| Zigbee Version:         | Zigbee 3.0                              |
| Frequency Range:        | 2405-2480MHz                            |
| Modulation Type:        | O-QPSK                                  |
| Number of Channel:      | 16                                      |
| Channel Space:          | 5MHz                                    |
| Antenna Type:           | PIFA antenna                            |
| Antenna Gain:           | 3.02 dBi (Declared by the manufacturer) |

| Channel List |                 |         |                 |         |                 |
|--------------|-----------------|---------|-----------------|---------|-----------------|
| Channel      | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) |
| 1            | 2405            | 7       | 2435            | 13      | 2465            |
| 2            | 2410            | 8       | 2440            | 14      | 2470            |
| 3            | 2415            | 9       | 2445            | 15      | 2475            |
| 4            | 2420            | 10      | 2450            | 16      | 2480            |
| 5            | 2425            | 11      | 2455            |         |                 |
| 6            | 2430            | 12      | 2460            |         |                 |


### 3. Test Channels and Modes Detail

| Mode |             | Channel |     | Frequency (MHz) | Modulation |
|------|-------------|---------|-----|-----------------|------------|
| 1    | TX          | Low     | 1   | 2405            | GFSK       |
| 2    |             | Mid     | 9   | 2445            | GFSK       |
| 3    |             | High    | 16  | 2480            | GFSK       |
| 4    | Normal Mode | ---     | --- | ---             | ---        |

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

### 4. Configuration of EUT

#### Normal/TX Mode



### 5. Modification of EUT

No modifications are made to the EUT during all test items.

## 6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| No. | Equipment | Brand | M/N     | S/N                              | Cable Specification                                                         | Remarks                                                                                                 |
|-----|-----------|-------|---------|----------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1.  | Monitor   | DELL  | S2240Tb | CN-0FP53<br>P-74261-3<br>AL-0CYU | AC Line: 1.15m<br>unshielded<br>DC Line: 1.21m<br>unshielded with a<br>core | Adapter:<br>Manufacturer: CWT<br>M/N: KPL-050F-VI<br>I/P:AC100-240V50/60<br>Hz,1.7A<br>O/P:12V4.17A 50W |

| No. | Test Software             | Modulation | Power Setting |
|-----|---------------------------|------------|---------------|
| 1.  | ZigbeeTest_Tool_0616a.apk | O-QPSK     | Default       |

## 7. Test Facility and Location

|                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Site                         | : | Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Accreditations and Authorizations | : | <p>The Laboratory has been assessed and proved to be in compliance with CNAS/CL01</p> <p>Listed by CNAS, August 13, 2018</p> <p>The Certificate Registration Number is L5795.</p> <p>The Certificate is valid until August 13, 2024</p> <p>The Laboratory has been assessed and proved to be in compliance with ISO17025</p> <p>Listed by A2LA, November 01, 2017</p> <p>The Certificate Registration Number is 4429.01</p> <p>The Certificate is valid until December 31, 2021</p> <p>Listed by FCC, November 06, 2017</p> <p>Test Firm Registration Number: 907417</p> <p>Listed by Industry Canada, June 08, 2017</p> <p>The Certificate Registration Number. Is 46405-9743A</p> <p>The CAB identifier number is CN0015</p> |
| Test Site Location                | : | Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

---

## 8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

**Test Standards:**

47 CFR Part 15, Subpart C, 15.247

ANSI C63.10-2013

**References Test Guidance:**

DTS KDB 558074 D01 15.247 Meas Guidance v05r02

**Remark:**

The EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

---

## 9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

## 10. Test Conditions

| No. | Test Item                                        | Test Mode | Test Voltage                 | Tested by | Remarks    |
|-----|--------------------------------------------------|-----------|------------------------------|-----------|------------|
| 1.  | AC Power Conducted Emission                      | 4         | AC 120V 60Hz<br>AC 240V 50Hz | ---       | See note 3 |
| 2.  | Max. Conducted Output Power                      | 1-3       | AC 120V 60Hz                 | Sean Yuan | See note 1 |
| 3.  | 6dB Bandwidth                                    | 1-3       | AC 120V 60Hz                 | Sean Yuan | See note 1 |
| 4.  | Power Spectral Density                           | 1-3       | AC 120V 60Hz                 | Sean Yuan | See note 1 |
| 5.  | Band Edge and Conducted Spurious Emissions       | 1-3       | AC 120V 60Hz                 | Sean Yuan | See note 1 |
| 6.  | Radiated Spurious Emissions and Restricted Bands | 4         | AC 120V 60Hz<br>AC 240V 50Hz | Sean Yuan | See note 1 |
| 7.. | Antenna Requirement                              | ---       | ---                          | ---       | ---        |

**Note:**

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35 °C, 30~70%, 86~106kPa
2. As the EUT can be operated multiple positions, all X,Y,Z axis were considered during the test and only the worst case X was recorded.
3. Only the worst case was recorded in the report.

## 11. Measurement Uncertainty

| No. | Test Item              | Frequency      | Uncertainty | Remarks |
|-----|------------------------|----------------|-------------|---------|
| 1.  | Conducted Emission     | 150KHz ~ 30MHz | ±2.52 dB    | ---     |
| 2.  | Radiated Emission Test | 9kHz ~ 30MHz   | ±2.60 dB    | ---     |
|     |                        | 30MHz ~ 1GHz   | ±4.68 dB    | ---     |
|     |                        | 1GHz ~ 18GHz   | ±5.14 dB    | ---     |
|     |                        | 18GHz ~ 40GHz  | ±5.14 dB    | ---     |
| 3.  | RF Conducted Test      | 10Hz ~ 40GHz   | ±1.06 dB    | ---     |

**Note:**

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
2. The measurement uncertainty levels above are estimated and calculated according to CISPR 16-4-2.
3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

## 12. Sample Calculations

| Conducted Emission |                         |                        |                       |                 |              |          |
|--------------------|-------------------------|------------------------|-----------------------|-----------------|--------------|----------|
| Freq.<br>(MHz)     | Reading Level<br>(dBuV) | Correct Factor<br>(dB) | Measurement<br>(dBuV) | Limit<br>(dBuV) | Over<br>(dB) | Detector |
| 0.1900             | 30.10                   | 10.60                  | 40.70                 | 79.00           | -38.30       | QP       |

Where,

Freq. = Emission frequency in MHz  
 Reading Level = Uncorrected Analyzer/Receiver reading  
 Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation  
 Measurement = Reading + Corrector Factor  
 Limit = Limit stated in standard  
 Margin = Measurement - Limit  
 Detector = Reading for Quasi-Peak / Average / Peak

| Radiated Spurious Emissions and Restricted Bands |                         |                          |                         |                   |              |          |
|--------------------------------------------------|-------------------------|--------------------------|-------------------------|-------------------|--------------|----------|
| Freq.<br>(MHz)                                   | Reading Level<br>(dBuV) | Correct Factor<br>(dB/m) | Measurement<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>(dB) | Detector |
| 60.0700                                          | 45.88                   | -18.38                   | 27.50                   | 49.00             | -21.50       | QP       |

Where,

Freq. = Emission frequency in MHz  
 Reading Level = Uncorrected Analyzer/Receiver reading  
 Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier  
 Measurement = Reading + Corrector Factor  
 Limit = Limit stated in standard  
 Over = Margin, which calculated by Measurement - Limit  
 Detector = Reading for Quasi-Peak / Average / Peak

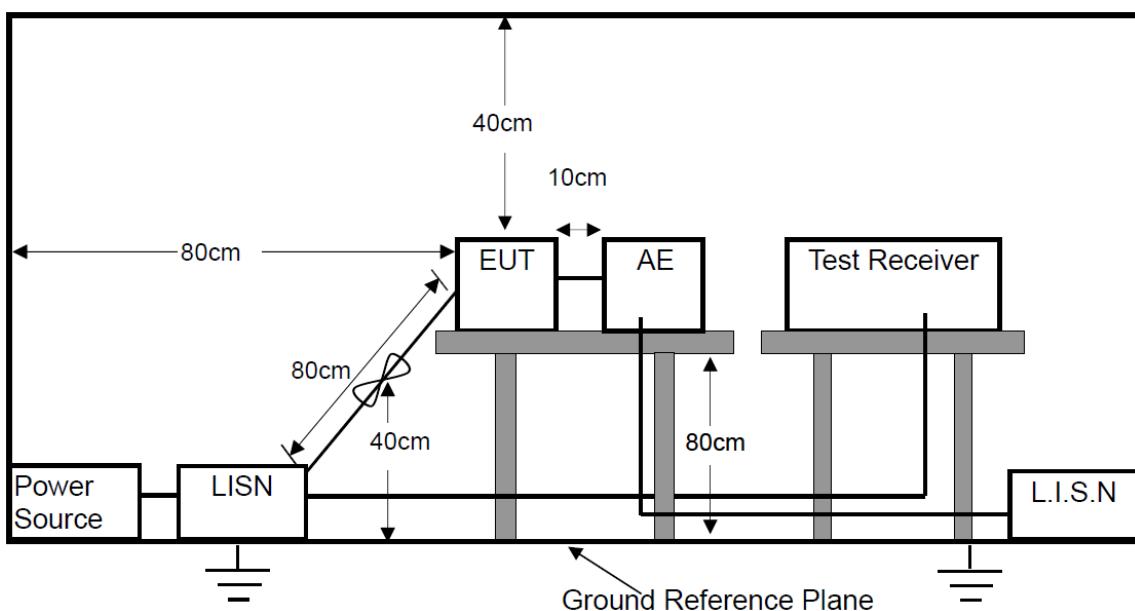
Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

## 13. Test Items and Results

## 13.1 Conducted Emissions Measurement

## LIMIT

According to the requirements of FCC PART 15.207, the limits are as follows:


| Frequency (MHz) | Quasi-peak | Average  |
|-----------------|------------|----------|
| 0.15 to 0.5     | 66 to 56   | 56 to 46 |
| 0.5 to 5        | 56         | 46       |
| 5 to 30         | 60         | 50       |

Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.

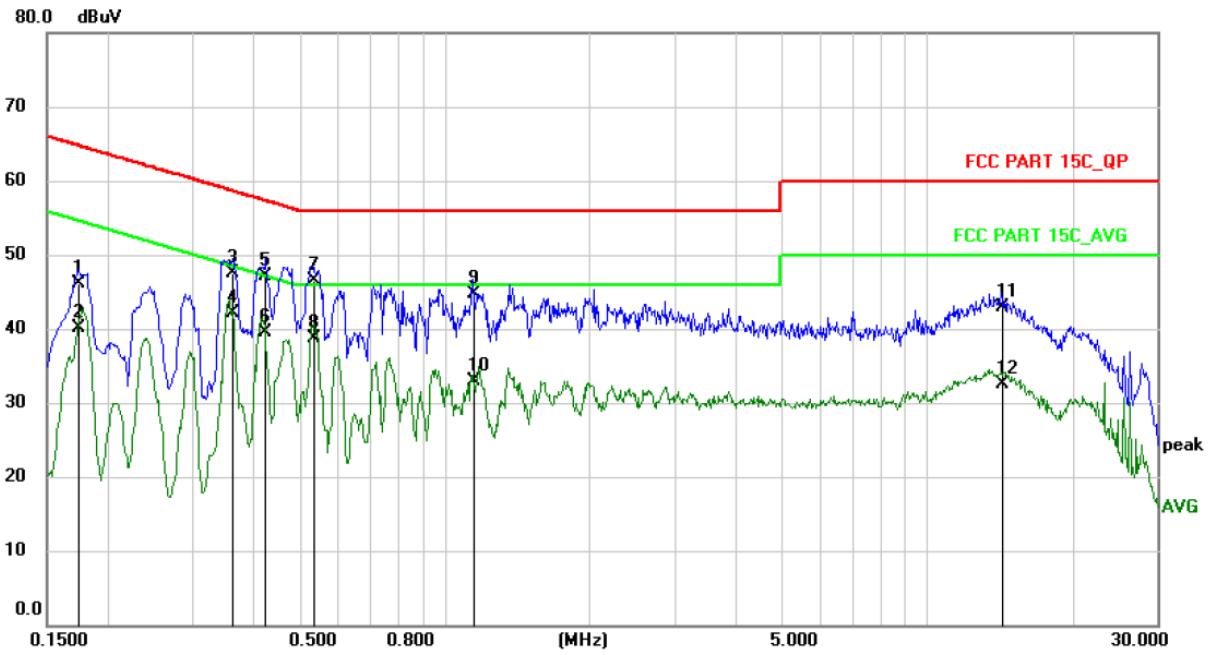
2. The lower limit shall apply at the transition frequencies.

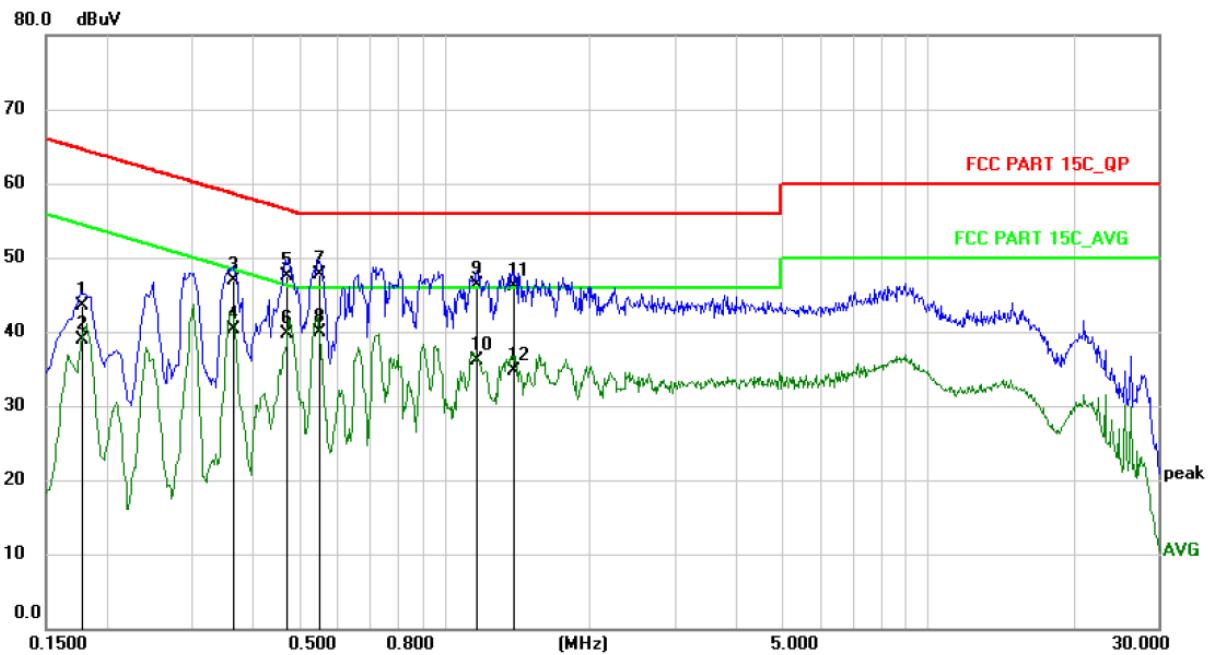
3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

## BLOCK DIAGRAM OF TEST SETUP



---


## TEST PROCEDURES


- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

## TEST RESULTS

PASS

Please refer to the following pages.

| M/N: Retail Eye - Z3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Testing Voltage: AC 120V 60Hz |               |                |                  |                |                  |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|----------------|------------------|----------------|------------------|---------|------|--|--|-----|------|----|------|----|----------|---------|---|--------|-------|-------|-------|-------|--------|----|---|--------|-------|-------|-------|-------|--------|-----|---|--------|-------|-------|-------|-------|--------|----|-----|--------|-------|-------|-------|-------|-------|-----|---|--------|-------|-------|-------|-------|--------|----|---|--------|-------|-------|-------|-------|-------|-----|---|--------|-------|-------|-------|-------|-------|----|---|--------|-------|-------|-------|-------|-------|-----|---|--------|-------|-------|-------|-------|--------|----|----|--------|-------|-------|-------|-------|--------|-----|----|---------|-------|-------|-------|-------|--------|----|----|---------|-------|-------|-------|-------|--------|-----|
| Phase: L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Detector: QP & AVG            |               |                |                  |                |                  |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| Test Mode: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |               |                |                  |                |                  |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| <b>Conducted Emission Measurement</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |               |                |                  |                |                  |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| Date: 2021/7/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time: 11:54:05                |               |                |                  |                |                  |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |               |                |                  |                |                  |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>No. Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measure-<br/>ment</th> <th>Limit</th> <th>Over</th> <th></th> </tr> <tr> <th></th> <th>MHz</th> <th>dBuV</th> <th>dB</th> <th>dBuV</th> <th>dB</th> <th>Detector</th> <th>Comment</th> </tr> </thead> <tbody> <tr><td>1</td><td>0.1737</td><td>35.53</td><td>10.60</td><td>46.13</td><td>64.78</td><td>-18.65</td><td>QP</td></tr> <tr><td>2</td><td>0.1737</td><td>29.55</td><td>10.60</td><td>40.15</td><td>54.78</td><td>-14.63</td><td>AVG</td></tr> <tr><td>3</td><td>0.3633</td><td>36.82</td><td>10.61</td><td>47.43</td><td>58.65</td><td>-11.22</td><td>QP</td></tr> <tr><td>4 *</td><td>0.3633</td><td>31.46</td><td>10.61</td><td>42.07</td><td>48.65</td><td>-6.58</td><td>AVG</td></tr> <tr><td>5</td><td>0.4259</td><td>36.44</td><td>10.62</td><td>47.06</td><td>57.33</td><td>-10.27</td><td>QP</td></tr> <tr><td>6</td><td>0.4259</td><td>28.91</td><td>10.62</td><td>39.53</td><td>47.33</td><td>-7.80</td><td>AVG</td></tr> <tr><td>7</td><td>0.5340</td><td>35.87</td><td>10.63</td><td>46.50</td><td>56.00</td><td>-9.50</td><td>QP</td></tr> <tr><td>8</td><td>0.5340</td><td>28.05</td><td>10.63</td><td>38.68</td><td>46.00</td><td>-7.32</td><td>AVG</td></tr> <tr><td>9</td><td>1.1451</td><td>34.05</td><td>10.70</td><td>44.75</td><td>56.00</td><td>-11.25</td><td>QP</td></tr> <tr><td>10</td><td>1.1451</td><td>22.23</td><td>10.70</td><td>32.93</td><td>46.00</td><td>-13.07</td><td>AVG</td></tr> <tr><td>11</td><td>14.2500</td><td>32.08</td><td>10.75</td><td>42.83</td><td>60.00</td><td>-17.17</td><td>QP</td></tr> <tr><td>12</td><td>14.2500</td><td>21.75</td><td>10.75</td><td>32.50</td><td>50.00</td><td>-17.50</td><td>AVG</td></tr> </tbody> </table> |                               | No. Mk.       | Freq.          | Reading Level    | Correct Factor | Measure-<br>ment | Limit   | Over |  |  | MHz | dBuV | dB | dBuV | dB | Detector | Comment | 1 | 0.1737 | 35.53 | 10.60 | 46.13 | 64.78 | -18.65 | QP | 2 | 0.1737 | 29.55 | 10.60 | 40.15 | 54.78 | -14.63 | AVG | 3 | 0.3633 | 36.82 | 10.61 | 47.43 | 58.65 | -11.22 | QP | 4 * | 0.3633 | 31.46 | 10.61 | 42.07 | 48.65 | -6.58 | AVG | 5 | 0.4259 | 36.44 | 10.62 | 47.06 | 57.33 | -10.27 | QP | 6 | 0.4259 | 28.91 | 10.62 | 39.53 | 47.33 | -7.80 | AVG | 7 | 0.5340 | 35.87 | 10.63 | 46.50 | 56.00 | -9.50 | QP | 8 | 0.5340 | 28.05 | 10.63 | 38.68 | 46.00 | -7.32 | AVG | 9 | 1.1451 | 34.05 | 10.70 | 44.75 | 56.00 | -11.25 | QP | 10 | 1.1451 | 22.23 | 10.70 | 32.93 | 46.00 | -13.07 | AVG | 11 | 14.2500 | 32.08 | 10.75 | 42.83 | 60.00 | -17.17 | QP | 12 | 14.2500 | 21.75 | 10.75 | 32.50 | 50.00 | -17.50 | AVG |
| No. Mk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Freq.                         | Reading Level | Correct Factor | Measure-<br>ment | Limit          | Over             |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MHz                           | dBuV          | dB             | dBuV             | dB             | Detector         | Comment |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1737                        | 35.53         | 10.60          | 46.13            | 64.78          | -18.65           | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1737                        | 29.55         | 10.60          | 40.15            | 54.78          | -14.63           | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3633                        | 36.82         | 10.61          | 47.43            | 58.65          | -11.22           | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 4 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3633                        | 31.46         | 10.61          | 42.07            | 48.65          | -6.58            | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4259                        | 36.44         | 10.62          | 47.06            | 57.33          | -10.27           | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4259                        | 28.91         | 10.62          | 39.53            | 47.33          | -7.80            | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5340                        | 35.87         | 10.63          | 46.50            | 56.00          | -9.50            | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5340                        | 28.05         | 10.63          | 38.68            | 46.00          | -7.32            | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1451                        | 34.05         | 10.70          | 44.75            | 56.00          | -11.25           | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1451                        | 22.23         | 10.70          | 32.93            | 46.00          | -13.07           | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.2500                       | 32.08         | 10.75          | 42.83            | 60.00          | -17.17           | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.2500                       | 21.75         | 10.75          | 32.50            | 50.00          | -17.50           | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |        |    |    |        |       |       |       |       |        |     |    |         |       |       |       |       |        |    |    |         |       |       |       |       |        |     |

| M/N: Retail Eye - Z3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Testing Voltage: AC 120V 60Hz |               |                |               |                |             |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|----------------|---------------|----------------|-------------|---------|------|--|--|-----|------|----|------|----|----------|---------|---|--------|-------|-------|-------|-------|--------|----|---|--------|-------|-------|-------|-------|--------|-----|---|--------|-------|-------|-------|-------|--------|----|---|--------|-------|-------|-------|-------|-------|-----|---|--------|-------|-------|-------|-------|-------|----|---|--------|-------|-------|-------|-------|-------|-----|---|--------|-------|-------|-------|-------|-------|----|-----|--------|-------|-------|-------|-------|-------|-----|---|--------|-------|-------|-------|-------|-------|----|----|--------|-------|-------|-------|-------|-------|-----|----|--------|-------|-------|-------|-------|-------|----|----|--------|-------|-------|-------|-------|--------|-----|
| Phase: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detector: QP & AVG            |               |                |               |                |             |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| Test Mode: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |                |               |                |             |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| <b>Conducted Emission Measurement</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |               |                |               |                |             |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| Date: 2021/7/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time: 12:01:33                |               |                |               |                |             |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |               |                |               |                |             |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>No. Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measurement</th> <th>Limit</th> <th>Over</th> <th></th> </tr> <tr> <th></th> <th>MHz</th> <th>dBuV</th> <th>dB</th> <th>dBuV</th> <th>dB</th> <th>Detector</th> <th>Comment</th> </tr> </thead> <tbody> <tr><td>1</td><td>0.1779</td><td>32.92</td><td>10.60</td><td>43.52</td><td>64.58</td><td>-21.06</td><td>QP</td></tr> <tr><td>2</td><td>0.1779</td><td>28.40</td><td>10.60</td><td>39.00</td><td>54.58</td><td>-15.58</td><td>AVG</td></tr> <tr><td>3</td><td>0.3659</td><td>36.27</td><td>10.61</td><td>46.88</td><td>58.59</td><td>-11.71</td><td>QP</td></tr> <tr><td>4</td><td>0.3659</td><td>29.64</td><td>10.61</td><td>40.25</td><td>48.59</td><td>-8.34</td><td>AVG</td></tr> <tr><td>5</td><td>0.4700</td><td>36.84</td><td>10.62</td><td>47.46</td><td>56.51</td><td>-9.05</td><td>QP</td></tr> <tr><td>6</td><td>0.4700</td><td>29.00</td><td>10.62</td><td>39.62</td><td>46.51</td><td>-6.89</td><td>AVG</td></tr> <tr><td>7</td><td>0.5500</td><td>37.03</td><td>10.64</td><td>47.67</td><td>56.00</td><td>-8.33</td><td>QP</td></tr> <tr><td>8 *</td><td>0.5500</td><td>29.30</td><td>10.64</td><td>39.94</td><td>46.00</td><td>-6.06</td><td>AVG</td></tr> <tr><td>9</td><td>1.1653</td><td>35.63</td><td>10.70</td><td>46.33</td><td>56.00</td><td>-9.67</td><td>QP</td></tr> <tr><td>10</td><td>1.1653</td><td>25.37</td><td>10.70</td><td>36.07</td><td>46.00</td><td>-9.93</td><td>AVG</td></tr> <tr><td>11</td><td>1.3900</td><td>35.35</td><td>10.70</td><td>46.05</td><td>56.00</td><td>-9.95</td><td>QP</td></tr> <tr><td>12</td><td>1.3900</td><td>24.10</td><td>10.70</td><td>34.80</td><td>46.00</td><td>-11.20</td><td>AVG</td></tr> </tbody> </table> |                               | No. Mk.       | Freq.          | Reading Level | Correct Factor | Measurement | Limit   | Over |  |  | MHz | dBuV | dB | dBuV | dB | Detector | Comment | 1 | 0.1779 | 32.92 | 10.60 | 43.52 | 64.58 | -21.06 | QP | 2 | 0.1779 | 28.40 | 10.60 | 39.00 | 54.58 | -15.58 | AVG | 3 | 0.3659 | 36.27 | 10.61 | 46.88 | 58.59 | -11.71 | QP | 4 | 0.3659 | 29.64 | 10.61 | 40.25 | 48.59 | -8.34 | AVG | 5 | 0.4700 | 36.84 | 10.62 | 47.46 | 56.51 | -9.05 | QP | 6 | 0.4700 | 29.00 | 10.62 | 39.62 | 46.51 | -6.89 | AVG | 7 | 0.5500 | 37.03 | 10.64 | 47.67 | 56.00 | -8.33 | QP | 8 * | 0.5500 | 29.30 | 10.64 | 39.94 | 46.00 | -6.06 | AVG | 9 | 1.1653 | 35.63 | 10.70 | 46.33 | 56.00 | -9.67 | QP | 10 | 1.1653 | 25.37 | 10.70 | 36.07 | 46.00 | -9.93 | AVG | 11 | 1.3900 | 35.35 | 10.70 | 46.05 | 56.00 | -9.95 | QP | 12 | 1.3900 | 24.10 | 10.70 | 34.80 | 46.00 | -11.20 | AVG |
| No. Mk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Freq.                         | Reading Level | Correct Factor | Measurement   | Limit          | Over        |         |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz                           | dBuV          | dB             | dBuV          | dB             | Detector    | Comment |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1779                        | 32.92         | 10.60          | 43.52         | 64.58          | -21.06      | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1779                        | 28.40         | 10.60          | 39.00         | 54.58          | -15.58      | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3659                        | 36.27         | 10.61          | 46.88         | 58.59          | -11.71      | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3659                        | 29.64         | 10.61          | 40.25         | 48.59          | -8.34       | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4700                        | 36.84         | 10.62          | 47.46         | 56.51          | -9.05       | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4700                        | 29.00         | 10.62          | 39.62         | 46.51          | -6.89       | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5500                        | 37.03         | 10.64          | 47.67         | 56.00          | -8.33       | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 8 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5500                        | 29.30         | 10.64          | 39.94         | 46.00          | -6.06       | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1653                        | 35.63         | 10.70          | 46.33         | 56.00          | -9.67       | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1653                        | 25.37         | 10.70          | 36.07         | 46.00          | -9.93       | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3900                        | 35.35         | 10.70          | 46.05         | 56.00          | -9.95       | QP      |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3900                        | 24.10         | 10.70          | 34.80         | 46.00          | -11.20      | AVG     |      |  |  |     |      |    |      |    |          |         |   |        |       |       |       |       |        |    |   |        |       |       |       |       |        |     |   |        |       |       |       |       |        |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |   |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |     |        |       |       |       |       |       |     |   |        |       |       |       |       |       |    |    |        |       |       |       |       |       |     |    |        |       |       |       |       |       |    |    |        |       |       |       |       |        |     |

## 13.2 Maximum Conducted Output Power Measurement

### LIMIT

For system using digital modulation in the 2400-2483.5 MHz bands, the limit for peak output power is 1 Watt.

If the transmitting antenna of directional gain greater than 6dBi are used the peak output power form the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6dBi.

In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of Antenna exceeds 6dBi.

### BLOCK DIAGRAM OF TEST SETUP



### TEST PROCEDURES

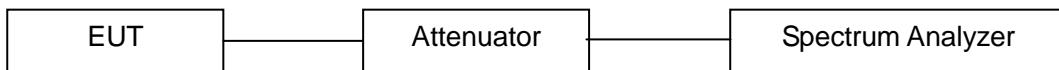
ANSI C63.10 - 2013, Section 11.9.1.3

ANSI C63.10 - 2013, Section 11.9.2.3.2

### TEST RESULTS

PASS

Please refer to the following tables.


| IEEE 802.15.4 |                 |                         |             |        |
|---------------|-----------------|-------------------------|-------------|--------|
| Channel       | Frequency (MHz) | Peak Output Power (dBm) | Limit (dBm) | Result |
| 1             | 2405            | 9.42                    | ≤30         | PASS   |
| 9             | 2445            | 9.10                    | ≤30         | PASS   |
| 16            | 2480            | 9.18                    | ≤30         | PASS   |

### 13.3 6dB Bandwidth Measurement

#### LIMIT

The minimum 6dB bandwidth shall be at least 500 kHz

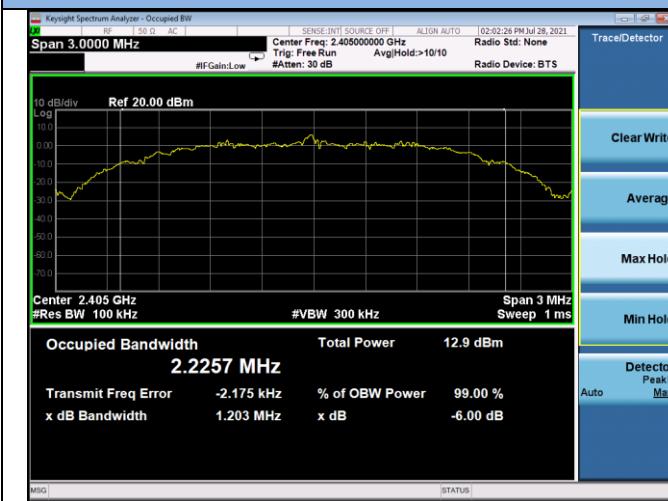
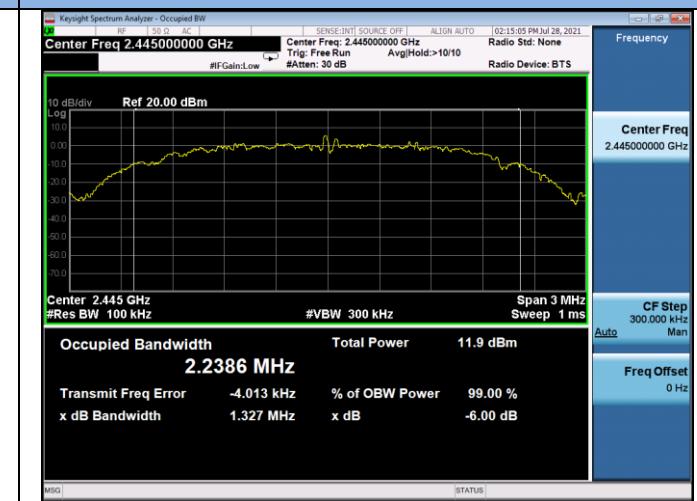
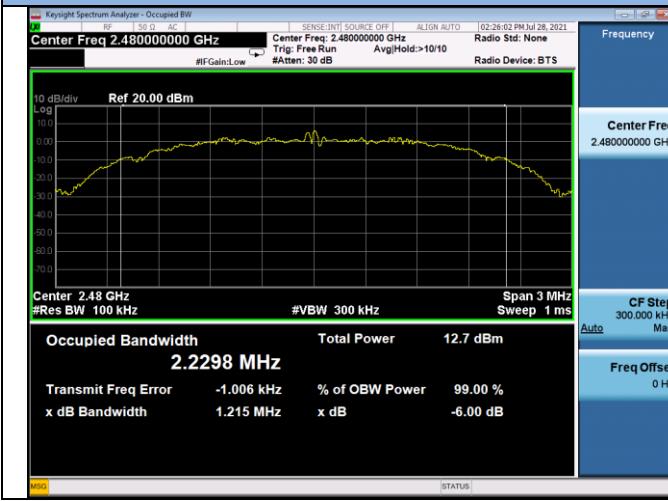
#### BLOCK DIAGRAM OF TEST SETUP



#### TEST PROCEDURES

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v05r02):

- a. Set the RBW = 100KHz.
- b. Set the VBW  $\geq 3 \times$  RBW
- c. Set the Detector = peak.
- d. Set the Sweep time = auto couple.
- e. Set the Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.




#### TEST RESULTS

PASS

Please refer to the following tables.

**IEEE 802.15.4**

| Channel | Frequency (MHz) | 6dB Bandwidth (MHz) | 99% Bandwidth (MHz) | Limit (MHz) | Result |
|---------|-----------------|---------------------|---------------------|-------------|--------|
| 1       | 2405            | 1.203               | -                   | >0.5        | PASS   |
| 9       | 2445            | 1.327               | -                   | >0.5        | PASS   |
| 16      | 2480            | 1.215               | -                   | >0.5        | PASS   |

**Test Plots of 6dB Bandwidth**
**2405MHz**

**2445MHz**

**2480MHz**


Blank

### 13.4 Power Spectral Density Measurement

#### LIMIT

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

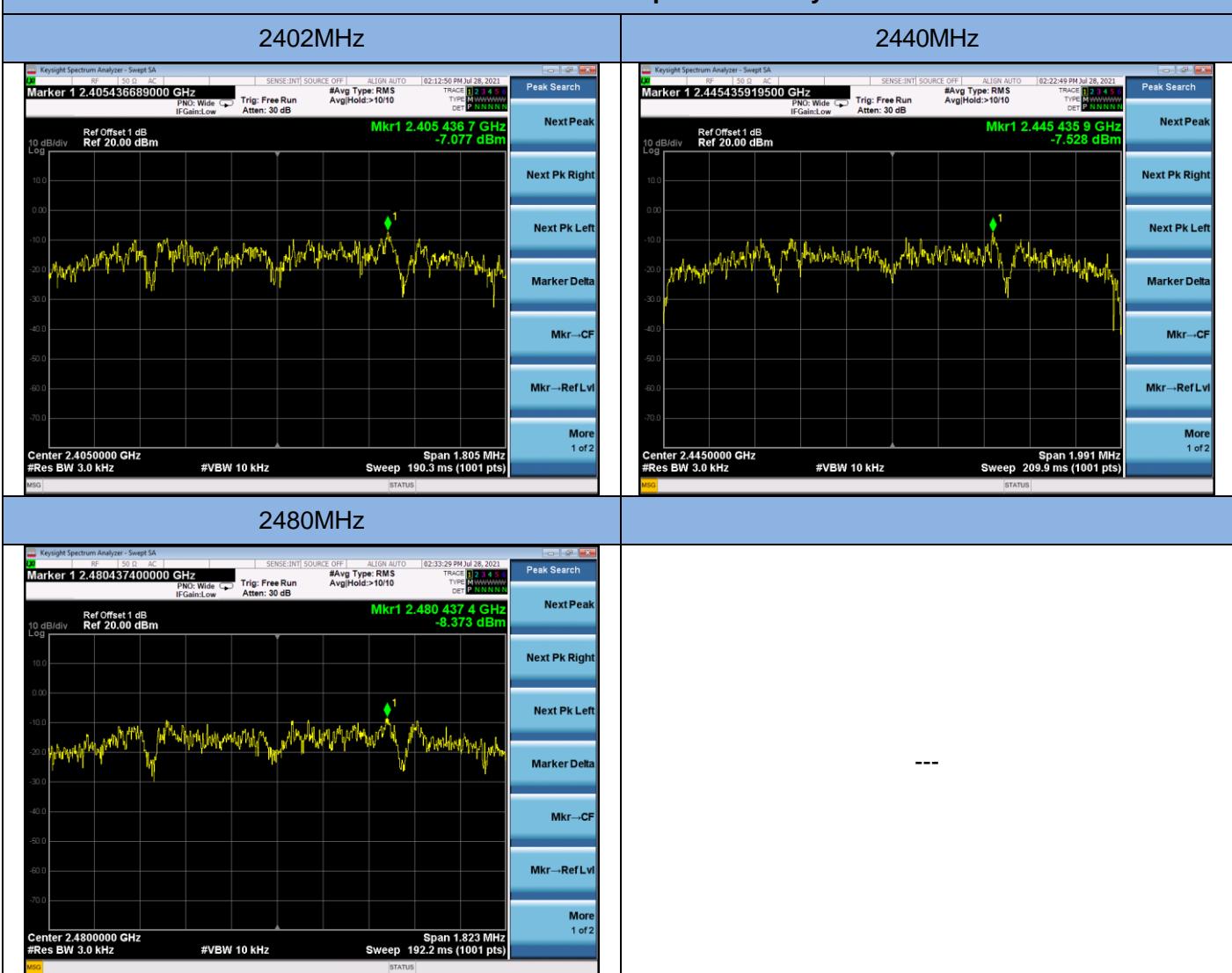
#### BLOCK DIAGRAM OF TEST SETUP



#### TEST PROCEDURES

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v05r02):

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to:  $3 \text{ kHz} \leq \text{RBW} \leq 100\text{KHz}$
- d. Set the VBW  $\geq 3 \times \text{RBW}$ .
- e. Set the Detector = peak.
- f. Set the Sweep time = auto couple.
- g. Set the Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.
- j. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


#### TEST RESULTS

PASS

Please refer to the following table.

**IEEE 802.15.4**

| Channel | Frequency (MHz) | PSD dBm / 3kHz | Limit dBm / 3kHz | Results |
|---------|-----------------|----------------|------------------|---------|
| 1       | 2405            | -7.077         | 8                | PASS    |
| 9       | 2445            | -7.528         | 8                | PASS    |
| 16      | 2480            | -8.373         | 8                | PASS    |

**Test Plots of Power Spectral Density**


## 13.5 Band Edge and Conducted Spurious Emissions Measurement

### LIMIT

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### BLOCK DIAGRAM OF TEST SETUP



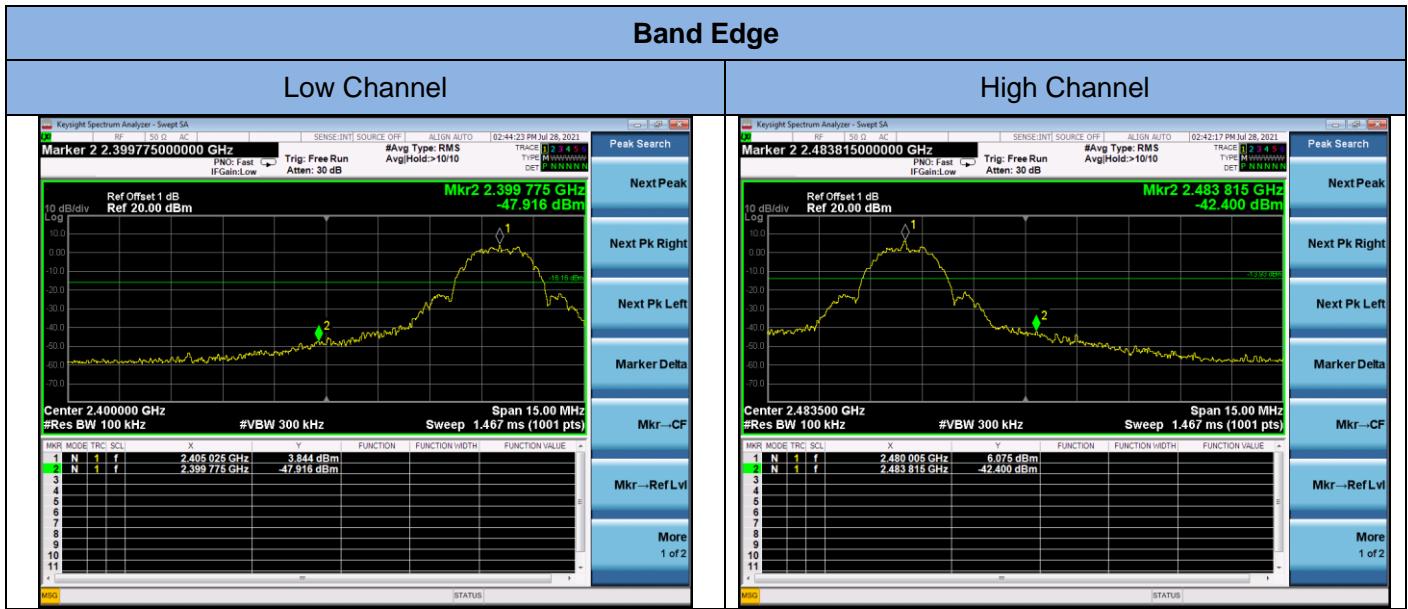
### TEST PROCEDURES

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to ANSI C63.10-2013, Section 11.11

#### Measurement Procedure REF

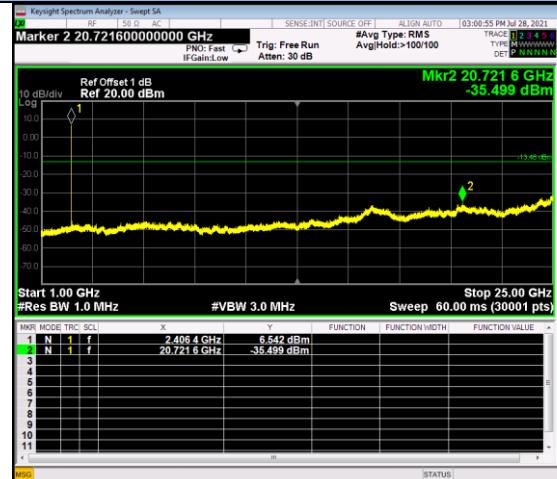
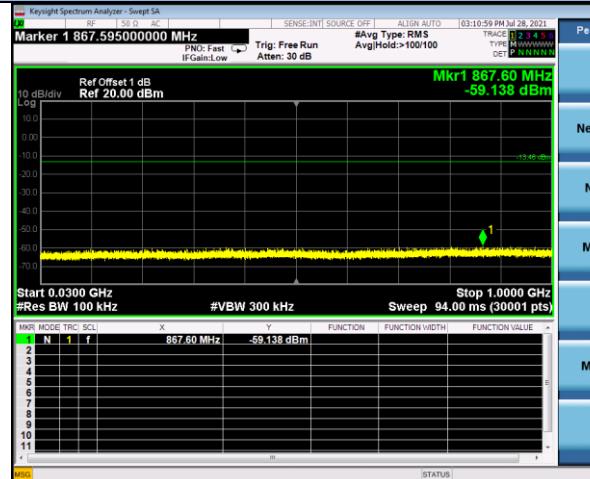
- a. Set the RBW = 100 kHz.
- b. Set the VBW  $\geq$  300 kHz.
- c. Set the Detector = peak.
- d. Set the Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

---

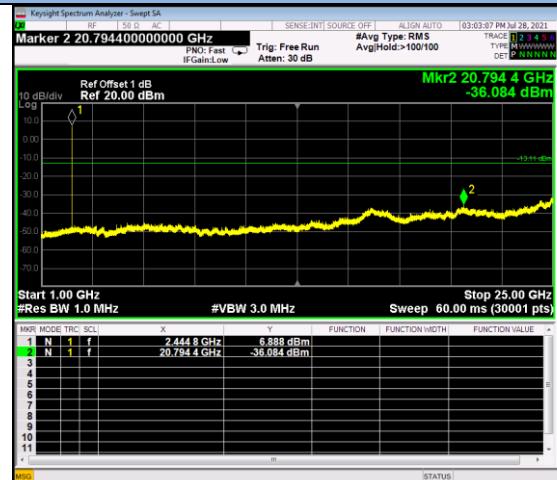
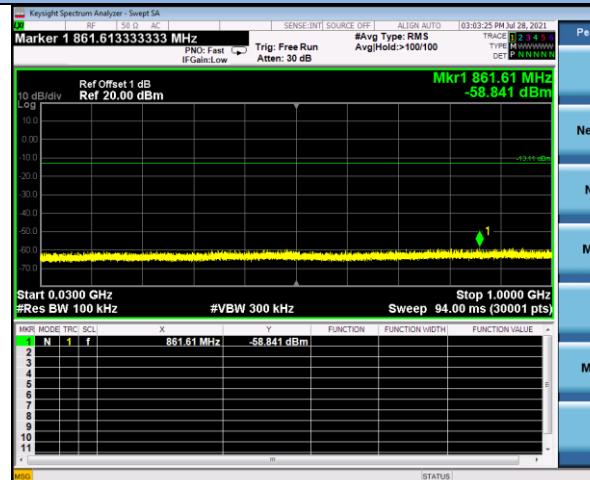

## Measurement Procedure OOB

- a. Set RBW = 100 kHz.
- b. Set VBW  $\geq$  300 kHz.
- c. Set the Detector = peak.
- d. Set the Sweep = auto couple.
- e. Set the Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

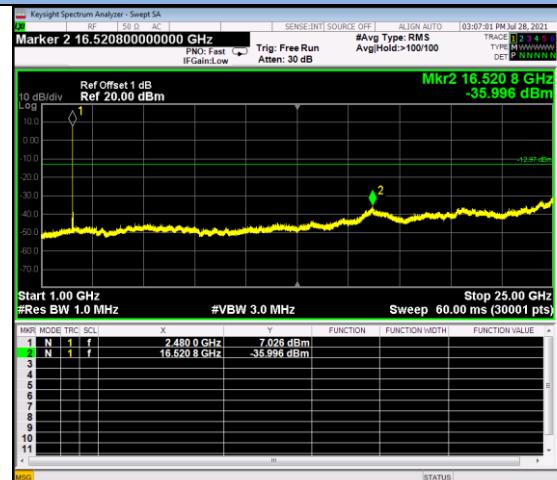
## TEST RESULTS



PASS

Please refer to the following test plots.


## Conducted Spurious Emissions


## Low Channel / 30MHz~1GHz



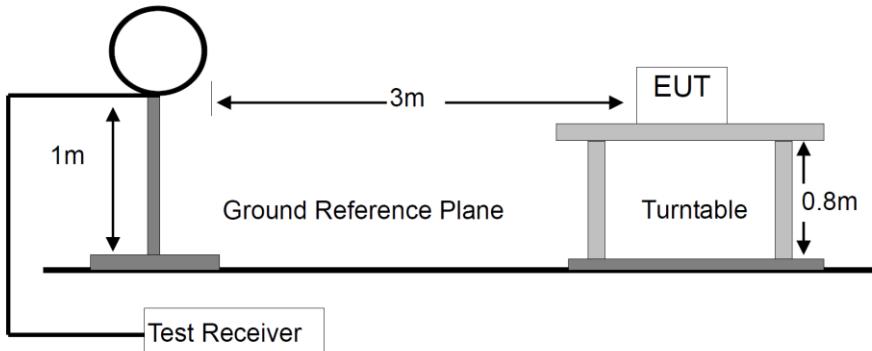
### Mid Channel / 30MHz~1GHz



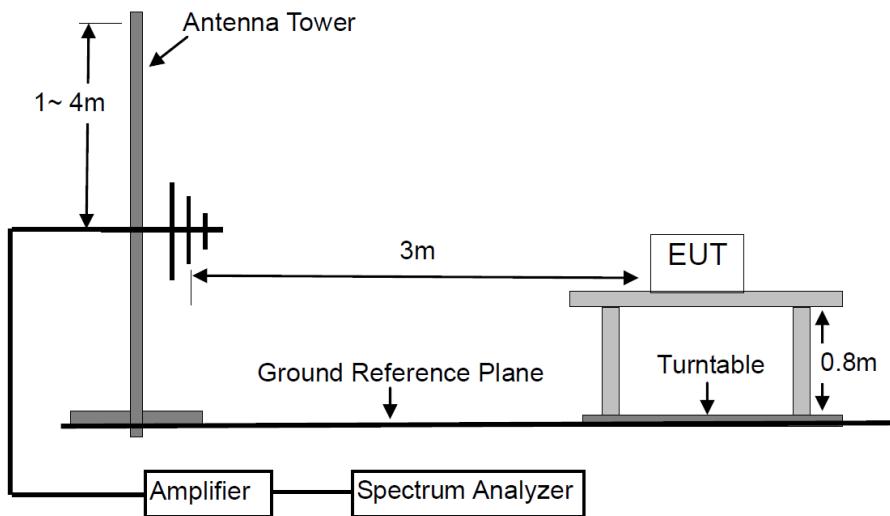
## High Channel / 30MHz~1GHz



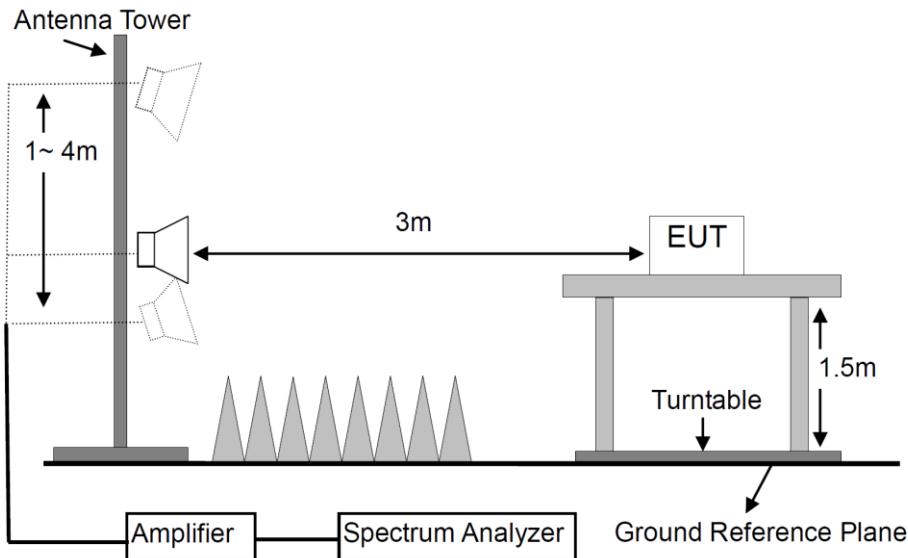
### 13.6 Radiated Spurious Emissions and Restricted Bands Measurement


#### LIMIT

| Frequency range<br>MHz | Distance Meters | Field Strengths Limit (15.209) |
|------------------------|-----------------|--------------------------------|
|                        |                 | $\mu\text{V/m}$                |
| 0.009 ~ 0.490          | 300             | 2400/F(kHz)                    |
| 0.490 ~ 1.705          | 30              | 24000/F(kHz)                   |
| 1.705 ~ 30             | 30              | 30                             |
| 30 ~ 88                | 3               | 100                            |
| 88 ~ 216               | 3               | 150                            |
| 216 ~ 960              | 3               | 200                            |
| Above 960              | 3               | 500                            |


Remark: (1) Emission level (dB) $\mu\text{V}$  = 20 log Emission level  $\mu\text{V/m}$   
 (2) The smaller limit shall apply at the cross point between two frequency bands.  
 (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.  
 (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.  
 (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.

## BLOCK DIAGRAM OF TEST SETUP


For Radiated Emission below 30MHz



For Radiated Emission 30-1000MHz



For Radiated Emission Above 1000MHz.



## TEST PROCEDURES

a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.

b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.

f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

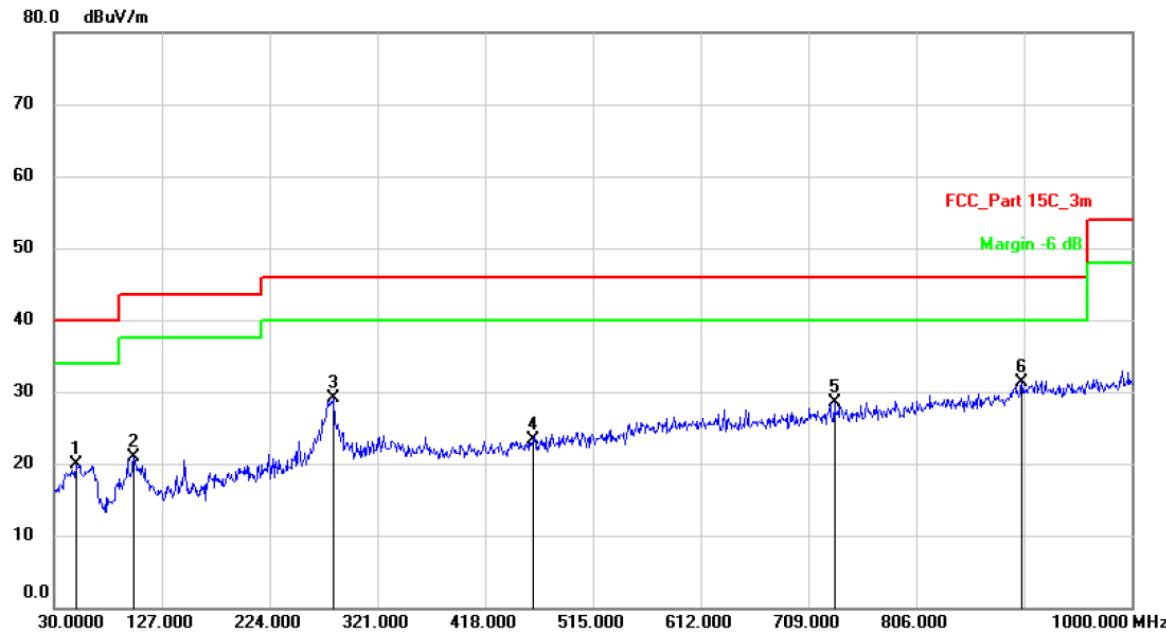
During the radiated emission test, the spectrum analyzer was set with the following configurations:

| Frequency Band (MHz) | Detector | Resolution Bandwidth | Video Bandwidth |
|----------------------|----------|----------------------|-----------------|
| 30 to 1000           | QP       | 120 kHz              | 300 kHz         |
| Above 1000           | Peak     | 1 MHz                | 3 MHz           |
|                      | Average  | 1 MHz                | 10 Hz           |

---

## TEST RESULTS

PASS


Please refer to the following pages of the worst case.

|                          |                               |
|--------------------------|-------------------------------|
| M/N: Retail Eye - Z3     | Testing Voltage: AC 120V 60Hz |
| Polarization: Horizontal | Detector: QP                  |
| Test Mode: 4             | Distance: 3m                  |

## Radiated Emission Measurement

Date: 2021/7/31

Time: 14:13:10



| No. | Mk. | Freq.    | Reading Level | Correct Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|-----|----------|---------------|----------------|------------------|--------|--------|----------|---------|
|     |     | MHz      | dBuV          | dB/m           | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |     | 49.4000  | 26.87         | -7.06          | 19.81            | 40.00  | -20.19 | QP       |         |
| 2   |     | 101.7800 | 28.51         | -7.51          | 21.00            | 43.50  | -22.50 | QP       |         |
| 3   |     | 281.2300 | 34.89         | -5.86          | 29.03            | 46.00  | -16.97 | QP       |         |
| 4   |     | 460.6800 | 25.71         | -2.39          | 23.32            | 46.00  | -22.68 | QP       |         |
| 5   |     | 732.2800 | 25.79         | 2.75           | 28.54            | 46.00  | -17.46 | QP       |         |
| 6   | *   | 901.0600 | 25.03         | 6.21           | 31.24            | 46.00  | -14.76 | QP       |         |

**Note:** Below 30MHz, the emissions are lower than 20dB below the allowable limit.

|                        |                               |
|------------------------|-------------------------------|
| M/N: Retail Eye - Z3   | Testing Voltage: AC 120V 60Hz |
| Polarization: Vertical | Detector: QP                  |
| Test Mode: 4           | Distance: 3m                  |

## Radiated Emission Measurement

Date: 2021/7/31

Time: 14:20:37

80.0 dBuV/m



| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit | Over     |         |
|-----|-----|----------|---------|---------|----------|-------|----------|---------|
|     |     |          | Level   | Factor  | ment     |       |          |         |
|     |     | MHz      | dBuV    | dB/m    | dBuV/m   | dB    | Detector | Comment |
| 1   |     | 65.8900  | 33.77   | -9.63   | 24.14    | 40.00 | -15.86   | QP      |
| 2   |     | 101.7800 | 37.46   | -8.72   | 28.74    | 43.50 | -14.76   | QP      |
| 3   |     | 147.3700 | 39.41   | -11.75  | 27.66    | 43.50 | -15.84   | QP      |
| 4   |     | 226.9100 | 32.44   | -8.10   | 24.34    | 46.00 | -21.66   | QP      |
| 5   | *   | 278.3200 | 40.22   | -6.90   | 33.32    | 46.00 | -12.68   | QP      |
| 6   |     | 559.6200 | 31.93   | -1.50   | 30.43    | 46.00 | -15.57   | QP      |

**Note:** Below 30MHz, the emissions are lower than 20dB below the allowable limit.

| Modulation: GFSK                                                                                                                                                                  |                       |                        |       |                  | Test Result: PASS          |       | Test frequency range: 1-25GHz |       |                |        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-------|------------------|----------------------------|-------|-------------------------------|-------|----------------|--------|--|
| Freq.<br>(MHz)                                                                                                                                                                    | Ant.<br>Pol.<br>(H/V) | Reading<br>Level(dBuV) |       | Factor<br>(dB/m) | Emission Level<br>(dBuV/m) |       | Limit 3m<br>(dBuV/m)          |       | Margin<br>(dB) |        |  |
|                                                                                                                                                                                   |                       | PK                     | AV    |                  | PK                         | AV    | PK                            | AV    | PK             | AV     |  |
| <b>Operation Mode: TX Mode (Low)</b>                                                                                                                                              |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| 4810                                                                                                                                                                              | V                     | 48.83                  | 35.69 | 6.30             | 55.13                      | 41.99 | 74.00                         | 54.00 | -18.87         | -12.01 |  |
| 7215                                                                                                                                                                              | V                     | 48.91                  | 32.39 | 10.44            | 59.35                      | 42.83 | 74.00                         | 54.00 | -14.65         | -11.17 |  |
| ---                                                                                                                                                                               |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| 4810                                                                                                                                                                              | H                     | 48.43                  | 33.86 | 6.30             | 54.73                      | 40.16 | 74.00                         | 54.00 | -19.27         | -13.84 |  |
| 7215                                                                                                                                                                              | H                     | 48.42                  | 32.74 | 10.44            | 58.86                      | 43.18 | 74.00                         | 54.00 | -15.14         | -10.82 |  |
| ---                                                                                                                                                                               |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| <b>Operation Mode: TX Mode (Mid)</b>                                                                                                                                              |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| 4890                                                                                                                                                                              | V                     | 47.65                  | 33.45 | 6.60             | 54.25                      | 40.05 | 74.00                         | 54.00 | -19.75         | -13.95 |  |
| 7335                                                                                                                                                                              | V                     | 49.09                  | 32.78 | 10.55            | 59.64                      | 43.33 | 74.00                         | 54.00 | -14.36         | -10.67 |  |
| ---                                                                                                                                                                               |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| 4890                                                                                                                                                                              | H                     | 48.91                  | 34.81 | 6.60             | 55.51                      | 41.41 | 74.00                         | 54.00 | -18.49         | -12.59 |  |
| 7335                                                                                                                                                                              | H                     | 49.07                  | 32.68 | 10.55            | 59.62                      | 43.23 | 74.00                         | 54.00 | -14.38         | -10.77 |  |
| ---                                                                                                                                                                               |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| <b>Operation Mode: TX Mode (High)</b>                                                                                                                                             |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| 4960                                                                                                                                                                              | V                     | 48.72                  | 34.23 | 6.89             | 55.61                      | 41.12 | 74.00                         | 54.00 | -18.39         | -12.88 |  |
| 7440                                                                                                                                                                              | V                     | 49.03                  | 33.63 | 10.60            | 59.63                      | 44.23 | 74.00                         | 54.00 | -14.37         | -9.77  |  |
| ---                                                                                                                                                                               |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| 4960                                                                                                                                                                              | H                     | 48.37                  | 34.22 | 6.89             | 55.26                      | 41.11 | 74.00                         | 54.00 | -18.74         | -12.89 |  |
| 7440                                                                                                                                                                              | H                     | 48.48                  | 33.83 | 10.60            | 59.08                      | 44.43 | 74.00                         | 54.00 | -14.92         | -9.57  |  |
| ---                                                                                                                                                                               |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| <b>Spurious Emission in restricted band:</b>                                                                                                                                      |                       |                        |       |                  |                            |       |                               |       |                |        |  |
| 2390.000                                                                                                                                                                          | V                     | 49.39                  | 40.04 | 0.09             | 49.48                      | 40.13 | 74.00                         | 54.00 | -24.52         | -13.87 |  |
| 2390.000                                                                                                                                                                          | H                     | 49.30                  | 39.43 | 0.09             | 49.39                      | 39.52 | 74.00                         | 54.00 | -24.61         | -14.48 |  |
| 2483.500                                                                                                                                                                          | V                     | 59.70                  | 39.66 | 0.34             | 60.04                      | 40.00 | 74.00                         | 54.00 | -13.96         | -14.00 |  |
| 2483.500                                                                                                                                                                          | H                     | 66.91                  | 39.90 | 0.34             | 67.25                      | 40.24 | 74.00                         | 54.00 | -6.75          | -13.76 |  |
| Remark: Data of measurement within this frequency range shown “---” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits. |                       |                        |       |                  |                            |       |                               |       |                |        |  |

---

## 13.7 Antenna Requirement

### STANDARD APPLICABLE

According to of FCC part 15C section 15.203 and 15.204:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

### ANTENNA CONNECTED CONSTRUCTION

The antenna is PIFA antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 3.02 dBi, Therefore, the antenna is consider meet the requirement.

## 14. Test Equipment List

| Item | Equipment                      | Manufacturer                            | Model No. | Serial No.        | Last Cal.     | Cal. Interval |
|------|--------------------------------|-----------------------------------------|-----------|-------------------|---------------|---------------|
| 1.   | Test Receiver                  | Rohde & Schwarz                         | ESCI7     | 100837            | Mar. 13, 2021 | 1 Year        |
| 2.   | Antenna                        | Schwarzbeck                             | VULB9162  | 9162-010          | Mar. 23, 2021 | 1 Year        |
| 3.   | Spectrum Analyzer              | Rohde & Schwarz                         | FSU26     | 200409/026        | Mar. 13, 2021 | 1 Year        |
| 4.   | Spectrum Analyzer              | Keysight                                | N9020A    | MY54200831        | Mar. 13, 2021 | 1 Year        |
| 5.   | Spectrum Analyzer              | Rohde & Schwarz                         | FSV40     | 101094            | Mar. 13, 2021 | 1 Year        |
| 6.   | Horn Antenna                   | Schwarzbeck                             | BBHA9170  | 9170-172          | Mar. 23, 2021 | 2 Year        |
| 7.   | Power Sensor                   | DARE                                    | RPR3006W  | 15I00041SNO<br>64 | Mar. 13, 2021 | 1 Year        |
| 8.   | Horn Antenna                   | COM-Power                               | AH-118    | 071078            | Mar. 23, 2021 | 1 Year        |
| 9.   | Pre-Amplifier                  | HP                                      | HP 8449B  | 3008A00964        | Mar. 13, 2021 | 1 Year        |
| 10.  | Pre-Amplifier                  | HP                                      | HP 8447D  | 1145A00203        | Mar. 13, 2021 | 1 Year        |
| 11.  | Loop Antenna                   | Schwarzbeck                             | FMZB 1513 | 1513-272          | Mar. 23, 2021 | 1 Year        |
| 12.  | Test Receiver                  | Rohde & Schwarz                         | ESCI      | 101152            | Mar. 13, 2021 | 1 Year        |
| 13.  | L.I.S.N                        | Rohde & Schwarz                         | ENV 216   | 101317            | Mar. 13, 2021 | 1 Year        |
| 14.  | RF Switching Unit              | Compliance<br>Direction Systems<br>Inc. | RSU-M2    | 38311             | Mar. 13, 2021 | 1 Year        |
| 15.  | Temporary antenna<br>connector | TESCOM                                  | SS402     | N/A               | N/A           | N/A           |
| 16.  | Test Software                  | EZ                                      | EZ_EMCA   | N/A               | N/A           | N/A           |

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.

---End---